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Multiresolution Histograms and
Their Use for Recognition

Efstathios Hadjidemetriou, Michael D. Grossberg, Member, IEEE, and
Shree K. Nayar, Member, IEEE

Abstract—The histogram of image intensities is used extensively for recognition and for retrieval of images and video from visual
databases. A single image histogram, however, suffers from the inability to encode spatial image variation. An obvious way to extend this
feature is to compute the histograms of multiple resolutions of an image to form a multiresolution histogram. The multiresolution histogram
shares many desirable properties with the plain histogram including that they are both fast to compute, space efficient, invariant to rigid
motions, and robust to noise. In addition, the multiresolution histogram directly encodes spatial information. We describe a simple yet
novel matching algorithm based on the multiresolution histogram that uses the differences between histograms of consecutive image
resolutions. We evaluate it against five widely used image features. We show that with our simple feature we achieve or exceed the
performance obtained with more complicated features. Further, we show our algorithm to be the most efficient and robust.

Index Terms—Multiresolution histogram, scale-space, image sharpness, Fisher information, shape feature, texture feature, histogram
matching, histogram bin width, feature parameter sensitivity, feature comparison.

1 INTRODUCTION

HISTOGRAMS have been widely used to represent,
analyze, and characterize images. One of the initial
applications of histograms was the work of Swain and
Ballard for the identification of 3D objects [73]. Following
that work, various recognition systems [22], [72] based on
histograms were developed. Currently, histograms are an
important tool for the retrieval of images and video from
visual databases [1], [52], [80], [81]. Some of the reasons for
their importance are that they can be computed easily and
efficiently, they achieve significant data reduction, and they
are robust to noise and local image transformations. For
many applications, however, the histogram is not adequate,
since it does not capture spatial image information. In this
work, intensity, together with spatial image information, is
combined using the multiresolution histogram [27].

1.1 Contributions

The multiresolution decomposition of an image is com-
puted with Gaussian filtering [41], [78]. The image at each
resolution gives a different histogram. The multiresolution
histogram, H, is the set of intensity histograms of an image
at multiple image resolutions. In this work, the multi-
resolution decomposition of an image is implemented with
a pyramid for efficiency. The multiresolution histogram can
be computed and stored efficiently also. Moreover, it can
also be matched very fast using the L; norm. The
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multiresolution histogram not only combines intensity with
spatial information, but it also preserves the efficiency,
simplicity, and robustness of the plain histogram.

The bottom row of Fig. 1 shows two images with identical
histograms. The first and fourth columns show the multi-
resolution decomposition of these two images. The second
and third columns show the multiresolution histograms of
the two original images. In each multiresolution histogram,
the histograms of corresponding lower resolutions of the two
images are different. This is because the spatial information in
the two original images is different. Note that the multi-
resolution histogram is an image representation because
multiresolution decomposition is applied to the image. It is
different from representations where multiresolution decom-
position is applied exclusively to the histogram [13], [18].

Translations, rotations, and reflections preserve the
multiresolution histogram. In general, however, the trans-
formations of an image affect its multiresolution histogram.
This effect is addressed using as analytical tools the image
functionals called generalized Fisher information measures.
These functionals relate histogram density values with
spatial image variation. For some classes of images, it is
shown that spatial image variation depends on parameters
of shapes or properties of textures. Some of these shape and
texel parameters are their size, elongation, boundary
complexity, and placement pattern [27].

A matching feature based on the multiresolution histo-
gram is examined. The feature uses the histogram of the
original image together with the differences between
histograms of consecutive image resolutions. The upper
left part of Fig. 2 shows an image. Next to it are the
histograms of three of its consecutive resolutions together
with the two corresponding difference histograms. The
feature is applied to three databases. The first is a database
of synthetic images. The second database consists of
Brodatz textures [8], and the third database consists of
CUReT textures [16]. The performance of the multiresolu-
tion histogram also depends on the bin width and the
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Fig. 1. Examples of two multiresolution histograms. Columns (a) and (d) show the multiresolution decomposition of two images. The bottom row
shows the original images. Columns (b) and (c) show their multiresolution histograms, respectively. The histograms of the two original images are

identical, but the two multiresolution histograms are different.

histogram smoothing. The multiresolution histograms are
found to be very robust with respect to rotation, noise,
intensity resolution, and database size. In general, they can
discriminate between images with different spatial patterns
alone without the help of any other filters or features [27].

The performance of the multiresolution histogram as an
image feature is evaluated by comparing it with five
commonly used image features. The five image descriptors
are Fourier power spectrum features [77], Gabor wavelet
features [38], Daubechies wavelet packets energies [43], auto-
cooccurrence matrices [34], and Markov random field para-
meters [44], [50]. The two databases of natural textures are
used in this comparative study, namely, the database of
Brodatz textures and the database of CUReT textures. The

features are compared in terms of their computation cost and
experimentally.

The sensitivity of the multiresolution histograms to their
parameters is examined. For a fair comparison, the
sensitivity of the image features to their parameters is also
examined. The best performing parameters of each feature
are used in the comparison. The matching performance of
multiresolution histograms is comparatively robust to
illumination, database size, number of classes, and pose.
They were also found to be the most efficient.

1.2 Previous Work on Histogram Extensions

To discriminate between images, which have identical or
similar histograms, several features have been suggested that
extend plain histograms. Some algorithms have used local
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Fig. 2. The first column shows the original image. In the second column is the transformation of the multiresolution histogram into the generalized
image entropies. The third column shows the transformation of the rate at which the histogram changes with image resolution into the generalized
Fisher information measures. The third column demonstrates that the generalized Fisher information measures link the rate at which the histogram
changes with image resolution to properties of shapes and textures. The lower part shows the quantities used only for the analysis.

intensity histograms rather than global ones. Local histo-
grams have been combined with explicit image coordinates
[12], [33], [47], [67], [71]. Another representation that
combines image scale together with the histogram is the
locally orderless histograms suggested by Griffin [24] as well
as Koenderink and Van Doorn [42]. Sporring et al. [68] and
Kadir and Brady [40] compute local histograms over regions
of varying size. The local histograms are often related to the
hard problem of region segmentation. Another limitation of
local histograms is that they do not represent image structure.

A class of methods compute statistics of patterns of
intensities. One example is the cooccurrence matrix [30],
[34], [56]. Another example is the coherence vector [55]
which represents region connectedness. Also, some re-
searchers have used statistics of explicit geometric informa-
tion, such as angles between neighboring line segments and
ratios of neighboring line segments [19], [35].

1.3 Previous Work on Combining Histograms and
Image Multiresolution

The dominant types of multiresolution decompositions

have been constructed with derivative filters as well as

orientation and frequency selective filters [10], [79]. Some of
these filters have been differences of Gaussians [62],
differences of offset Gaussians [48], [79], differences of
offset differences of Gaussians [48], Gabor filters [7], [37],
wavelets [14], [43], [59], and steerable filters [2], [23].

The Gabor filters combine spatial and frequency localiza-
tion. An overview of their significance was given by Poratand
Zeevi [60]. The wavelets achieve not only frequency and
spatial localization [14], [43], [59], but also they can be
implemented with critical subsampling. Thus, they are very
efficient. In general, the histograms, or energies of one or more
filtered images, have been used as features [37], [38], [51], [65].
For the case of Gabor filters, the feature can be the power
spectrum at every pixel [21], or the maximum Gabor
coefficient value of a pixel [7]. These features were used either
exclusively [65], or together with the histogram of the original
image [51], [52]. The features extracted from derivative
filtering are sensitive to noise and even limited image
deformations.

Gabor-based algorithms are sensitive to rotations, en-
ergy, and texel density. Thus, they are more suitable and
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have been extensively used for texture segmentation. This
has been demonstrated by Fogel and Sagi [21], as well as by
Jain and Farrokhnia [37]. They have also been used for
texture discrimination by Faugeras [20], and Coggins and
Jain [15]. Some researchers have attempted to extract
rotationally robust features from Gabor filtered images
[29], [49]. The wavelet algorithms extract a feature vector for
the entire image rather than for individual pixels. Thus,
they are suitable and have been used for texture indexing
[14], [43]. The Gaussian derivatives and steerable pyramids
have also been used both for segmentation of images, image
indexing, and object recognition [2], [23].

Decompositions obtained with derivative filters have been
preferred because there has been a general belief that
derivative multiresolution decompositions capture spatial
information as opposed to Gaussian multiresolution decom-
positions which only introduce erroneous bias [2], [62]. This
has prevented histograms of exclusively Gaussian multi-
resolution decompositions from being fully exploited. One
application has been to compute individual histograms of
low image resolutions to expedite retrieval [45]. Single
histograms, however, of the original image, or lower
resolutions, suffer from the inability to encode spatial image
information. The histograms of multiple image resolutions
have been used sequentially for texture synthesis by De Bonet
[6] and Heeger and Bergen [31]. Another representation that
employs Gaussian filtering has been the flexible histograms
[5], [6]. Finally, Sablak and Boult [64] have implemented
image multiresolution decomposition optically.

Several researchers have realized that the histogram bin
width affects matching performance. A suggestion to
ameliorate the binning problem has been to form clusters of
bins [46], [61]. Cluster formation and the computation of their
distance [28], [63], however, are computationally expensive.
Thus, they deprive the histogram from its main advantages,
efficiency and simplicity. Gaussian multiresolution scheme
has also been combined with Markov random fields [44], [50].
Multiresolution Markov random field parameters have been
used for texture discrimination [44].

2 BACKGROUND AND DEVELOPMENT OF
ANALYTICAL TooOLS

Spatial image information is related robustly to weighted
averages of the rates of change of histogram densities. The
weighted averages are the Fisher information measures.
The analysis starts with the lemma that the histogram can
be transformed into a vector of generalized image entropies
[69]. Generalized entropies are robust image features
amenable to analysis. The rates at which the histogram
bins change with image resolution can be transformed into
the rates at which generalized entropies change with image
resolution. The change of the generalized entropies with
image resolution are given by the generalized Fisher
information measures. In this analysis, the domains D of
images L are taken to be continuous with coordinates
x = (z,y). The domain is also assumed to be infinite [57].

2.1 Relation between Histogram and Tsallis

Entropies of an Image
The Tsallis generalized entropies of an image £ depend on a
continuous parameter ¢ and are given by

[ L69 |
5= [ ST 0
where image £ has unit L; norm and £(x) is the intensity
value at pixel x. In the limit ¢ — 1 the Tsallis generalized
entropies reduce to the Shannon entropy. In (1), the
intensities at all points x, denoted by L(x), can be
substituted directly by their values: vy, v1, ..., vy—1, Where
m in the total number of gray levels. The union of all the
regions in the domain with identical intensity, v;, gives the
value of histogram density j, h;. That is, (1) becomes [76]

m—1 . q
V; — V;
Sg=" <~’q_i’)hj. (2)

=0

That is, the Tsallis generalized entropies can be expressed as
a linear function of the histogram. Note that the transfor-
mation of the histogram into a generalized entropy may be
considerably more complicated than linear. For example,
the transformation of the histogram into a Renyi entropy
[69] is logarithmic.

Consider a vector S =[S, 54,5, - - - Squ]]T consisting of
any m different Tsallis entropies. Each element of this
vector, using (2), can be expressed in terms of values of
histogram densities. That is, vector S can be exlpressed as a
function of the histogram h = [hghihs ... h,—1] to give the
linear proportionality relation

S(£) x h(L). (3)

The algebra involved in obtaining relation (3), which is the
matrix form of (2), is provided in the appendix [69]. The
second column of Fig. 2 shows the linear transformation of the
three histograms to the three corresponding vectors of
generalized entropies. The histogram is a function where
the domain is the intensity range or index of a bin. We replace
the functional dependence on a particular bin with a variable
¢. The function at a value of ¢, for example, ¢ = 1, has an
aggregate statistical meaning, namely, the Shannon entropy.

2.2 Relation between Multiresolution Histogram
and Generalized Fisher Information Measures

To decrease image resolution, we use a Gaussian filter G(1),

1 22+ y2
) =—— — 4
() 2mlo? ea;p( 2002 )’ (4)

where o is the standard deviation of the filter [41], [78], and
l is the resolution. A filtered image, £ * G(l), has histogram
h(L * G(1)) and entropy vector S(L * G(1)). The rate at which
the histogram changes with image resolution can be related
to the rate at which image entropies change with image
resolution. This relation is obtained by differentiating (2)
with respect to [ to obtain

dS,(L£+G(1) _ R~ (v =07\ dhy(L+ G(1))
dl N Z ( q—1 > dl

G

J=0

The rate at which the Tsallis generalized entropies change
withimage resolution, [, on the lefthand side of (5), are related
to closed form functionals of the image. These functionals are
the generalized Fisher information measures [4], [58], [70],

_ 0*dS,(£+G(1))

Jo(L) = ¥

. (6)
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We were unable to find, in the literature, such closed form
expressions for the rate of change of other families of
generalized entropies with image resolution.

The substitution of (5) into the right-hand side of (6) gives

_ 0P RR (v — o\ diy (£ G(0))
qu)—;;(q_l) 90

This equation reveals that .J; is linearly proportional to the
rate at which the histogram densities change with image
resolution. The proportionality factors, in (7), for ¢ > 1 weigh
heavier the rate of change of the histogram densities that have
large intensity values and vice-versa [58], [76]. The propor-
tionality factors of the Fisher information, J;, weigh approxi-
mately equally all histogram densities. The rate of change of
the histogram with image resolution can, be transformed into
the m x 1 vector J = [Jy, Jy Jg, - - - Iy, 1t Differentiating (3)
with respect to resolution / and subsequently combining with
(6) gives

o? dh(L = G(1))
J(L) 5 ¥ . (8)
The box in the first row and third column of Fig. 2 shows
the differences between the histograms of consecutive
image resolutions. The third column of Fig. 2 shows the
transformation of the rate of histogram change with image
resolution to the generalized Fisher information measures.
The generalized Fisher information measures, .J,, of an
image with unit L; norm can also be computed directly
from the image using [4], [58], [70]
VL(x)|?

Jq(E)Z/D 20 L(x)dx. (9)

The sharpness, or spatial variation, at a pixel is defined as

‘Vﬁ(x) :
L(x)

The generalized Fisher information measures are nonlinear
weighted averages of image sharpness. The average sharpness
as can be seen from (9) is .J;, namely, the Fisher information
[70]. The Fisher information is monotonically decreasing with
Gaussian filtering. For a fixed value of variance, it achieves its
minimum for a Gaussian image [4], [58], [70]. The third
column of Fig. 2 shows that J relates the differences between
histograms of consecutive image resolutions to image
properties. This relation will be investigated in the following
two sections. The component of vector J that will be used toa
larger extent is the Fisher information, J;.

3 MULTIRESOLUTION HISTOGRAMS OF SHAPES

To analyze the effect of shape parameters on the multi-
resolution histogram, we use J,. The functional .J, is convex.
Its single minimum is achieved for a radially symmetric
Gaussian image [11], [58], [76]. As an image diverges from a
Gaussian, its J, values increase. Several classes of transfor-
mations and warps can deviate an image from a Gaussian.
The value of J, and its sensitivity to some of these classes of
transformations and for some classes of images will be
quantified. The value of J, is preserved by translations,
rotations, and reflections. These transformations commute
with Gaussian filtering.

835

First, the effect of shape elongation is examined analytically for
four classes of images. The histogram of an elongated shape of
the classes examined changes faster with resolution than
that of a radially symmetric shape. Stretching can elongate
radially symmetric shapes and is given by matrix

(4" 1ivs)

where p is the elongation. That is, this transformation is the
mapping = — z,/p and y — .. The determinant of the
transformation is equal to unity. Hence, this family of
transformations does not affect the histogram of an image
[26]. The relation of J, to elongation p is quantified for four
families of shapes. Theimagesin Fig. 3show oneinstance from
each shape family examined. For these shapes p is the ratio of
the parameters along the axes and k is the product of the
parameters along the axes. For example, for the Gaussian
aligned with the axes of the image in Fig. 3b p = Z and
k = 0,04, where o, and o, are the standard deviations along
thetwoimageaxes. The expressions for J, arecomputed using
(9) [25]. For the fourimage classes in Fig. 3, the minimum value
of J, happens to correspond to a symmetric shape for which
p =1and J, increases in proportion to (p +1).

The value of J,, for a class of superquadric images, depends
on how complicated the boundary is. The value of J, for this
class is larger when the boundary is complicated. The
class of superquadric images examined numerically is
given by £ = (R" — 2" — y")""*. The shape of the boundary
depends on parameter 1, which is varied. The base area of
the shapes is kept fixed as n varies and the intensity
within the boundary for this family of shapes is almost flat
because of the value of the exponent, 0.15. Thus, these
images have approximately the same histogram. Some
members of the family of shapes are shown in Figs. 4a, 4b,
4c, 4d, and 4e: a pinched diamond for n < 1, a diamond
for n=1, a circle for n =2, and a square with curved
corners for n > 2.

The plots of J;, J2, and Js per pixel as functions of 7 are
shown in Figs. 4f, 4g, and 4h, respectively. They are
computed directly from the images by discretizing the
integral of (9). The minimum of J;, J;, and .J5 correspond to
a circle shown in Fig. 4d for which n = 2. The values of J;,
Js, and Js increase rapidly as the shape varies from a circle
to a pinched diamond as 7 decreases.

The value of J, for the family of circular diffuse shapes also
varies depending on the diffuseness of the intensities within the
shape. This dependence is examined analytically. For this
class of images, smooth intensity changes across their
boundaries minimize the rate of change of the histogram
with resolution. A member of the family of circular diffuse
shapes for e = 0.7 is given in Fig. 3c. The same figure gives
the expression of the generalized Fisher information
measures of the family [25]. The diffuseness is varied with
exponent ¢, but the base area is kept constant. The change in
the diffuseness with increasing ¢, shown in Figs. 5a, 5b, 5¢c,
5d, and 5e, gives a step transition for € = 0, a hemisphere for
e =0.5, a paraboloid for ¢ =1.0, nearly a Gaussian for
€ > 1.0, and tends to an impulse as e increases further.

The Fisher information as a function of the diffuseness e is
plotted in Fig. 5f. The shape that has minimum Fisher
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(R" — 2" — y1)™" as a function of parameter 1. Some members

of this family of shapes are a pinched diamond, a diamond, a circle, and a square with curved corners. The plots are in (f), (g), and (h). The minima

are attained for the circle shown in (d) for which n = 2. The largest values

of J;, J2, and J; are attained for the pinched diamond in (a). (a) n = 0.56.

(b) n = 1.00. (c) n = 1.48. (d) = 2.00. (e) n = 6.67. (f) J; versus n. (g) Jo versus 7. (h) J; versus 7.

information over the possible diffuseness patterns is that
shown in Fig. 5d [25]. The diffuseness of this shape is similar
to that of a Gaussian. The Fisher information increases rapidly
as the shape changes from nearly Gaussian to a step boundary
as ¢ decreases. For the example classes of images in this
section, the histogram change with image resolution is
minimized for shapes with rounded boundaries and smooth
intensity transitions across the boundary.

4 MULTIRESOLUTION HISTOGRAMS OF TEXTURES

Several investigators have observed experimentally that the
increase in the entropy of an image with filtering depends

on properties of image regions and image textures [36], [54],
[69], [74]. This section quantifies the dependence of the
multiresolution histogram on texture parameters using J,
for three different texture properties. Two example classes
of images are used. The first example consist of texels which
are Gaussian distributions and the second example consists
of texels which are pinched diamonds such as that shown in
Fig. 4a.

The dependence of J, on the number of texels within a texture
segment of fixed area is first investigated analytically. The value of
J, is expected to increase with the number of texels in a fixed
area, since smaller texels are also sharper. Consider a simple
texture model where the texel models are the shapes
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Fig. 5. The Fisher information, .J; for a family of shapes of varying diffuseness. An image of this family for e = 0.7 is given in Fig. 3c. Some members
of the family are a step transition, a hemisphere, a paraboloid, nearly a Gaussian, and an impulse. In (f) is the Fisher information .J; as a function of e
computed analytically [25]. The minimum corresponds to the nearly Gaussian image in (d) and is largest for the step transition in (a). (a) ¢ = 107,

(b) e =0.5. (c) e =1.0. (d) e = 2.41. (e) e = 9. (f) J; versuse.
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Fig. 6. The Fisher information as a function of the tiling parameter p of the textures. The images in (a) and (c) show two shapes as well as the
textures resulting by minifying and tiling them. Next to the images, in (b) and (d), are the plots of the Fisher informations as a function of tiling
parameter p. Each plot shows the data obtained directly from the images as well as the quadratic fit.

discussed in the previous section. The shapes are repeated to
form a regular p x p pattern of identical texels. That is, the
texture results by tiling a texel r = p? times. To preserve the
size of the texture, the texels are also contracted by a
transformation A whose determinant is given by the inverse
of the repetition factor, thatis detA = 1/r. The factor by which
the area changes for textures with different parameter p is
equal to unity since (detA)r = 1. Thus, textures for all p have
the same histogram [26]. It can be shown that [25]:

Jq (Etexfzz7'e) = p2 Jq (»Cshape ) )

where L4 is the image of the original shape-texel, and
Licsure is the image of the corresponding p x p regular
texture. Equation (8) shows that the histogram change with
resolution is multiplied by the same factor, p?.

Figs. 6a and 6c show two shapes as well as the textures
formed by contracting and tiling them. The texels in Fig. 6a

(10)

are Gaussians and the texels in Fig. 6c are superquadrics.
Figs. 6b and 6d show their Fisher informations, respectively,
as a function of p. Each of the plots shows the Fisher
information computed directly from the images as well as
the quadratic fit expected from (10). For both examples, the
quadratic fit almost perfectly agrees with the data.
Subsequently, the effect of overlap between neighboring texels
on the Fisher information is discussed. Textures with over-
lapping texels are less sharp and have a smaller Fisher
information. Analytically, Gaussian filtering monotonically
increases the size of texels and decreases their Fisher
information [3], [39]. Fig. 7a shows a texture consisting of a
mixture of Gaussians of linearly increasing standard
deviation. Fig. 7b shows that the Fisher information
monotonically decreases with texel width, which in this
case is the standard deviation of the Gaussians. In Fig. 7, the
standard deviation is shown as a percentage of the texel
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neighboring texels. The overlap is shown as a percentage of the width of the texels.
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Fig. 8. The Fisher information as a function of the randomness in the placement of the texels. The images in (a) and (c) show two textures with
increasingly larger randomness in the placement of the texels. Next to the images, in (b) and (d), respectively, are the plots of the Fisher informations
as a function of the standard deviation of the Gaussian noise in texel placement. The standard deviation is shown as a percentage of the texel width.

width, which is 50 pixels. It is verified that the Fisher
information is monotonically decreasing. Fig. 7c shows a
texture with superquadric texels of linearly increasing
width. Their Fisher information is shown in Fig. 7d. The
overlap is shown as a percentage of the texel width. The
width of the texels is also 50 pixels. Again, the Fisher
information monotonically decreases with texel width.

In the remainder of this section textures whose texel placement is
random are examined. Randomness, on average, monotonically
decreases Fisher information [3], [11], [39]. This is verified
experimentally for two classes of textures. The positions of
the texels in a regular texture are perturbed with Gaussian
noise of linearly increasing standard deviation. The Fisher

information is measured as a function of the standard
deviation of the perturbation noise. This experiment is
performed 20 times and the average values of the Fisher
information measures are computed. The results of the
experiments are shown in Fig. 8. The texels in Fig. 8a are
Gaussian and the texels in Fig. 8c are superquadric. Figs. 8b
and 8d show the average Fisher information as a function of
the standard deviation of the Gaussian noise in pixel
placement. The standard deviation is shown as a percentage
of the texel width in the perturbed texture. The width of the
texels is 19 pixels. In both cases, the Fisher information
decreases monotonically as expected.
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The rates at which histogram densities change with
resolution increase linearly with the number of texels for the
two classes of images examined. Overlap among neighbor-
ing texels and randomness in the texel placement decreases
the histogram change with image resolution.

5 MATCHING ALGORITHM USING MULTIRESOLUTION
HISTOGRAMS AND ITS COMPLEXITY

Multiresolution histograms are sensitive to image structure.
Thus, they are used for image matching. The multiresolu-
tion is implemented with an 8 bit/pixel Burt-Adelson
pyramid [9]. The multiresolution histogram is the vector
H = [hg,hy, hy, ... . hy ], where h; is a row vector corre-
sponding to the histogram of resolution i, and [ — 1 is the
lowest image resolution. The histograms are normalized to
unit L; magnitude to become independent of the size of the
original image and the subsampling factor of the pyramid.

The next step is to compute the cumulative histograms
corresponding to each image resolution. Subsequently, the
differences between the cumulative histograms of consecu-
tive image resolutions are computed. A pyramid with [ levels
has! — 1difference histograms. The difference histograms are
proportional to the discrete versions of the Fisher information
measures. The difference histograms are concatenated to
form a feature vector. The distance between the feature
vectors is the L; norm.

The bin width of the histograms affects their matching
performance. The appropriate bin width for the histogram
of an image depends mainly on the number of pixels in the
image and on the standard deviation of the histogram [66],
[75]. In turn, the standard deviation of the histogram
depends on the dynamic range of the histogram as well as
the pyramid level. More precisely, the optimal bin width for
Li norm for a Gaussian or nearly Gaussian histogram is
given by [17], [75]

w(h) = (11)

where w(h) is the bin width of histogram h, and &(h) is an
estimate of the standard deviation of the histogram h. The
true underlying histogram density is very rarely Gaussian in
this work. Thus, (11) gives only the order of the histogram bin
width [66] and the ratio for the bin widths between
histograms of images of consecutive pyramid levels. The
latter ratio is the subsampling factor of the intensity
resolution of the histograms in a multiresolution histogram.
It is obtained by combining the relation 7,4, = n;/4 resulting
from the image pyramid together with (11) to get

w(h;yq)
w(hy)

(8m)" 6 (h)n "%,

_o(hist) o3 L oooys
=) 275 < 27 (12)
where w(h;) is the bin width of the histogram of pyramid
level i, 6(h;) is the standard deviation of the histogram of
pyramid level i, and pyramid level i+ 1 is of lower
resolution than pyramid level i. If the standard deviation
of the histogram monotonically decreases, then ‘T(l(‘}’l*;) <L
The latter leads to Step 1 of (12). Increasing the bin width of
a histogram decreases the length of the histogram. To
normalize with respect to the length of the histograms, the
amplitudes of the histograms are multiplied by their
intensity subsampling factors.

Prior to decreasing the intensity resolution of a histogram it
is necessary to low-pass filter it to prevent aliasing. The
additional filtering is done prior to decreasing the intensity
resolution and also prior to computing the cumulative
histograms or difference histograms. It may evenbe necessary
to low-pass filter the histogram of the original image. This is
because the minimum bin width, or maximum frequency, that
an image can support in its histogram may be larger than the
finest possible intensity change of the image. The low-pass
filter used in this work is Gaussian. Filtering the histogram of
animage witha Gaussianis equivalenttoadding uncorrelated
Gaussian noise directly to the image [32].

The cost of computing the Burt-Adelson pyramid is of
order O(n)\), where n is the number of pixels, and X is the
width of the separable Gaussian filter. The cost of
computing the histograms is of order O(n). The costs of
filtering, computing the cumulative histograms, and the
difference histograms are of order O(tl), where ¢ is the
number of intensity quantization levels. That is, the total
cost of computing the multiresolution histogram feature
vectors is of order O(nA). The distance computation and
storage cost are of order O(t(l—1)). The number of
pyramid levels is given by [ =logs\/n, where n is the
number of pixels in the image. Both the cost of computing
the multiresolution histogram and the cost of computing
the distance between multiresolution histograms is low.

6 MATCHING EXPERIMENTS USING
MULTIRESOLUTION HISTOGRAMS

The matching performance of the multiresolution histogram
was tested extensively with three databases; namely, a
database of synthetic images, a database of Brodatz textures
[8], and a database of CUReT textures [16]. Thelargest of these
databases is the database of CUReT textures which consists of
a total of 8,046 images of 61 different physical textures.

The experiments were performed with three databases;
namely, a database of 108 synthetic images, a database of
91 Brodatz textures [8], and a database of 8,046 CUReT
textures [16]. The last two databases contain natural textures
and consist of several image classes. Each class has images of
different instances of the same texture. All images have
intensity resolution of 8 bit/pixel.

All the images of the database of synthetic images are bivalue and
have the same histogram. Thus, they cannot be matched based
on their histograms. The databases of natural textures were
histogram equalized to cancel variations due to illumination. Thus,
again the images of these databases cannot be discriminated
based on their histograms. They can be matched, however,
based on their multiresolution histograms. The differences
between the multiresolution histograms of the various
images in the database is caused simply because of differ-
ences in the shape and texture of the images.

The histograms of the original images of the databases of
natural textures were equalized. The histograms of lower
resolutions of these images form a single distribution that is
nearly Gaussian. Thus, (11) applies and (12) can give the ratio
of histogram bin widths between consecutive image resolu-
tions. Two values based on (11) were used in the experiments.
One is the maximum subsampling factor “B1) — 92/3 — 1 59
and the other is % 21/2 = 1.41. Equatlon (11) does not
apply to the database of synthetic textures since the
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1) |Add Gaussian noise to the image |

2) | Construct image pyramid |

3) | Compute histograms |

4) ’ Normalize histograms with L, norm|

5) ’ Compute cumulative histograms |

(6) ‘ Compute difference histograms ‘

(7) ‘ Subsample difference histograms and renormalize |

(S)IConca[enate the difference histograms to form the feature vectorl

) Compare using L; norm

Fig. 9. The steps of the matching algorithm. Bypassing Step 1 avoids
smoothing of the database images.

histograms of the bivalueimages of the database consist of two
spikes and not a single nearly Gaussian distribution.

The experiments examined both matching without noise
and with noise. To corrupt an image, Gaussian noise of
standard deviation 8 bit/pixel was superimposed. In the
experiments under noise the sensitivity with respect to
Gaussian noise in the test image and the database images
were both examined. This is equivalent to testing the
sensitivity with respect to smoothing of the histogram with
a Gaussian filter. The effective standard deviation of the
image noise was different from that of the original super-
imposed noise due to clipping within the finite intensity
range of the image. The matching algorithm is summarized in
Fig. 9. Note that the algorithm has two normalization steps,
Step 4 and Step 7, to account for image and histogram
subsampling, respectively.

6.1 Database of Synthetic Textures

Many of the images in the database consist of texel shapes
and texel placements that were explored in previous
sections. More precisely, the texels include dots, circles,
triangles, squares, and superquadrics. The placement of the
texels is regular in some images and random in others. The
database consists of 108 images of size 320 x 320. Some
images from the database are shown in Fig. 10. The
histogram consists of 40 percent of the pixels of gray level
25 and 60 percent of the pixels of gray level 230.

Eight test images were corrupted with Gaussian noise of
effective standard deviation 15 gray levels. They were then
matched against the database with multiresolution histo-
grams of 8 bit/pixel. Each test image together with the first
three matches are shown in Fig. 11. The percentage of correct
matches to the corresponding original image as a function of
Gaussian noise in the test image is shown in Fig. 12. In
Fig. 12a, the matching was performed without smoothing of
the database histograms. In Fig. 12b, the matching was
performed with smoothing of the database histograms. The
intensity resolution of the histograms varied from 8 bit/pixel
to 3 bit/pixel in both figures. The matching rate for each
intensity resolution is indicated by a different plot.

The plots in Fig. 12 show that multiresolution histograms
are robust with respect to both noise and intensity resolution.
The best performance in Fig. 12 was obtained for the highest
intensity resolution, 8 bit/pixel, due to the large number of
pixels in the image, 320 x 320. The performance is improved
with smoothing of the database histograms. This database
demonstrates in Fig. 11 the ability of multiresolution
histograms to match similar images.

6.2 Database of Brodatz Textures

The second database consists of 13 of the Brodatz textures
digitized under seven different rotation angles 0°,30°, 60°,
90°,120°,150°, and 200°. Thus, the total number of images in
the database is 91. The size of the images is 179 x 179 pixels
and are histogram equalized. Some of the database images are
shown in Fig. 13.

Four equalized test images were corrupted with Gaussian
noise of effective standard deviation 15 gray levels. They were
matched against the database using 8 bit/pixel multiresolu-
tion histograms. Each test image together with the first three
matches are shown in Fig. 14. The percentages of correct
matches as a function of Gaussian noise are shown in Fig. 15.
The matching rates in Fig. 15 leave out the database image
corresponding to the test image. The plots in Fig. 15a were
obtained without smoothing of the database histograms and
constant bin width across image resolution. The plots in
Fig. 15b were obtained with smoothing of the database
histograms and constant bin width. The intensity resolutions
varied from 8 bit/pixel to 3 bit/pixel in both figures. The
highest intensity resolutions of 7 bit/pixel and 8 bit/pixel
perform the best due to the relatively large number of pixels,
179 x 179. The plots in Fig. 15c were obtained with histogram
smoothing and histogram bin width dependent on image
resolution. Theinitial intensity resolution was 8 bit/pixel. The

Fig. 10. Several samples from the database of synthetic images.
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Fig. 11. Matching of synthetic images using 8 bit/pixel multiresolution histograms. The test images are shown in the columns marked Test Image and
are corrupted with Gaussian noise of effective standard deviation 15 gray levels. The first three matches are shown in consecutive columns.
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Fig. 12. Matching percentage of multiresolution histograms under Gaussian noise for the database of synthetic images. The sensitivity to intensity
resolution was also examined. The plots in (a) were obtained without smoothing of the database histograms, and the plots in (b) were obtained with

smoothing of the database histograms.

subsampling factors were 2%/ and 2'/2. Fig. 15¢ also contains
the plot for constant bin width of 8 bit/pixel for comparison.

The plot obtained with the highest subsampling factor in
Fig. 15¢ had the highest performance. Adaptive bin width
not only improves performance, but also reduces storage
and matching costs. This database demonstrates the
robustness of multiresolution histograms to noise and
intensity resolution as well as their effectiveness in class
matching. It also demonstrates their invariance to rotations.

6.3 Database of CUReT Textures

The third database contains natural textures and is a subset
of the CUReT database [16]. It consists of the 61 physical
textures with 131 or 132 instances of each physical texture
under different illumination and viewing conditions. The
total number of images is 8,046 and are all histogram
equalized. The subset was selected so that the projection of
the textures in the original CUReT database images is at
least the size of the images in the database used in this

Fig. 13. Samples from the database of Brodatz textures.

work, 100 x 100 pixels. Some of the database images are

shown in Fig. 16.
Ten images from the database were corrupted with

Gaussian noise of effective standard deviation 15 gray levels.
They were matched against the database using 8 bit/pixel
multiresolution histograms. In matching the database images
corresponding to the test images were excluded. Each test
image together with the first three matches are shown in
Fig. 17. The matches in the last row and right column,
excluding theidentical image, are incorrect. The mismatching
images, however, are perceptually similar to the test image.

3rd
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Fig. 14. Matching of Brodatz textures using 8 bit/pixel multiresolution
histograms. The test images are shown in the column marked Test
Image and are corrupted with Gaussian noise of effective standard
deviation 15 gray levels. The first three best matches are shown in
consecutive columns.
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Fig. 15. The percentage of matching for multiresolution histograms with respect to image noise and histogram intensity resolution for the Brodatz
textures database. The database image corresponding to the testimage was left out in matching. The plots in (a) were obtained without smoothing of the
database histograms. The plots in (b) were obtained with smoothing of the database histograms. The plots in (c) were obtained with histogram smoothing
and adaptive bin width. The intensity subsampling factors were 2%/3, and 2'/2. The initial intensity resolution for all the plots in (c) was 8 bit/pixel.

Fig. 16. A few samples from the database of CUReT textures [16].

Test Ist 2nd 3rd Test Ist 2nd 3rd

Image Ima oe Match Match Match
‘V‘}_ ',! /J" 4 lp{) ," '\,‘ ‘; 2 .
g R /"Au 9 ; ;“" ‘ M\ S (IJ{

!

’.5
i‘. "J ;/ ,a-n

Fig. 17. Matching of CUReT textures using 8 bit/pixel multiresolution histograms. The test images are shown in the columns marked Test Image and
are corrupted with Gaussian noise of effective standard deviation 15 gray levels. The first three best matches are shown in consecutive columns.
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Fig. 18. The percentage of matching for multiresolution histograms with respect to image noise and intensity resolution for the CUReT textures
database. The database image corresponding to the test image was left out in matching. The plots in (a) were obtained without smoothing of the
database histograms and the plots in (b) with smoothing of the database histograms. In (b), both constant and adaptive bin widths were used. For the
adaptive bin widths, the initial intensity resolution was 8 bit/pixel and the subsampling factors were 22/3 and 2!/2.

The percentages of correct matches as a function of
Gaussiannoise are shown in Fig. 18. To compute the matching
percentage for a specific level of noise 100 images were
randomly selected from the database and used as testimages.
The matching rates in Fig. Fig. 18a were obtained with
constant histogram bin width. The matching rates in Fig. 18b
were obtained with smoothing of the database histograms
and either constant or adaptive bin widths. In all plots for
constant histogram bin widths the intensity resolutions
varied from 8 bit/pixel to 7 bit/pixel. For the plot of the
adaptive bin widths the initial intensity resolution was 8 bit/
pixel and the subsampling factors were 2%/ and 2'/2.

The multiresolution histograms of intensity resolution
7 bit/pixel performed better than the multiresolution
histograms of maximum intensity resolution, 8 bit/pixel.
This is more obvious in Fig. 18a and is due to the relatively
small number of pixels in the equalized images, 100 x 100,
and the extended dynamic range covered by the histogram.
Equation (11) shows that both of these characteristics lead to
a larger optimal bin width. The best performance is
obtained for histogram smoothing and adaptive bin width.

In Fig. 18a, the best performance for all plots was
obtained for nonzero noise because of aliasing. In Fig. 18b,
the plots for adaptive bin width performed as well and even
better than those with constant bin width. In addition, the
algorithms with adaptive bin width have lower storage and
matching cost requirements. The high matching perfor-
mance of the multiresolution histograms for this database
demonstrates the robustness with respect to noise and
intensity resolution. These experiments also demonstrate
the robustness of the multiresolution histograms toward
database size, number of database classes, and illumination.
In general, the multiresolution histograms are efficient and
have been shown to be a robust image feature.

7 COMPARISON WITH OTHER IMAGE FEATURES

The robustness of the multiresolution histogram is verified
by comparing it to five commonly used image features.
These features are:

1. Fourier power spectrum annuli: The image was
transformed into frequency domain with regular
Fourier tranform that can be applied to images of

any length and width. The Fourier power spectrum
is segmented into annuli all of which have the same
thickness. The feature vector consists of the sum of
the values over the different annuli [77].

2. Gabor wavelet features: The parameters used were
those suggested by Jain et al. [38]. That is, the Gabor
filters had four different orientations and the
difference between consecutive frequencies was
one octave. The range of intensities from lowest to
highest for an image with \/n pixels per row is of
order O(log+/n). Filtering was implemented in the
Fourier domain. The band-pass images were trans-
formed back into the spatial domain to compute
their L; norms. The transformations were imple-
mented with fast Fourier transform [38].

3. Daubechies wavelet packets features: The feature vector
consists of the L, norms of the images of the
wavelets packets transform [43]. The wavelet trans-
form was combined with spatial subsamling to give
critical image sampling.

4. Auto-cooccurrence matrices: It was computed over a
square window around all pixels. The side of the
window was 11 pixels. The feature is the entire
matrix [34].

5. Markov random field parameters: Each pixel is assumed
to be a linear combination of the intensities in a
window surrounding it [44], [50]. The size of the
window is 3 x 3. Each image pixel gives one linear
relation. The linear parameters are computed with
least squares pseudoinverse that gives the shortest
length. The pseudoinverse was computed with
Householder transformations because they are
robust [53].

The distance between the feature vectors was computed
with the L; norm for all but one. The distance between
wavelet packets feature vectors was the Ly norm [43]. The
matching performance of the features in this work are
computed for the two databases described in Section 6. The
first is the database of Brodatz images, samples of which are
shown in Fig. 13. The second is the database of CUReT
textures, samples of which are shown in Fig. 16.

All features except wavelets packets features are invar-
iant with respect to translation. The only feature invariant to



844

=)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO.7, JULY 2004

Effect. st. dev. of noise (o)

—— Multiresolution diff. histograms
-0~ Fourier power spectrum

-+- Gabor features

-~ Wavelet Packets

-%- Cooccurrence matrix

~&~ Markov random fields

(@)

100,
Ty e
X ¢ 9
< gof: < g0
o =)
5 §
2 50 S 6o
- -
_g o
E=R) £
H H
2] w
E 20"t g o
(& (&) H
o ! oL ¥ %0 !
0 10 20 30 40 50 60 (] 10 20 30 40 50

Effect. st. dev. of noise (o)

— Multiresolution diff. histograms
~©- Fourier power spectrum

-+- Gabor features

-+- Wavelet Packets

-9~ Cooccurrence matrix

~&~ Markov random fields

(b)

Fig. 19. The percentage of matching as a function of noise. In (a) are the results for the database of Brodatz textures and in (b) are the results for the
database of CUReT textures. The matching excludes the database image corresponding to the test image. The multiresolution histograms are the

most robust to rotations and noise.

rotation are the multiresolution histograms. The Fourier
power spectrum annuli are robust to rotations. The auto-
cooccurrence matrices are also relatively robust to rotations.

7.1 Comparison of Matching Performance

The experimental setup is the same as that described in the
previous section where the multiresolution histograms
were examined for their sensitivity to their parameters. To
compute the matching rate the original database images
corresponding to the test images were not considered. The
sensitivity of the features to their parameters was also
examined. This makes the comparison with the multi-
resolution histograms fair, since the sensitivity of the latter
with respect to intensity resolution has already been
examined in Section 6. The best performing parameters
from each feature are used.

For the multiresolution histogram, histogram smoothing
as well as adaptive bin width were used. The initial image
resolution is the maximum, 256. The subsampling factor of the
bin width was 2'/2. The same parameters of the multi-
resolution histograms were used for both databases. The best
performing set of frequencies of the Gabor filters for both
databases is the one where all the image harmonics are
considered.

The first comparison is based on the database of Brodatz
images. The number of annuli of the Fourier power
spectrum was 20. The number of resolutions of the
Daubechies wavelet packets transform was 3. The intensity
resolution of the auto-cooccurrence matrices was 3 bit/
pixel. The plot of the matching rate as a function of noise
starting from zero is shown in Fig. 19a.

The matching rate at zero noise in Fig. 19a is an indication
of the sensitivity to rotations. The matching rate of multi-
resolution histograms is 100 percent since they are invariant
to rotations. The annular features of the Fourier power
spectrum also have a matching rate of 100 percent. Thus, they
are very robust to rotations. The performance of the auto-
cooccurrence matrix with respect to rotations at zero level of
noise is high relative to the performance of the other features.
The wavelet packets features and the Gabor features are
rotationally sensitive and have a very low matching
performance.

The results in Fig. 19a for the Brodatz database
demonstrate that the multiresolution histograms and the
Gabor features are the most robust to noise. The auto-
cooccurrence matrices and the Daubechies wavelet features
are more sensitive to noise.

The second comparison was based on the database of
CUReT textures. The number of annuli of the Fourier power
spectrum was 20, and the number of levels of the wavelet
packets transform was 4. The intensity resolution of the
auto-cooccurrence matrices was 5 bit/pixel. Fig. 19b shows
the percentage of matches. The size of the CUReT database
is 8,046 images. Thus, the matching rate for this database
provides information about the sensitivity of the features to
database size. The multiresolution histograms, the wavelet
packets features, and the Gabor features are robust with
respect to the size of the database and the number of classes
in the database. The Fourier power spectrum features are
sensitive to database size. The auto-cooccurrence matrices
and the Markov random field parameters are very sensitive
with respect to the size of the database. The sensitivity to
database size is summarized in Table 1.

The CUReT database also provides information about
robustness to noise. The multiresolution histograms are the
most robust to noise. The Gabor features and Daubechies
wavelet features are also robust to noise. Auto-cooccurrence
matrices and Markov random field parameters are very
sensitive to noise. The results about the robustness to noise
agree with those of the Brodatz database. The multiresolution
histograms are robust to noise, since Gaussian filtering
averages out noise, and image noise simply smoothes the
histograms. The sensitivity of the features to noise and
illumination is summarized in Table 1. The most sensitive to
illumination is the auto-cooccurrence matrix. In general, the
multiresolution histogram is the most robust feature.

7.2 Comparison of Computation Costs

The same parameters are used for all the features. The size
of the images is 200 x 200, that is n = 40,000 pixels. The
width of the window is A = 5. The levels of resolution are
l=5. For the multiresolution histograms and the auto-
cooccurrence matrices t =256, for the Fourier power
spectrum features ¢ = 40, and for the Gabor features ¢ = 16.
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The Experimental Sensitivity of the Texture Features with Respect to Superimposed Noise, Database Size, and lllumination

Feature Gaussian noise | Database size | Illumination
Fourier power spectrum annuli robust sensitive robust
Gabor features robust robust robust
Daubechies wavelet energies sensitive robust robust
Multiresolution histograms robust robust robust
Auto-cooccurrence matrix very sensitive | very sensitive | very sensitive
Markov random field parameters | very sensitive |very sensitive| sensitive

The computation cost of the multiresolution histograms
was computed in Section 5. The computation costs of all the
features are given in Table 2. The least expensive feature to
compute are the multiresolution histograms. The most
expensive feature to compute are the Markov random field
parameters, since they involve the computation of a least
squares pseudoinverse. The Gabor features are the most
expensive to compute for large images. This is because both
the number of features and the cost of the fast Fourier
transform increase with image size.

The Gabor decomposition involves a high degree of
oversampling since many bandpass images are computed.
This increases the computational requirements. The wavelet
packets decomposition samples the image critically. The
latter could also be implemented without image subsam-
pling. Avoiding subsampling would result in oversampling
of the image. It would make, however, the wavelet
decomposition invariant to translations, and might also
improve its performance. The multiresolution histograms
were implemented with the Burt-Adelson pyramid. They
could also be implemented without subsampling.

8 CoNcLUSION AND FUTURE WORK

The multiresolution histogram captures spatial image in-
formation. Moreover, it retains the simplicity, efficiency, and
robustness of the plain histograms. The high matching
performance of the multiresolution histograms was demon-
strated experimentally. They were also shown to be very
robust to image rotation, image noise, and intensity resolu-
tion. Smoothing the histogram and using a histogram bin

TABLE 2
The Features are Listed Top to Bottom in Order
of Decreasing Computation Cost

Feature Computation cost

Markov random field parameters | O(n(A\? — 1)2 — @)

2 Gabor features O((log+/n+ 1)nlogn)
3 | Fourier power spectrum features O(ny/n)

4|  Auto-cooccurrence matrix O(n\?)

4| Wavelet coefficient energies O(nAl)

6| Multiresolution histograms O(n\)

The most expensive to compute are the Markov random field
parameters and the Gabor features.

width dependent on image resolution also improved perfor-
mance. The multiresolution histogram was compared to five
other image features. It was shown that the multiresolution
histograms are the most efficient and robust.

The dependence of the multiresolution histogram as well
as the Fisher information measures on image shape and
image texture can be investigated further. The multiresolu-
tion histogram can also be computed over higher dimensional
domains such as 3D data. The range of the multiresolution
histograms can be of multiple dimensions such as color. The
performance of multiresolution histograms formed with
eccentric Gaussians could be examined. Such multiresolution
histograms would be rotationally sensitive.

APPENDIX A

RELATION BETWEEN HISTOGRAM AND TSALLIS
GENERALIZED ENTROPIES

Property. A histogram of m gray levels is related linearly to a
vector S of Tsallis entropies of m different orders.

Proof. Take the orders of the m entropies to be q =
[90¢1¢2 - - - gnm—1] and the corresponding entropies to be
given by the vector S of size m. Each element of vector S can
be expressed in terms of the histogram, as shown in (2), to
give

S=W([U-V)h (13)

Matrix W is an m x m matrix with diagonal elements
given by w;; = 4%1 Matrix U has identical rows, each
one given by [vy vy vy ... v,_1], which are the consecutive

image gray levels. Matrix V is given by:

U§1 “éf Z’; .
v=| w T Tl
Ugm—l vl{m—l .. v(rj;;;ll
The matrix P = W(U — V) in (13) is the linear propor-
tionality matrix of (3) and (8). O
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