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Abstract
Appearance matching methods use raw or filtered pixel
brightness values to perform recognition. To expedite
recognition, subspace methods are used to achieve com-
pact representations of images. In many cases it is ad-
vantageous to recognize an image based on only a sub-
set of its pixels, for example, when a part of an image
is occluded, or to expedite recognition. Currently, such
subsets are selected either randomly or using heuristics.
In this paper, we derive criteria for selecting the pixel
subsets through a sensitivity analysis of the subspace.
Based on these criteria, we propose two practical recog-
nition algorithms. These algorithms were tested on a
large number of images with degraded or partial data. In
addition to faster recognition, our algorithms yield high
recognition accuracy.

1 Introduction
Appearance matching based on linear subspace meth-
ods have found many important applications in com-
putational vision, including, face recognition[Turk and
Pentland, 1991], real-time 3D object recognition[Na-
yaret al., 1996], and planar pose measurement[Krumm,
1996]. Appearance matching methods generally use im-
age brightness values directly, without relying on the ex-
traction of low-level cues such as edges, local shading,
and texture. The success of this approach results from
the fact that brightness values capture both geometric and
photometric properties of the objects of interest.

There are at least two reasons that motivate us to use a
subset of the pixels in the image, rather than the complete
image. First, if an image includes occlusion we would
like to use only the incorrupted pixels for recognition.
Secondly, using a subset of the pixels can enhance effi-
ciency because recognition time in appearance matching
is more or less proportional to the number of pixels used.

A number of attempts have been made to perform recog-
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nition with occluded or partial data[Murase and Na-
yar, 1995a] [Moghaddam and Pentland, 1995] [Krumm,
1996] [Brunelli and Messelodi, 1993] [Leonardis and
Bischof, 1996]. Though these approaches are interest-
ing, none succeeds to address the underlying problems
fully. The first three techniques select windows in an im-
age based on ad–hoc heuristics that are not generally ap-
plicable. The last two methods, at first, randomly select
a small subset of pixels and then prune the subset with it-
erative algorithms. However, these iterative schemes are
not guaranteed to converge to the desired recognition re-
sult. In addition, recognition based on very small random
subsets is not generally reliable.

The more general problem of using partial data has
been investigated thoroughly in the context of statistics
[Gauss, 1873] [Hotelling, 1944] [Ehrenfeld, 1955] [Hu-
ber, 1981] [Cook and Weisberg, 1982] [Box and Draper,
1975]. These results are insightful but are limited in their
applicability as they use assumptions that do not hold
true in appearance matching. For instance, the data sets
are assumed to be small (few pixels) and the measure-
ments are assumed to be repeatable (multiple measure-
ments at each pixel).

In this paper, we derive several criteria for selecting sub-
sets of image pixels that maximize recognition rate. This
is accomplished by analyzing the sensitivity of the sub-
space to image noise. Our criteria are then used to de-
velop recognition algorithms that are general in their ap-
plicability. The first algorithm automatically selects a
square window within an image as the pixel subset. The
use of such a window reduces sensitivity of recognition
to occlusion. This is due to the fact that occlusion is more
likely to appear in a large image rather than a small win-
dow. The second algorithm judiciously selects the subset
from the entire image, i.e. the pixels are not restricted
to lie within a local region. Both algorithms are tested
with a large number of noisy images. They demonstrate
higher recognition performance when compared to algo-
rithms that select pixel subsets randomly.



2 Overview of Appearance Matching
The traditional approach to appearance matching con-
sists of two stages: model acquisition and recognition.
During model acquisition, a training set is obtained by
varying a number of parameters (object pose, illumina-
tion, etc). Each image in the training set is read in a raster
scan fashion to yield ann–dimensional vector, which is
then normalized to unit energy to achieve invariance with
respect to illumination intensity. Next, the correlation
matrix of the training images is constructed and its eigen-
values and eigenvectors are computed. Since the training
images are normalized and the correlation matrix is sym-
metric, the eigenvectors are orthonormal. In general, a
small number,k, of the eigenvectors (the ones with the
largest eigenvalues) are sufficient to capture the primary
variations in the training set. These eigenvectors form
the basis vectors of a subspace called the eigenspace.

In the next step of model acquisition, each training im-
age vector is projected to the subspace by computing the
dot product of it with each of the basis vectors. The pro-
jections of all the training images yields a set of discrete
points in the subspace. Images that are strongly corre-
lated project to points that are close to each other. The
discrete points can be interpolated[Murase and Nayar,
1995b] to get a manifold that represents all possible ap-
pearances of the object.

During recognition, each novel image is first normalized
and then projected to the subspace as follows:

x̂ = AT b (1)

whereA is the orthonormal matrix whose columns are
the eigenvectors of the training set,b is the normalized
image vector, and̂x is the coordinate vector of the pro-
jection. Eventually, the closest manifold point to the pro-
jection x̂ is found and the test image is identified as the
one that corresponds to that point.

The projection̂x can also be used to reconstruct the im-
age. This is done by substituting equation (1) into the
linear relation between the eigenspace and the test im-
age, namelŷb = Ax̂, to obtain:

b̂ = AAT b = Hb (2)

where,H is the projection matrix. In turn, the recon-
structed image can be used to calculate the fitting error,
or residual image:

r = b− b̂ = (I −H)b (3)

whereI is then×n identity matrix, andn is the number
of pixels in the image. Note thatH is symmetric and
idempotent; therefore, its diagonal elements satisfy0 ≤
hii ≤ 1 [Strang, 1980].

In the traditional approach to appearance matching, the
complete set of alln image pixels is used. In our work,

we seek to use a subset of m pixels, wherek < m ≤ n.
That is, b is anm–dimensional vector whose elements
are the intensity values that correspond to the pixel sub-
set. In this context,A, which represents the subspace,
consists of the subset of rows that corresponds to the
pixel subset. In this caseA is not necessarily orthonor-
mal. Therefore, the orthogonal projection is obtained as:

x̂ = (ATA)−1AT b (4)

Further, by substituting equation (4) into the linear rela-
tion b̂ = Ax̂, we get the projection matrix

H = A(ATA)−1AT (5)

whereH is m × m in size. Finally,b̂ and r are also
m–dimensional vectors.

The results reviewed above are used in the sensitivity
analysis of design matrixA. For clarity, the design and
projection matrices that correspond to the complete pixel
set (full image) are denoted asAc andHc, respectively.

3 Sensitivity Analysis of the Rows of the
Design Matrix

In many real world applications the test image is cor-
rupted by noise. In turn, the noise degrades the estimates
of the subspace projection̂x and the reconstructed image
b̂. In addition, the degradation ofx̂ andb̂ also depends on
the properties of the rows ofA. In this section we derive
the properties that the rows ofA should satisfy in order
to minimize the degradation due to noise.

We assume that the noise degrading the test image is ad-
ditive, independently distributed, has zero mean, and has
finite variance. That is:

E(e) = 0 (6)

E(eeT ) = σ2I (7)

wheree is the random noise vector, andσ2 is the variance
of the noise. Hence, the image vectorb can be decom-
posed into

b = bu + e (8)

wherebu is the underlying incorrupted vector. The noise
vectore is unobservable since part of it lies in the sub-
space. Hence,bu ande cannot be recovered. However,
they can be approximated byb̂ andr, respectively. If the
approximation is close enough, then the reconstructed
vector b̂ is a reasonable estimate of incorrupted vector
bu and the residualr is a reasonable estimate of the un-
observable noisee .

A useful expression for the residual is obtained by sub-
stituting relation (8) into equation (3), and usingbu =
Hbu:

r = (I −H)e (9)



The ith row of matrix equation (9) gives the relation
between the unknown noise and the residue in theith

pixel [Cook and Weisberg, 1982]:

ri = ei − êi (10)

= ei −
j=m∑
j=1

hijej = (1− hii)ei −
j=m∑

j=1,j 6=i
hijej

where,ei and êi are, respectively, the actual noise and
the part of the noise that lies in the subspace.

In equation (10), if the diagonal elementhii and the
non–diagonal oneshij are both small, thenri will be
a reasonable estimate for the unobservable noiseei. The
diagonal element can be made small by making it equal
to its average value[Box and Draper, 1975]. The aver-
age value is given bykn since the sum of the diagonal
elements ofH is fixed,

n∑
i=1

hii = k, (11)

wherek is the rank ofA.

To examine the magnitude of the non–diagonal elements
we use their relation with the diagonal ones:

n∑
j=1

h2
ij = hii (12)

This relation is derived using the fact that projection ma-
trix H is idempotent and symmetric. By rearranging this
expression we obtain:

hii(1− hii) =
n∑

j=1,j 6=i
h2
ij (13)

This expression shows that the sum of the squares of
the non–diagonal elements in theith row or column is
a parabolic function ofhii. This function is illustrated
in Figure 1. It is clear from the figure that whenhii is
small, then the sum of the squares of the non–diagonal
elements is also small. This holds whenhii lies in the
range0 ≤ hii ≤ 0.5, which is always the case since
for a large number of pixels the average value of the di-
agonal elements,kn , is a very small number, well below
0.5. Hence, by examining the conditions that keep both
the diagonal and non–diagonal elements of the projection
matrix small, we have shown that:

THEOREM 1 The residuals will be close to the un-
known noise if the diagonal elements ofH are equal.

This relates to a theorem of Huber[Huber, 1981] which
says that the maximum diagonal element ofH should
tend to zero.
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Figure 1: The sum of the squares of the non–diagonal ele-
ments of the projection matrix in theith row(column) as a func-
tion of theith diagonal element. Clearly, for small values of the
diagonal element the sum of the squares of the non–diagonal
elements is also small.

The above theorem leads to a useful geometrical im-
plication, by regarding the rows ofA as vectors ink–
dimensional space. In particular, from the relationH =
A(ATA)−1AT we can see that

hii = ai(ATA)−1aTi . (14)

whereai is theith row of A. The spectral decomposi-
tion of ATA, being positive definite, gives eigenvalues
µ1 ≥ µ2 ≥ . . . ≥ µk > 0, with corresponding unit
eigenvectorsp1, p2, . . . , pk. By substituting the covari-
ance matrixATAwith its spectral decomposition in (14)
we get

hii =
k∑
l=1

(
pTl ai√
µl

)2 (15)

Further, lettingθli denote the angle betweenpl andai,
we obtain

hii = aTi ai

k∑
l=1

cos2 θli
µl

(16)

Clearly, the magnitude ofhii depends on two factors,
namelyaTi ai, and the summation. Hence, we can make
the diagonal elements comparable if we make both fac-
tors comparable. Considering the first we obtain:

• Condition (1): The magnitudes of the rows ofA
should be comparable.

The second factor is a summation of the projections of
the inverse of the eigenvalues of all eigenvectors in the
direction of rowai. The summation of the projections
must be comparable for all rows. In general, rows lie
in almost all directions in space. Hence, the summation
must be the same for all directions in space, that is, it



must be independent of orientation. In other words, we
have:

• Condition (2): The energy of the row vec-
tors of A should be uniformly distributed in k-
dimensional space.

Note that the energy of a row is its euclidean length. The
two conditions lead to the conclusion that, ideally, the
rows ofA should be uniformly distributed on the surface
of a sphere.

There is no mathematical technique to find the opti-
mal subset that most closely satisfies the two conditions.
Hence, the optimal subset can only be found by exam-
ining all

(
n
m

)
possible combinations ofm pixels. The

number of possible combinations is a very large number,
hence, the computational complexity of finding the op-
timal subset is very high. However, the complexity of
finding a suboptimal subset is significantly lower. A sub-
optimal subset can be found by techniques that approx-
imate the conditions. As a first approximation we give
priority to the rows that lie in under–represented direc-
tions in space, in order to satisfy condition (2). The rows
are selected from the complete set ofn rows, which gives
rise to the projection matrixHc = AcTAc. Hence, its di-
agonal elements are equal tohcii = acTi aci . However, the
diagonal elements are also given by (16). By compar-
ing the two relations forhcii we conclude that the factor
that represents the summation of the energy in (16) is
always equal to one. In turn, this implies that the row
energy of an orthonormal matrix is uniformly distributed
in space. To achieve the uniform distribution, the row
vectors that lie in under–represented directions are com-
pensated by having larger magnitudes. Hence, to give
priority to under–represented directions we have:

• Heuristic (1): Pixels that correspond to diago-
nal elements ofHc which have large magnitudes
should have higher selection priority.

The above heuristic is a useful first approximation, how-
ever, we can improve it by selecting rows uniformly from
all the under–represented directions in space. We assume
that the rows form clusters that lie in different directions
and use an algorithm that detects these clusters, that is,
perform unsupervised learning. In particular, we chose a
hierarchical clustering algorithm[Hair et al., 1984] that
repeatedly decomposes the set of rows into new clusters.
Every row belongs to a cluster and every cluster is repre-
sented by a seed. At each iteration, first, the row that lies
farther from the existing seeds is selected as the seed of
a new cluster. Then, the rows that lie closer to the new
seed rather than the preexisting ones become members of
the new cluster. The decomposition stops when the Eu-
clidean distance between the seeds of different clusters
is large enough compared to the scatter within the clus-
ters, or when a maximum number of clusters is reached.

We could use any variant of this hierarchical algorithm, a
sequential algorithm, or an algorithm based on the prin-
cipal components ofATA[Cook and Weisberg, 1982].

4 Practical Algorithms and Results

The conditions, the heuristic, and the clustering al-
gorithm presented above were used to implement two
practical algorithms that use pixel subsets for recogni-
tion. The training set for both algorithms is the SLAM
database[Neneet al., 1994]. It consists of 1440 images
that correspond to 72 poses of each of 20 objects. Two
of the objects are shown in Figures 2(a) and (b).

The recognition algorithms were applied to images of the
training set corrupted with Gaussian noise of zero mean;
in some images the standard deviation wasσ = 10 and
in othersσ = 20. Two of the noisy images are shown in
Figures 2(c) and (d). For each noisy image we find the
identity of the object. If the object is correctly identified,
we estimate its pose. We compute and plot the average of
these estimates for 500 test images, for each noise level.
In order to compare, we also plot the recognition and
pose estimation results for randomly selected subsets of
pixels corrupted with noise of the same two levels.

4.1 Window Selection Algorithm

In this algorithm the pixels of the subset are constraint
to lie within a window. In addition, the algorithm uses
heuristic (1). In the first step of the algorithm we form
an image where the intensity is proportional to the cor-
responding diagonal element of the projection matrix.
Then, the window in this image that has the largest sum
of intensities in it is used to recognize all the test images.

We show the results for images of size61×61 in Figures
3(a) and (b). In the figures we vary the size of the window
from 10% to 100% of the whole image. The recognition
rate obtained with our algorithm is higher than that of the
random algorithm. Actually, the rate is 100% for sub-
sets of only 45% of the image pixels. Further, the pose
estimated with our algorithm is more accurate than that
estimated with the random selection one. For both our
algorithm and the random one, pose error is very small
for subsets with greater than 60% of the image pixels.

4.2 Pixel Selection Algorithm

In this algorithm the pixels are selected from the entire
image. The algorithm has two steps. In the first step we
use the hierarchical clustering algorithm we described in
the previous section to form different clusters of the rows
of A. In the second step, we discard rows from all clus-
ters using heuristic (1).

The algorithm was applied to images downsampled to
21 × 21 pixels. We plot the results in Figures 3(c) and
(d). In the figures the size of the subset ranges from 2% to
40% of the whole image. The recognition rate obtained
using our algorithm is higher than that obtained with ran-
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Figure 2:Images that were used to train and test the two algorithms. In particular, the images in (a) and (b) were used to train the
algorithms. The images in (c) and (b) are corrupted versions of those in (a) and (b), with noise of standard deviationσ = 20, and
were used to test the algorithms.
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Figure 3: The recognition rate and pose estimation error plotted as a function of the size of the pixel subset. In (a) and (b) we
show the results for the window selection algorithm, and in (c) and (d) for the pixel selection algorithm. The plots represent two
different levels of noise, namely,σ = 10 in (a) and (c), andσ = 20 in (b) and (d). In all experiments, the recognition rate obtained
with our algorithms is higher than that obtained with the random selection algorithms. For the pixel selection algorithm it is 100%
accurate for subsets consisting of only 6% of the image pixels. Further, the pose errors estimated with both of our algorithms are
lower than those estimated with the random ones. In addition, the random algorithms give more incorrectly recognized images,
whose erroneous pose is not considered.



domly selected subsets. Actually, our algorithm is 100%
accurate for subsets consisting of only 6% of the image
pixels. Further, the pose estimated with our algorithm is
more accurate than that estimated with random selection.

This algorithm is useful for small images, or when the
subsets of pixels are small. If both the image and the
subset of pixels are large, the performance of random se-
lection is adequate. This is due to the central limit theo-
rem[Huber, 1981].

Both our algorithms are less sensitive to noise than the
corresponding random ones. Hence, the performance of
our algorithms compared to the random ones improves
for higher levels of noise. Further, both our algorithms
have better worst–case performance than the correspond-
ing random ones. This is because the random algorithms
can lead to a bad selection of pixels, whereas both our
algorithms always lead to a suboptimal subset. Finally,
our algorithms are real–time since matrixH, and hence
the subsets, can be computed off–line.

5 Conclusion

In this paper, the appearance matching method based on
partial data has been enhanced with techniques that are
analytically derived. These techniques are applicable in
general, they accelerate recognition, and have the poten-
tial of recognizing occluded images. They are derived
based on low–level sensitivity analysis. The techniques
judiciously select a subset of pixels to perform recogni-
tion, rather than selecting subsets with ad–hoc arguments
or randomly. The validity of the analysis, and its possi-
ble applications have been demonstrated experimentally
using two practical algorithms.

The sensitivity analysis of the design matrix would be
more complete if we included an analysis based on the
columns of the design matrixA. The column analy-
sis shows that the design matrix should be orthonormal.
Further, the window selection algorithm would be im-
proved if we used a circular rather than a square window.
Finally, the pixel selection algorithm could use a better
clustering technique.
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