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Phasor Imaging: A Generalization of Correlation-Based
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In correlation-based time-of-flight (C-ToF) imaging systems, light sources
with temporally varying intensities illuminate the scene. Due to global il-
lumination, the temporally varying radiance received at the sensor is a
combination of light received along multiple paths. Recovering scene prop-
erties (e.g., scene depths) from the received radiance requires separating
these contributions, which is challenging due to the complexity of global
illumination and the additional temporal dimension of the radiance.

We propose phasor imaging, a framework for performing fast inverse
light transport analysis using C-ToF sensors. Phasor imaging is based on
the idea that, by representing light transport quantities as phasors and light
transport events as phasor transformations, light transport analysis can be
simplified in the temporal frequency domain. We study the effect of tem-
poral illumination frequencies on light transport and show that, for a broad
range of scenes, global radiance (inter-reflections and volumetric scattering)
vanishes for frequencies higher than a scene-dependent threshold. We use
this observation for developing two novel scene recovery techniques. First,
we present micro-ToF imaging, a ToF-based shape recovery technique that
is robust to errors due to inter-reflections (multipath interference) and volu-
metric scattering. Second, we present a technique for separating the direct
and global components of radiance. Both techniques require capturing as
few as 3–4 images and minimal computations. We demonstrate the validity
of the presented techniques via simulations and experiments performed with
our hardware prototype.
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1. INTRODUCTION

Correlation-based time-of-flight (C-ToF) imaging systems consist
of temporally modulated light sources and sensors with temporally
modulated exposures. The brightness measured by the sensor is the
correlation between the temporally varying radiance incident on
the sensor and the exposure function. This is illustrated in Figure 1.
Because of their ability to measure scene depths with high precision
and speed, these systems are fast becoming the method of choice
for depth sensing in a wide range of applications. Several low-cost
and compact C-ToF systems are available as commodity devices,
including the Microsoft Kinect and the SoftKinetic sensors.

Global light transport in C-ToF imaging. Conventional C-ToF
imaging systems assume that sensor pixels receive light only due to
direct illumination of scene points from the source. However, due
to global illumination, the sensor receives radiance along several
paths, after multiple reflection/scattering events. Recovering scene
properties (e.g., scene depths) from the received radiance requires
separation of contributions from different paths. This is a difficult
task due to the complexity of global illumination, and is made even
more challenging because of the additional temporal dimension of
the radiance.

Phasor representation of radiance. Our goal is to develop a com-
pact model for generalized C-ToF imaging, that is, a model of C-ToF
imaging that accounts for full global illumination. To this end, we
make the following observations. If the scene is illuminated with
sinusoids of a given temporal frequency, the radiance at any point
and direction is always a sinusoid of the same frequency, irrespec-
tive of the scene. Since all the sinusoids are of the same frequency,
the frequency can be factored out and the radiance at any point
and direction can be represented by a single complex number, or
phasor. With phasor representation, light transport at each temporal
frequency can be analyzed separately, thus significantly reducing
the complexity. Also, since phasor radiance corresponds to a par-
ticular modulation frequency, it can be captured by a C-ToF sensor
operating at that frequency with only two measurements.

Phasor imaging. Based on these observations, we propose phasor
imaging, a framework for analyzing light transport in C-ToF imag-
ing, using phasor representations of radiance and light transport
events. In particular, we analyze the effect of temporal frequency
on light transport and show that, for a broad range of scenes, global
radiance decreases with increasing frequency, eventually vanishing
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Fig. 1. Correlation-based ToF image formation model. The scene is illumi-
nated by a temporally modulated light source, with radiant intensity I (θ, t)
along direction θ . The sensor’s exposure is also temporally modulated dur-
ing the integration time according to the function R(t). The brightness B(p)
measured at a sensor pixel p is the correlation of the incoming radiance
L(p, t) and the exposure function R(t).

beyond a threshold frequency. Using this property, we develop two
scene analysis techniques:

—transport-robust shape recovery; and

—fast separation of direct and global radiance.

Transport-robust shape recovery. An important problem faced by
C-ToF-based depth recovery systems is the errors caused by global
illumination (inter-reflections or multipath interference and volu-
metric scattering). These errors are systematic and scene depen-
dent, and can be orders of magnitude larger than the random errors
occurring due to system noise. This problem has received a lot of
attention recently, with a variety of techniques having been pro-
posed to mitigate the errors [Godbaz et al. 2008; Dorrington et al.
2011; Kirmani et al. 2013]. These approaches assume global illumi-
nation to be a discrete sum of contributions along a small number
(2–3) of light paths. For general scenes, pixels may receive light
along several, potentially infinite, light paths. Consequently, these
approaches are limited to scenes with only high-frequency light
transport (e.g., specular inter-reflections).

We present micro-ToF imaging, a technique for recovering shape
that is robust to errors due to global illumination, and is applicable
to scenes with a broad range of light transport effects. It is based
on using high temporal frequencies at which global illumination
vanishes, and hence does not introduce errors in the phase of the
received radiance. The term micro refers to the fact that only high
temporal frequencies are used which have small (micro) periods.
Although using high frequencies achieves robustness to global il-
lumination, the unambiguous depth range is small due to phase
ambiguities. Micro ToF uses two (or more) high frequencies and
standard phase unwrapping techniques to disambiguate the high-
frequency phases, thus achieving robustness to global illumination
as well as a large depth range with as few as four measurements.

Fast separation of direct and global radiance. We present a tech-
nique for separation of direct and global radiance components. One
way to separate the two components (using temporal light modu-
lation) is to measure the full transient image of the scene [Heide
et al. 2013; Velten et al. 2013]. These approaches, although theoret-
ically valid, require prohibitively large acquisition time. We show
that it is possible to perform the separation by capturing only three
measurements at a single high temporal frequency. The proposed
technique can be thought of as the temporal counterpart to the tech-
nique presented by Nayar et al. [2006] which performed separation
using high spatial frequency illumination.

Limitations and implications. We have demonstrated our scene
analysis techniques by building a hardware prototype based on
a low-cost C-ToF sensor. Currently, these sensors have a limited
range of modulation frequencies, which restricts the application
of our techniques to relatively large-scale scenes. However, this is
not a theoretical limitation. As device frequencies increase [Ak-
bulut et al. 2001; Wu et al. 2010; Buxbaum et al. 2002; Schwarte
2004; Busck and Heiselberg 2004], it will be possible to apply our
techniques on smaller-scale scenes. Due to their generality, near-
real-time acquisition and computation times, we believe that the
proposed techniques will be readily integrated into future C-ToF
imaging systems for performing a variety of scene analysis tasks.

2. RELATED WORK

Impulse time-of-flight imaging. Impulse ToF imaging techniques
measure the temporal impulse response of the scene by illuminating
it with very short (pico/nanosecond) laser pulses and recording the
reflected light at high temporal resolution. Impulse ToF imaging was
the basis of one of the first ToF range imaging systems [Koechner
1968]. While earlier systems assumed only a single direct reflection
of light from the scene, recent techniques (called transient imag-
ing) have used the impulse ToF principle to measure and analyze
both direct and indirect light transport for capturing images around
a corner [Kirmani et al. 2009], measuring 3D shape [Velten et al.
2012], and motion of objects [Pandharkar et al. 2011] around the
corner, performing separation of light transport components [Wu
et al. 2012a], measuring BRDF [Naik et al. 2011], capturing im-
ages with a lensless sensor [Wu et al. 2012b], and capturing the
propagation of light [Velten et al. 2013].

Correlation-based time-of-flight imaging. These techniques were
introduced as a low-cost alternative to impulse ToF imaging. The
scene is illuminated with continuous temporally modulated light
(e.g., with sinusoids), and the sensor measures the temporal cor-
relation of the incident light with a reference function [Schwarte
et al. 1997; Lange and Seitz 2001]. Scene depths are computed by
measuring the relative phase-shift between the incident light and the
emitted light. While there has been research on optimizing the mod-
ulation waveform [Payne et al. 2010a; Ferriere et al. 2008; Ai et al.
2011] for achieving high precision and for handling interference
among multiple ToF cameras [Buttgen et al. 2007], it is mostly
assumed that the sensor receives only direct reflection from the
scene. Our work seeks to generalize correlation-based ToF imaging
to include a variety of indirect (global) light transport effects.

Multipath interference in time-of-flight imaging. Recently, there
has been a lot of research towards mitigating the effect of global
illumination (multipath) in ToF cameras. In general, this is a diffi-
cult problem because global illumination depends on scene struc-
ture which is unknown at time of capture. There have been several
attempts at solving the problem for special cases, such as piece-
wise planar Lambertian scenes [Fuchs 2010; Fuchs et al. 2013;
Jimenez et al. 2012] or temporally sparse signals [Godbaz et al.
2008, 2009, 2012; Dorrington et al. 2011; Jimenez et al. 2012;
Kadambi et al. 2013; Kirmani et al. 2013]. These approaches do
not generalize to all forms of light transport. Moreover, they often
require capturing a large number of images and/or computation-
ally intensive optimization-based reconstruction algorithms. The
approach of Freedman et al. [2014] considers compressible sig-
nals (instead of sparse signals), and can handle a limited amount
of diffuse inter-reflections. However, since the signal is assumed
compressible, it is limited to scenes where the dominant amount of
global illumination is due to only a small number of light paths.
The approach presented in this article requires taking as few as four
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measurements and only a few linear operations, and is applicable
to scenes with a wide range of light transport effects.

Light transport analysis using spatial light modulation. In the last
few years, several techniques performing light transport analysis
using spatially modulated light have been presented. This includes
methods for inverting light transport [Seitz et al. 2005], performing
global-transport-robust shape recovery [Gupta et al. 2009, 2013a;
Gupta and Nayar 2012; Couture et al. 2014], and separating or
selectively enhancing light transport components [Nayar et al. 2006;
Reddy et al. 2012; O’Toole et al. 2012].

Recently, O’Toole et al. [2014] have used a combination of spa-
tial and temporal light modulation for performing a variety of scene
analysis tasks. While their techniques rely on high spatial frequency
light modulation, our focus is on studying the behavior of light trans-
port as a function of temporal frequencies. We develop techniques
that use only high temporal frequency light modulation, and achieve
near-real-time capture rates.

3. BACKGROUND AND IMAGING MODEL

A C-ToF imaging system consists of a temporally modulated light
source and a sensor whose exposure can be temporally modulated
during integration time. This is illustrated in Figure 1. Let the source
be modulated with a periodic function m(t) (normalized to be be-
tween 0 and 1). Then, the radiant intensity I (θ, t) of the source in
direction θ is given as1:

I (θ, t) = i(θ )m(t). (1)

The sensor exposure is temporally modulated according to the
exposure function R(t), which can be realized either by on-chip gain
modulation (e.g., photonic mixer devices [Schwarte et al. 1997]) or
by external optical shutters [Carnegie et al. 2011].

Let the radiance incident at a sensor pixel p be L(p, t). The
brightness B(p) measured at pixel p is given by the correlation
between the incoming radiance and the exposure function:

B(p) =
τ∫

0

R(t)L(p, t)dt, (2)

where τ is the total integration time.

Light transport equation for C-ToF imaging. Let Lθ (p, t) be the
radiance incident at pixel p due to light emitted from the source
along direction θ . Then Lθ (p, t) is given as

Lθ (p, t) = β(p, θ )I

(
θ, t − �(p, θ )

c

)
, (3)

where �(p, θ ) is the length of the path taken (through the scene) by
the ray emitted in direction θ and arriving at p. The constant c is
the speed of light. β(p, θ ) is the light transport coefficient between
direction θ and pixel p; it is defined as the fraction of emitted
intensity that reaches the sensor.

The total received radiance L(p, t) is the integral of contributions
from the set of all outgoing directions �:

L(p, t)=
∫
�

Lθ (p, t)dθ =
∫
�

β(p, θ )I

(
θ, t− �(p, θ )

c

)
dθ . (4)

This is the light transport equation for C-ToF imaging. It ex-
presses the temporal radiance profiles received at a pixel in terms

1The notation and symbols used in the article are given in Appendix A.

Fig. 2. Signal processing view of phasor light transport. (a) Rays emitted
from the source and received at the sensor are represented by single phasors.
The scene transforms every emitted phasor into a received phasor. The
transformation is linear (multiplication by the light transport coefficient for
the emitted-received ray pair); (b) light transport between all the emitted
and received rays can be compactly represented as a matrix multiplication.

of the emitted radiance I (θ, t) and the scene properties (light trans-
port coefficients and path lengths). Since it is scene dependent, in
general, L(p, t) does not have a compact analytic form (as a func-
tion of t). Rather, L(p, t) is a combination of light coming along
multiple paths which cannot be easily separated and analyzed for
recovering scene properties. Also, capturing the entire time profile
requires long acquisition times.

A compact representation of radiance. If the scene is illuminated
with sinusoidally varying illumination at a fixed frequency, the
radiance at every point and every direction in space (including at
the sensor) will also vary sinusoidally with the same frequency.
This is because L(p, t) is an integral of shifted and scaled emitted
radiance functions I (θ, t) (Eq. (4)), and sinusoids are closed under
scaling, shifting, and integration. Since all the sinusoids are of the
same frequency, we can factor the frequency out and represent
the radiance at any point x in space (including the sensor) along
any direction θ by a single complex number, or phasor �L(x, θ ) =
L(x, θ )ejφ(x,θ), where L is the amplitude and φ is the phase of the
sinusoid2. j = √−1 is the complex square-root of unity. We call �L
the phasor radiance, short for phasor representation of radiance.

Phasor light transport. The scene can be considered as a system
that transforms the phasor radiance emitted by the source (by mod-
ulating its phase and magnitude) into phasor radiance received by
a sensor pixel. The transformation can be expressed as a multipli-
cation of the emitted phasor by another phasor—the light transport
coefficient between the emitted-received ray pair. This is illustrated
in Figure 2(a). As has been shown recently [O’Toole et al. 2014],
the light transport between all the emitted and received rays can be
represented as a matrix multiplication,

�L = �M�I, (5)

where �L is the array of phasor radiances received at sensor pixels
and �I is the array of phasor radiances emitted by the source along
different directions (we use bold upper-case letters to denote arrays
and matrices). This is shown in Figure 2(b). We call Eq. (5) the pha-
sor light transport equation and �M the phasor light transport matrix
of the scene3. Phasor and conventional light transport matrices are
related as

�M(p, θ ) = M(p, θ )e−jω
�(p,θ )

c , (6)

2Since light is nonnegative, the sinusoidal modulation functions have a
nonzero offset LDC . The corresponding phasor representation is a 2-tuple:
[LDC, �Lω], where LDC is the DC and �Lω is the oscillating component.
For the intensity to be nonnegative, LDC ≥ |�Lω|, where |.| is the modulus
operator that returns the magnitude of the complex number.
3The matrix representation assumes that the space of light rays has been
discretized along spatial and angular dimensions.
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Fig. 3. Phasor representation of light transport events. Using phasors, all the light transport events can be represented by linear operations on complex
numbers. (Top row) Propagation of a light ray through space changes the phase of the phasor radiance. The amount of change is proportional to both the
distance traveled and the modulation frequency. This is represented by multiplication of the initial radiance with a phasor of unit amplitude. (Middle row) Local
reflection and scattering events change only the amplitude of the radiance. These events are represented by multiplication with phasors having zero phase. This
is similar to conventional imaging. (Bottom row) Multiple rays at the same point in space traveling in the same direction can be represented by a single ray
whose radiance is the complex sum of the radiance of individual rays.

where M is the light transport matrix for conventional imaging and
ω is the modulation frequency. Note that the phasor light trans-
port matrix is a function of the modulation frequency ω. For DC
component (ω = 0), the phasor transport matrix is the same as the
conventional light transport matrix.

The phasor light transport equation expresses light transport in C-
ToF imaging (Eq. (4)) for a given modulation frequency as a linear,
matrix multiplication. This simplifies light transport analysis in C-
ToF imaging, especially the study of how light transport depends
on the modulation frequencies. From a practical standpoint also,
the phasor representation naturally lends itself to C-ToF imaging.
This is because the phasor radiance received at every pixel has
only two unknowns (phase and magnitude), which can be captured
directly by C-ToF sensors operating at a single frequency with
only two measurements. This forms the basis of the techniques
presented in the article which require taking as few as four and
three measurements for transport-robust shape recovery and direct-
global separation, respectively.

4. PHASOR REPRESENTATION OF LIGHT
TRANSPORT EVENTS

Light transport events can be categorized into three basic groups
based on the phasor transformations that they induce, as illustrated

in Figure 3: first, events that change the phase of the radiance
(propagation through space); second, events that change only the
magnitude of the radiance (local reflection and scattering); third,
the superposition event where multiple phasors are added to give a
resultant phasor. In the following, we consider these individually.

Propagation through space. Propagation through free space
changes the phase of the radiance, while the magnitude is con-
served. Let �L(x, θ ) be the phasor radiance at a point x in space
along the direction θ . Then, the radiance after propagating through
a distance � is given as

�L(x + �θ, θ ) = �L(x, θ ) × e−jω �
c , (7)

where ω is the modulation frequency. Propagation through partici-
pating media changes both the magnitude and the phase

�L(x + �θ, θ ) = �L(x, θ ) × e−(σ�+jω �
c ), (8)

where σ is the medium’s extinction coefficient. Note that the amount
of phase change 
φ = ω �

c
is proportional to both the modulation

frequency ω and the travel distance �.

Local reflection and scattering. Local reflection at a surface point
changes only the magnitude of the radiance:

�L(x, θo) = �L(x, θi) × b(x; θi, θo), (9)
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Fig. 4. Vanishing global light transport for high modulation frequency. (a) A single indirect light path P(p, θ ) between outgoing direction θ and pixel p. The
phasor radiance received at the sensor along P(p, θ ) is given by rotating and attenuating the emitted phasor radiance. The angle of rotation φ is proportional
to the length of P(p, θ ); (b) a set of indirect light paths P(p, Cθ ) in a small neighborhood of P(p, θ ). All the paths end at p. The phasor radiances along paths
P(p, Cθ ) can be assumed to have constant amplitudes and linearly varying phases, and thus form a circular sector in the phasor diagram. The angle of the sector

φ is proportional to the modulation frequency ω. The total global radiance is the resultant of the individual phasors; (c) the light source emits high-frequency
illumination. The individual phasor radiances span the complete circle, and the resultant (total global radiance) is zero.

where b(x; θi, θo) is the BRDF term4 at point x for incoming light
direction θi and outgoing light direction θo. Local scattering has
the same effect as reflection, with the scattering term (product of
scattering albedo and the scattering phase function) replacing the
BRDF term.

Superposition of multiple rays. Multiple light rays traveling in
the same direction through the same point can be represented as a
single ray whose radiance is the phasor sum of individual radiances:

�L(x, θ ) =
∑

i

�Li(x, θ ), (10)

where �Li(x, θ ) are the individual radiances, and �L(x, θ ) is the to-
tal radiance. Due to phasor summation, the magnitude of the total
radiance may be lesser than the sum of the individual magnitudes,
that is, | �L(x, θ )| ≤ ∑

i | �Li(x, θ )|. The resultant magnitude can be
zero as well, even if all the initial radiances have nonzero magni-
tudes. This is different from conventional imaging, where the sum
of nonzero radiances is strictly positive.

5. FREQUENCY DEPENDENCE OF PHASOR
LIGHT TRANSPORT

Consider the phasor light transport equation (Eq. (5)). We can de-
compose the incident sensor radiance as the sum of the direct com-
ponent �Ld

ω and the global component �Lg
ω, where the direct com-

ponent is the light reaching the sensor after single reflection and
the global component is the light reaching the sensor after multiple
reflections (or scattering) events:

�Lω = �Ld
ω + �Lg

ω = �Md
ω
�Iω + �Mg

ω
�Iω . (11)

4The foreshortening effect is subsumed within the BRDF term.

�Md
ω and �Mg

ω are the direct and global components of the light
transport matrix �Mω, respectively, for modulation frequency ω.

PROPOSITION 1 [VANISHING HIGH-FREQUENCY GLOBAL LIGHT

TRANSPORT]. For a broad range of scenes, if the frequency ω is
higher than a threshold ωthresh, the global component vanishes:

�Lg
ω = �Mg

ω
�Iω = 0 for ω ≥ ωthresh. (12)

This is the key observation underlying our work. It is a con-
sequence of the fact that, typically, global radiance is temporally
smooth and can be assumed bandlimited. In the following, we pro-
vide an intuition behind the previous observation by using phasor
representations of light transport events. A frequency-domain proof
is given in Section 5.1.

Intuition. Consider a light path P(p, θ ) involving multiple inter-
reflections, starting at the light source in direction θ , and ending at
a sensor pixel p. An example light path is shown in Figure 4(a). The
radiance �Lθ (p) received at p along P(p, θ ) is given by

�Lθ (p) = �M(p, θ )�I , (13)

where �I is the emitted radiance5 and �M(p, θ ) is the light transport
coefficient for the path P(p, θ ). Since P(p, θ ) involves propagation
and reflection, �Lθ (p) is given by rotating and attenuating the emitted
phasor radiance (Figure 4(a)), as described in Section 4.

Next, consider the set of light paths P(p, Cθ ) in a local neigh-
borhood of P(p, θ ) that start in a cone of directions Cθ around θ ,
and end at p. This is illustrated in Figure 4(b). The magnitudes of
the light transport coefficients | �M(p, θ )| = M(p, θ ) can be assumed
approximately constant in a small light path neighborhood. This as-
sumption forms the basis of methods that use high spatial frequency

5For ease of exposition, we assume an isotropic source, that is, �I (θ ) = �I .
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Fig. 5. Frequency-domain analysis of C-ToF light transport. (a) In time domain, the direct radiance received at the sensor is given by convolving the emitted
signal and the direct scene response, which is a dirac delta function. The Fourier transform of a delta function is constant. Thus the direct radiance has all the
frequencies that are present in the emitted radiance. (b) The global radiance is the convolution of the emitted radiance and the global scene response. For most
real-world scenes, the global scene response is temporally smooth and thus bandlimited. If the bandlimit of the global scene response is ωb , the global radiance
is also bandlimited by ωb . (c) If the emitted radiance is a sinusoid with frequency ω > ωb , the global radiance contains only the DC component.

illumination for separating light transport components [Nayar et al.
2006] and performing transport-robust shape recovery [Gu et al.
2011; Chen et al. 2008; Gupta and Nayar 2012; Couture et al.
2014]. The phases φ(p, θ ) = arg( �M(p, θ )) can be assumed lin-
early varying as a function of θ . This can be shown by considering
the first-order Taylor’s expansion of the phases φ(p, θ ). See the
supplementary technical report for a proof.

Thus, the individual received radiances �Lg

θ (p) = �M(p, θ )�I have
constant amplitudes and linearly varying phases, and sweep out a
circle sector. From Eq. (7), the angle 
φ of the sector is


φ = ω

�(p, θ )

c
, (14)

where 
�(p, θ ) is the range of the lengths of paths P(p, Cθ ). The
total global radiance �Lg

Cθ
(p) is the resultant phasor of all the indi-

vidual phasors (Eq. (10)). Its magnitude is given by

| �Lg

Cθ
(p)| = 2Q

sin
(


φ

2

)

φ

, (15)

where Q is the sum of magnitudes of the individual phasors. The
derivation is given in the supplementary technical report. | �LCθ

(p)| is
a monotonically decreasing function of the sector angle 
φ for 0 ≤

φ ≤ 2π . Since 
φ is proportional to the modulation frequency ω
(Eq. (14)), as ω increases, 
φ increases and the resultant magnitude

decreases. If ω = 2πc


�(p,θ) , 
φ = 2π , and the magnitude of the

global radiance | �Lg

Cθ
(p)| = 06.

5.1 Frequency-Domain Proof of Vanishing
High-Frequency Global Transport

Let the temporally varying light intensity emitted from the source
be given by I (t). The direct radiance received at a pixel p is given
by Ld (t) = αI (t − φ), where α encapsulates the scene albedo and
intensity fall-off. φ = �d

c
is the temporal shift due to travel of light

and �d is the length of the direct light path for pixel p. We can write
Ld (t) as a convolution,

Ld (t) = I (t) ∗ α δ

(
t − �

c

)
, (16)

where δ() is the dirac delta function. This is illustrated in Figure 5(a).
We define D(t) = αδ(t − �

c
) as the direct scene response. D(t) is the

direct radiance received if the scene is illuminated with a temporal

6Strictly speaking, | �Lg

Cθ
(p)| ≈ 0. This is because the assumptions (local

constancy of light transport magnitudes and local linearity of light transport
phases) hold approximately. As ω increases beyond 2πc


�(p,θ) , we can apply
the prior analysis in smaller light path neighborhoods (narrower cone Cθ ),
which improves the approximation.
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Fig. 6. Effect of global illumination on shape recovery using C-ToF imaging. (a) Scene depths are computed using C-ToF imaging by measuring the phase of
the received radiance relative to the emitted radiance; (b) due to global radiance, a sensor pixel receives light along multiple light paths. These light paths have
different lengths, and hence different phases as compared to the direct reflection path. The phase of the total radiance is different from the correct phase (direct
radiance phase), resulting in incorrect depth; (c) for high-frequency illumination, the phase of the total radiance is the same as that of the direct radiance and
can be used for accurate depth recovery.

impulse function δ(t). Eq. (16) can be expressed in the frequency
domain as

l̂d (ω) = î(ω) × d̂(ω) , (17)

where l̂d (ω), î(ω) and d̂(ω) are Fourier transforms of Ld (t), I (t) and
D(t), respectively. Since D(t) is a dirac delta function, magnitude
of d̂(ω) is constant. This is illustrated in Figure 5(a).

The global scene response G(t) is defined as the global radiance
received if the scene is illuminated with a temporal impulse δ(t).
Similar to the direct component, the global component Lg(t) is

Lg(t) = I (t) ∗ G(t). (18)

In frequency domain, the preceding equation is expressed as

l̂g(ω) = î(ω) × ĝ(ω) , (19)

where l̂g(ω) and ĝ(ω) are Fourier transforms of Lg(t) and G(t),
respectively. This is illustrated in Figure 5(b).

For most real-world scenes, G(t) is temporally smooth and hence
can be assumed bandlimited, that is, there exists a frequency ωb,
called the global transport bandlimit, such that ĝ(ω) = 0 ∀ ω > ωb.
Thus, if the emitted radiance I (t) is a sinusoid with modulation
frequency ω larger than the global transport bandlimit ωb, the os-
cillating component of the global radiance, �Lg

ω, is zero. Then, the
global radiance has only a constant DC term (due to the DC term
of the emitted radiance). This is illustrated in Figure 5(c).

Other global illumination effects. While we have used inter-
reflections for the analysis so far, the results and proposed tech-
niques are applicable to scenes with a broad range of global illumi-
nation effects such as subsurface scattering, volumetric scattering,
and diffusion. For each of them, the global scene response is typ-
ically smooth, and thus bandlimited. By choosing a modulation
frequency higher than the bandlimit, the global radiance can be
made temporally constant.

5.2 How High is the Frequency Bandlimit?

The global transport bandlimit ωb depends on the scene geometry
and material properties, as well as the global illumination effect. For
volumetric scattering and diffuse inter-reflections, ωb is typically
low. On the other hand, for specular inter-reflections, ωb is relatively
high. Scene size is also a factor in determining ωb. For large scenes,
the indirect light paths have a large range of path lengths, resulting
in a low bandlimit ωb. For smaller scenes, indirect light paths have a
smaller range of path lengths and thus G(t) has a higher bandlimit.

As a rule of thumb, ωb is 1−10 times c

ξ
, where ξ is the geometric

scale of the scene (in meters). The geometric scale is defined as
the size of geometric features in the scene. For instance, for a large
scene with geometric scale 3.0 meters, ωb is approximately 100MHz
- 1.0GHz, depending on the material properties (higher bandlimit
for more specular scenes). For small scenes of scale approximately
50 centimeters (e.g., tabletop scenes), ωb is approximately 600MHz
to 6GHz. Note that it is possible for a large-size scene (e.g., a room)
to have smaller geometrical features. If there is significant local light
transport within these features, the geometric scale of such a scene
will be determined by the feature size, and thus will be smaller than
the scene size.

Arbitrary modulation functions. So far, we have considered
sinusoidal modulation functions. In general, any modulation
function can be decomposed into its Fourier components, and the
presented analysis applied to each component separately. If the
lowest-frequency component of the function (except the DC) is
higher than the global transport bandlimit, the global radiance at all
the non-DC frequencies is zero. Thus we get the following result.

Result 1. If the lowest-frequency component (except DC) of the
modulation function is higher than the global transport bandlimit
ωb, the global radiance received at the sensor is temporally constant.

For instance, if the emitted radiance I (t) is a square wave with
a period more than 2π

ωb
, all the frequency components of I (t) are
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higher than ωb. In this case, the global radiance received at the
sensor contains only the DC component and is temporally constant.

6. TRANSPORT-ROBUST DEPTH RECOVERY

Effect of global light transport on depth recovery. C-ToF systems re-
cover scene depths by measuring the phase φ = ω 2�

c
of the radiance

received at the sensor, where � is the scene depth. This is illustrated
in Figure 6(a). Depth is computed from the recovered phase as
� = cφ

2ω
. Due to global illumination effects such as inter-reflections

(multipath interference) and scattering, a sensor pixel may receive
light along multiple light paths. These paths have different lengths,
and hence light received along these paths has different phases as
compared to the direct reflection path. Consequently, the phase of
the total radiance (sum of direct and global components) is different
from the correct phase, as shown in Figure 6(b). The resulting depth
errors are systematic, and can be orders of magnitude larger than
the random errors due to noise.

6.1 Micro-ToF Imaging

We now present our technique for mitigating depth errors due
to global illumination. The basic idea is simple and relies on
the observation that global transport vanishes at high frequencies
(Proposition 1). Let the scene be illuminated by a light source with
intensity varying sinusoidally at frequency ω. In phasor notation,
the intensity is given by the 2-tuple [IDC, �Iω], where IDC is the DC
component and �Iω is the oscillating component. The direct radiance
Ld (p) received at a pixel p is given by the 2-tuple

Ld (p) = [D(p) IDC, �Dω(p) �Iω] , (20)

where D(p) and �Dω(p) are the DC and oscillating terms of the direct
radiance for a light source with unit intensity. Similarly, the global
radiance Lg(p) is

Lg(p) = [G(p) IDC, �Gω(p) �Iω] . (21)

As shown in the previous section, if ω > ωb, the oscillating term
of the global radiance �Gω(p) = 0. Then, the total radiance is

L(p) = [(D(p) + G(p)) IDC, �Dω(p) �Iω]. (22)

Since the global component of the radiance manifests only as
a constant offset, it does not influence the phase. Thus, for high
frequency illumination, the phase of the total radiance is the same
as that of the direct radiance and can be used for accurate depth
recovery. This is shown in Figure 6(c).

Wrapped phase problem and unambiguous depth range. The
phase φ = ω 2�

c
is computed by using inverse trigonometric func-

tions (e.g., arc-cosine) [Payne et al. 2010b] which have a range of
2π . Consequently, the scene depths �+nπc

ω
for any integer n will all

have the same recovered phase, leading to depth ambiguities. This
is called the wrapped phase problem. It limits the maximum depth
range Rmax in which scene depths can be measured unambiguously.
Rmax is inversely proportional to modulation frequency ω, and is
given by Rmax = πc

ω
[Lange 2000; Gokturk et al. 2004]. For exam-

ple, for ω = 2π ×1500 MHz7, Rmax is only 10 centimeters. While it
is possible to unwrap high-frequency phases using a low-frequency
phase [Jongenelen et al. 2010], if there is global illumination, the

7ω is the angular modulation frequency, which is 2π times the modulation
frequency.

Fig. 7. Micro-ToF imaging. The proposed micro-ToF imaging technique
consists of illuminating the scene sequentially with multiple high-frequency
sinusoids, and computing phases corresponding to each of them. Theoret-
ically, two high frequencies are sufficient. If all the frequencies are suffi-
ciently high, global illumination does not introduce errors in the phases.
The individual phases have depth ambiguities. Unambiguous depth is re-
covered by unwrapping the phases, which can be done either analytically or
by building a lookup table.

low-frequency phase is inaccurate. This causes unwrapping errors,
resulting in erroneous shape.

This presents a trade-off between achieving a large depth range,
and robustness to global illumination. On one hand, higher mod-
ulation frequencies are robust to global illumination effects. On
the other hand, using high frequencies results in depth ambiguities.
How can we measure accurate scene depths in a large range when
only high temporal frequencies are used?

Fortunately, it is possible to estimate a low-frequency phase from
multiple high-frequency phases. This is a standard problem in inter-
ferometry [Gushov and Solodkin 1991; Takeda et al. 1997], struc-
tured light-based triangulation [Gupta and Nayar 2012], and time-
of-flight imaging [Jongenelen et al. 2010, 2011]. There are both
numerical and analytical solutions available which can be imple-
mented efficiently.

Algorithm. The proposed technique involves illuminating the
scene sequentially with multiple high-frequency sinusoids, and
computing phases corresponding to each of them. Since all the emit-
ted signals have micro (small) periods, the technique is called micro-
ToF imaging. This is illustrated in Figure 7. Let the set of frequencies
used be � = [ω1, . . . , ωF ]. For each frequency ωf , 1 ≤ f ≤ F ,
the sensor measures the correlation of the received radiance with
the sensor exposure function Rf (t), which is also a sinusoid of the
same frequency as the emitted light. The phasor representation of
Rf (t) is �Rf = Rf e−jψf , where Rf and ψf are the magnitude and
phase of the exposure function. The measured brightness Bf (ψ) is
a sinusoid as a function of ψf (see Appendix B for derivation):

Bf (ψf ) = Of + Af cos(φf − ψf ) . (23)

Bf (ψf ) is a function of three unknowns: φf , Of , and Af . Phases
φf , 1 ≤ f ≤ F encode the scene depth and can be recovered by
taking three measurements for each of the F frequencies while vary-
ing the exposure function phase, ψf = 0, 2π

3 , 4π

3 . The unambiguous
depth � can then be computed from the wrapped phases φf and the
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frequencies ωf analytically by using the Gushov-Solodkin (G-S)
algorithm [Gushov and Solodkin 1991; Jongenelen et al. 2010].
However, the G-S algorithm is prone to errors if the measurements
are noisy. A more robust method is to build a lookup table between
candidate scene depths �i ∈ [0, . . . , Rmax] and the corresponding
vector of phase values �i = [φi1, . . . , φiF ]:

T[ω1,...,ωF ] (�i) = �i = [φi1, . . . , φiF ] . (24)

Note that the mapping T depends on the frequencies
[ω1, . . . , ωF ]. For each pixel, once the vector of phases � =
[φ1, . . . , φF ] is estimated, depth can be computed by performing
a 1 − D search in the lookup table:

�∗ = arg min
�

||T[ω1,...,ωF ] (�) − �||2 , (25)

where ||.||2 is the Euclidean norm operator on vectors. The depth
resolution achieved using this search-based procedure is limited by
the sampling rate of the depth range in the lookup table. In our
implementation, the depth range was sampled every 1 millimeter.
MATLAB code for the depth computation procedure is available
for download from the project Web page www.cs.columbia.edu/
CAVE/projects/phasor_imaging/.

6.2 Number of Measurements

Since there are three unknowns (offset, amplitude, and phase) for
every frequency (Eq. (23)), in general, there are 3F unknowns if F
frequencies are used. Thus, micro-ToF imaging with F frequencies
requires taking 3F measurements.

However, if the frequencies lie in a narrow band, the offsets and
amplitudes can be assumed approximately the same for all the fre-
quencies. In this case, the number of unknowns is F + 2; F phases,
one offset, and one amplitude. These unknowns can be estimated by
taking F +2 measurements where three measurements are taken for
the first frequency {B1(0), B1( 2π

3 ), B1( 4π

3 )}, and one measurement is
captured for every subsequent frequency {B2(0), . . . , BF (0)}. The
offset, amplitude, and the first phase are computed from the first
three measurements. Using the computed offset and amplitude, re-
maining phases are computed from the remaining measurements.

How many frequencies are needed? Theoretically, phases com-
puted for F = 2 appropriately chosen high frequencies are sufficient
for estimating the scene depths unambiguously in any desired depth
range. Thus, since the number of measurements is F + 2, we get
the following result.

Result 2. Four images are theoretically sufficient for transport-
robust and unambiguous depth recovery using micro-ToF imaging.

In practice, more frequencies and measurements per frequency
may be needed due to limited dynamic range of the sensor, limited
frequency resolution of the light source, and the sensor and noise.
Depending on the scene brightness, light source strength, and sen-
sor noise levels, in our simulations and experiments we use 2−4
frequencies, and 3−4 images per frequency.

6.3 Frequency Selection for Micro-ToF Imaging

What frequencies should be used for micro-ToF imaging? For any
choice of F frequencies, a given scene depth �i is encoded with a
vector Vi of measured brightness values. The number of elements
in Vi is equal to the total number of measurements. Ideally, scene
depths and intensity vectors should have a one-to-one mapping and
depths can be recovered without error from the measured intensity
vectors. However, due to various sources of noise in the measure-
ments, depth estimations can be erroneous. We define the error
function Eij = e−||Vi−Vj ||2 between vectors Vi and Vj . Here Eij is

Fig. 8. Simulation settings. (a) A v-groove with two planes of size 3m×4m

each. The angle between the planes is 70◦; (b) Cornell box with faces of
size 3m × 3m. The sensor is at a distance of 4.5m from the scenes.

proportional to the probability of vector Vj being incorrectly de-
coded as �i , and vice versa. For a given frequency set �, the mean
weighted error function E(�) is defined as

E(�) =
∑

�i ,�j ∈[0,...,Rmax ]

|�i − �j |Eij , (26)

where the depth candidates �i and �j are uniformly sampled from
the interval [0, . . . , Rmax] every 1 millimeter. Rmax was chosen to be
10 meters. E(�) is the average expected depth error if the frequency
set � is used. In order to minimize the depth error, the optimal set
of frequencies should minimize the error function

�∗ = arg min
�

E(�), ωf ∈ [ωmin, ωmax] for 1 ≤ f ≤ F , (27)

where [ωmin, ωmax] is the range of values from which the frequen-
cies are chosen. We round the candidate frequencies to two decimal
places, which is the frequency resolution achievable by our hard-
ware prototype. This is a constrained F -dimensional optimization
problem. We used the simplex search method implemented in the
MATLAB optimization toolbox for solving this. Note that, since
we use a search-based procedure, the computed frequencies may
not be theoretically optimal. In practice, we have found that the
frequency set computed by running the method for >100,000 iter-
ations achieves stable depth results.

6.4 Simulations

In the following, we show depth recovery results using simulations
for two different scene geometries.

Simulation setup. The setups are illustrated in Figure 8. The first
scene is a v-groove, with an apex angle of 70 degrees. Both faces
are rectangles of dimension 4 × 3 meters. The second scene is the
Cornell box. Each face is a square of side 3 meters. The sensor and
source (co-located) are 4.5 meters from the scenes.

Simulation of input images. The input images were generated by
discretizing the scene into small patches and simulating forward
phasor light transport. We assumed the scenes to be Lambertian be-
cause, for Lambertian scenes, the radiances can be computed using
an analytic closed-form expression. This is similar to conventional
imaging where the radiosity equation can be solved in a closed-
form manner for Lambertian scenes [O’Toole et al. 2014]. In all our
simulations, the affine noise model [Hasinoff et al. 2010] was used
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Fig. 9. Simulation results for shape recovery using micro ToF. (a-b) Phase map for two high frequencies used for micro ToF. Both the phase maps have
ambiguities. (c) The unwrapped phase map which is used to compute unambiguous depths. (d) Comparison of depths along horizontal scan-lines with
single-frequency and dual (one high and one low)-frequency conventional ToF techniques. In both the conventional techniques, the low-frequency phases are
inaccurate, resulting in large depth errors (mean errors of > 200 and > 500 millimeters for the v-groove and the Cornell box, respectively). Micro-ToF imaging
achieves accurate shape, with mean errors of 6.6 and 3.2 millimeters for the v-groove and the Cornell box, a two orders of magnitude improvement.

for the sensor, with both scene-independent read noise and scene-
dependent shot noise added to the captured images. The details of
noise simulation and parameters are given in the supplementary
technical report.

Simulation parameters and comparisons. For both scenes, we
performed micro-ToF imaging using two frequencies 1063, 1034
MHz, which were computed using the frequency selection pro-
cedure (Section 6.3). We compare micro ToF with two different
conventional ToF techniques. The single-frequency conventional
ToF technique uses a frequency of 10MHz, so that the unambiguous
depth range is more than the scene depths, and no phase unwrapping
is required. Since the depth resolution of ToF techniques is directly
proportional to the modulation frequency [Lange 2000; Gokturk
et al. 2004], this technique achieves low depth resolution. The dual-
frequency conventional ToF technique uses one high (1063MHz)
and one low frequency (10MHz). The high frequency provides high
resolution, and the low frequency is used for unwrapping. For each
frequency, four measurements were captured corresponding to the
exposure function phases ψ = 0, π

2 , π, 3π

2 . In order to compensate
for the low SNR achieved by the single-frequency ToF technique,
we applied temporal averaging to its input images so that the random
depth errors due to noise are approximately the same for all three
techniques. The difference in the results is due to the structured
errors caused by inter-reflections.

Results. Figures 9(a), (b) show phase maps for the two frequen-
cies used for micro ToF. Both the phase maps have ambiguities. Fig-
ure 9(c) shows the unwrapped phase map which is used to compute
unambiguous depths. Figure 9(d) shows the comparison of depths
along horizontal scan-lines (shown in (c)). In both the conventional
techniques, the low-frequency phase is inaccurate, resulting in large
depth errors (mean errors of 204 and 207 millimeters for the v-
groove and 534 and 538 millimeters for the Cornell box). Micro-ToF

imaging achieves accurate shape, with mean errors of 6.6 and 3.2
millimeters for the v-groove and the Cornell box, respectively, a two
orders of magnitude improvement over conventional techniques.

Simulation results for shape recovery in scattering media. If
there is scattering medium (e.g., smoke, fog, murky water) be-
tween the sensor and the scene, a sensor pixel may receive light
due to backscattering of the emitted light, in addition to the direct
reflection. This is shown in Figure 10(a). As with interreflections,
the light received along backscattering paths has different phases
as compared to the direct reflection path. This can result in large
depth errors. In the following, we show shape recovery results using
simulations for a scene immersed in scattering media.

The setup is illustrated in Figure 10(b). The scene is a hemisphere
of radius 1 meter. The sensor and source are 2.0 meters from the
hemisphere. The input images were simulated by discretizing the
scene into small patches, and the volume into small voxels. For
simulating light transport, we assumed the medium to be homoge-
nous and optically thin so that single scattering effects dominate
and there is no multiple scattering [Narasimhan et al. 2006]. The
Henyey-Greenstein phase function [Henyey and Greenstein 1941]
with phase parameter g = 0.6 was used to model the angular scat-
tering distribution. We performed micro-ToF imaging using three
frequencies 1027, 1073, and 1189MHz. We compare micro ToF
with a conventional ToF technique using a frequency of 10MHz.
As before, in order to compensate for the low SNR achieved by the
single-frequency ToF technique, we applied temporal averaging to
its input images.

Figure 10(c) and (d) shows the comparison of recovered shape
in the presence of weak scattering (extinction coefficient σ = 0.3
m−1) and strong scattering (extinction coefficient σ = 1.2 m−1),
respectively. Conventional ToF results in large depth errors (mean
errors of 452 and 1179 millimeters). Micro-ToF imaging achieves
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Fig. 10. Simulation results for shape recovery in scattering media. (a) If
there is scattering medium between the sensor and the scene, a sensor pixel
receives indirect light due to backscattering of the emitted light. (b) Simu-
lation setup. The scene is a hemisphere of radius 1 meter. The sensor and
source are 2.0 meters from the hemisphere. (c), (d) Comparison of recov-
ered shape in the presence of weak and strong scattering. Conventional ToF
results in large depth errors (mean errors of 452 and 1179 millimeters).
Micro-ToF imaging achieves accurate shape, with mean errors of 14 and
16 millimeters, respectively. Due to backscatter, the depths are underesti-
mated. This is because the backscatter light paths have shorter lengths as
compared to the direct reflection path.

accurate shape with mean errors of 14 and 16 millimeters, respec-
tively. Note that, while inter-reflections result in depths being over-
estimated (because indirect light paths are longer than the direct
light path), backscattering results in depths being underestimated.
This is because the backscatter light paths have shorter lengths as
compared to the direct reflection path.

6.5 Error Analysis for Depth Computation

If ω is less than the global transport bandlimit ωb, the oscillating
term of the global radiance �Gω(p) may not be zero. This will result
in errors in phase recovery (and hence, depth estimation). As derived
in Appendix C, the phase error εφ is given by (for brevity, we have
dropped the argument p)

εφ = φ − acos

⎛
⎝ D cos φ + Gr

ω cos φG√
D2 + Gr

ω
2 + 2DGr

ω cos(φ − φG)

⎞
⎠ , (28)

where φG = arg( �Gω(p)) is the phase and Gr
ω = | �Gω(p)| is the

magnitude of the global radiance at frequency ω. As ω increases,
the magnitude of the global radiance Gr

ω → 0, and thus εφ → 0.
Figure 11(a) shows the comparison of shapes recovered for the

Cornell box using different frequencies. Figure 11(b) shows the
mean depth error versus frequency. A single-frequency conven-
tional ToF technique was used for frequencies less than 30MHz. The

Fig. 11. Effect of modulation frequency on shape recovery. (a) Shapes
recovered using different frequencies, for single-frequency conventional
and micro-ToF imaging (two frequencies). As the frequencies are increased,
the reconstructed shape approaches the ground truth. (b) Mean depth errors
vs. frequency. A conventional ToF technique was used for frequencies less
than 30MHz. The micro-ToF technique was used for frequencies more than
30MHz. For micro ToF, two frequencies were used. Depth errors are plotted
for the mean of the two frequencies. (c) The mean relative depth errors for
the Cornell box scene of three different side lengths: 3 meters, 1 meter,
and 0.3 meter. At a given frequency, relative depth errors are larger for
smaller scenes. This is because, for scenes with small geometrical scale
the frequency bandlimit is higher as compared to large scenes. As a result,
smaller scenes require relatively higher frequencies to achieve small depth
errors.

micro-ToF technique was used for frequencies more than 30MHz.
For each depth computation using micro ToF, two high frequencies
were used. Depth errors are plotted for the mean of the two frequen-
cies. As the frequencies are increased, depth error approaches zero
and the reconstructed shape approaches the ground truth.

Effect of scene’s geometrical scale on depth errors. Figure 11(c)
plots the mean depth errors for the Cornell box scene of three
different side lengths: 3 meters, 1 meter, and 0.3 meter. In order
to compare depth errors across different geometrical scales, mean
relative depth errors are plotted. Relative depth error at a pixel is
defined as εrel

� = ε�

�
× 100, where ε� is the absolute depth error

and � is the ground-truth depth. As expected, for all three scenes,
the depth error decreases with increasing frequency. At a given
frequency, relative depth errors are larger for smaller scenes. This is
consistent with the the fact that the frequency bandlimit of a scene
has an inverse relationship with the scene’s geometrical scale, as
discussed in Section 5.2. For scenes with small geometrical scale,
the frequency bandlimit is higher as compared to large scenes.
As a result, smaller scenes require relatively higher frequencies to
achieve small depth errors.

7. FAST SEPARATION OF DIRECT AND GLOBAL
IMAGE COMPONENTS

In this section, we present a technique for separating the direct
and global light transport components. The technique requires cap-
turing as few as three measurements at a single high frequency.
The measurements needed for the separation algorithm are a subset
of the measurements taken for depth recovery (Section 6). Hence,
separation can be achieved as a by-product of depth estimation.
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Fig. 12. Direct-global separation algorithm using high-frequency illumi-
nation. (a) If the scene is illuminated with high-frequency illumination, the
global radiance is temporally constant. (b) The brightness B measured by
the sensor is a sinusoid as a function of the phase ψ of the sensor exposure
function. Since the global radiance is temporally constant, the amplitude of
the sinusoid depends only on the direct radiance. (c) The direct and global
components can be computed by measuring the offset and the amplitude of
the sinusoid B(ψ) at every pixel.

7.1 Separation Algorithm

If the scene is illuminated with sinusoidally varying intensity, the
direct and global radiance as well as the total radiance are all si-
nusoids of the same frequency. In general, it is difficult to separate
the direct and global radiance components from the total radiance
due to the inherent ambiguity; a given sinusoid can be expressed as
the sum of two sinusoids of the same frequency in infinitely many
ways.

However, recall from Eq. (22) that, for high-frequency illumina-
tion, the global radiance manifests only as a DC offset. This forms
the basis of our direct-global separation approach and is illustrated
in Figure 12(a). Our goal is to separately recover D(p) and G(p),
which are the direct and global components resulting from a light
source with temporally constant, unit intensity.

Let the sensor exposure function be a sinusoid that is represented
by the 2-tuple RDC, �Rω. Let ψ = arg( �Rω) be the phase of the ex-
posure function. Assuming that there is no ambient illumination8,
the correlation measurement B(ψ) recorded at the sensor (see Ap-
pendix B for derivation) is given by

B(ψ) = τ (D + G)RDCIDC︸ ︷︷ ︸
offset O

+ τ
DRωIω

2︸ ︷︷ ︸
amplitude A

cos(φ − ψ), (29)

8If there is ambient illumination, its contribution can be removed by cap-
turing an additional image under only ambient illumination and subtracting
it. However, if ambient illumination is significantly stronger than the mod-
ulated light source, the captured images may have low signal-to-noise ratio
(SNR) due to large photon (shot) noise. The SNR can be increased either by
averaging multiple frames or by concentrating the light source into smaller
scene regions and sequentially illuminating the scene [Gupta et al. 2013b].

Fig. 13. Simulation results for direct-global separation. (a) Scene image.
(b) Direct and (c) global components for the v-groove and the Cornell box
scenes, computed using the algorithm in Section 7. Notice the color bleeding
between different planes in the global component due to inter-reflections,
and the direct component decreasing with increasing depth due to intensity
fall-off.

where φ = arg( �Dω(p)) is the phase of the direct radiance, and τ is
the sensor integration time. B(ψ) is a sinusoid with three parame-
ters: the offset O = τ (D +G)RDCIDC , the amplitude A = τ DRωIω

2 ,
and the phase φ, as shown in Figure 12(b). The three parameters
can be recovered by taking three correlation measurements. Since
the constants τ, Rω, Iω, RDC, IDC are known, the direct and global
components are recovered from the estimated offset and the ampli-
tude, as shown in Figure 12(c):

D = 2A

τRωIω

, G = O

τRDCIDC

− D. (30)

Result 3. Three images captured at a single high frequency are
theoretically sufficient for separating the direct and global compo-
nents of light transport.

In practice, more measurements may need to be captured if the
measurement noise is high. In our simulations and experiments, we
use 3−4 measurements.

7.2 Simulations

Figure 13 shows the direct and global components estimated for the
two simulated scenes used in the previous section. Four measure-
ments were taken for each of the examples. For the v-groove, notice
that the global component is high near the corner, and decreases
away from the corner. In the global component of the Cornell box,
notice the color bleeding around the edges due to inter-reflections.

7.3 Error Analysis for Direct-Global Separation

Similar to the error analysis for depth estimation (Section 6.5),
ω being less than the global transport bandlimit ωb may result
in erroneous direct-global separation. As derived in Appendix C,
the estimation errors εD and εG for direct and global components,
respectively, are given by

εD = D −
√

D2 + Gr
ω

2 + 2DGr
ω cos(φ − φG) , (31)

εG =
√

D2 + Gr
ω

2 + 2DGr
ω cos(φ − φG) − D , (32)
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Fig. 14. Effect of modulation frequency on direct-global separation. (a) For
low frequencies (e.g., 10MHz), the direct component is over-estimated and
the global component is underestimated. (b) For 125MHz, the separation is
qualitatively correct but ringing artifacts are noticeable, especially around
the edges of the cube. (c) If the frequency is higher than the bandwidth of
the global scene response, accurate separation is achieved. (d) Ground-truth
separation.

Fig. 15. Image acquisition setup. Our hardware prototype is based on the
PMDTechnologies CamBoard Nano, a C-ToF sensor. An array of 650nm
laser diodes acts as the light source.

where φG = arg( �Gω(p)) is the phase and Gr
ω = | �Gω(p)| is the

magnitude of the global radiance at frequency ω. As ω increases,
Gr

ω → 0, and thus εD, εG → 0.
Figure 14 shows the effect of modulation frequency on the re-

sults of direct-global separation. If a low modulation frequency
(10MHz) is used, the direct component is overestimated and the
global component is underestimated. As frequency increases, the
global radiance decreases and the separation accuracy increases.
For 125MHz, the estimation errors are lower, but the resulting im-
ages have ringing artifacts. At 5300MHz, the result is close to the
ground truth.

8. HARDWARE PROTOTYPE AND RESULTS

Our hardware prototype is based on the PMDTechnologies Cam-
Board Nano, a low-cost commercially available C-ToF imaging
system. It is shown in Figure 15. In order to operate the system at
various modulation frequencies, we used an external signal genera-
tor to provide the modulation signal instead of the on-board signal
generator. Our light source is an array of 650nm laser diodes9,
driven using an iC-Haus constant current driver. With this setup,
we can achieve a maximum modulation frequency of 125MHz. The
finite rise/fall times of different components act as low-pass filters

9The size of the array is significantly smaller than the modulation wave-
length. Hence, the array of diodes is assumed to be a single light source.

on the modulation signal. Thus the modulation signals are nearly si-
nusoidal, especially at high frequencies. As discussed in Section 5,
this is not a strict requirement; if the modulation signal has multi-
ple harmonic components, light transport for each component can
be analyzed separately. However, the higher-order components, if
not accounted for, may introduce errors in the estimated depths.
These errors can be mitigated by canceling odd harmonics in the
modulation signal [Payne et al. 2010b].

Results of depth recovery using micro-ToF imaging. The scene
consists of a fixed wall and a movable wall arranged so that they
form a concave v-groove, as illustrated in Figure 16(a). The concave
shape produces inter-reflections between the two walls. The amount
of inter-reflections depends on the apex angle ϒ , which can be
changed by moving the right wall. Both walls are made of white,
nearly diffuse material. The size of the walls is approximately 2m ×
2m each, and the sensor is placed at a distance of 5m from the
corner of the groove. For micro-ToF imaging, we use two high
frequencies of 125 and 108 MHz, computed using the frequency
selection procedure10.

We compare the results of micro ToF with the single-frequency
conventional ToF technique. The frequency is chosen so that the
unambiguous depth range is larger than the scene depths. In or-
der to compensate for the low SNR achieved by the conventional
ToF technique, we applied averaging to its input images so that the
random perturbations due to noise are similar for both techniques
(conventional and micro ToF). The difference in the results is due
to the structured errors caused by inter-reflections. Depth computed
using the conventional ToF technique has mean errors of 87, 70, and
57 millimeters, for ϒ = 45◦, ϒ = 60◦, and ϒ = 90◦, respectively.
Micro ToF achieves reconstructions that have 1−2 orders of mag-
nitude lower errors (mean errors of 2.8, 6.7, and 6.2 millimeters).

Figure 17 shows the performance of conventional and micro-ToF
techniques as a function of the modulation frequency. For conven-
tional ToF, we performed reconstructions using a single frequency
in the range of 1−25 MHz. For micro-ToF, we performed recon-
structions using two frequencies in the range [ω−2, ω+2]MHz for
25 < ω < 120MHz. The ground truth was achieved by measuring
the scene distances using a measuring tape.

We compute the reconstructed apex angle by fitting two planes
to the reconstructed shape and computing the angle between them.
As the frequency increases, the reconstruction error decreases and
the apex angle approaches the ground truth. For frequencies higher
than 100MHz, the reconstruction error is less than 5 millimeters
and the apex angle is within 2 degrees of the ground truth.

Figure 18 shows depth recovery results for a scene with relatively
smaller scale (sides of the v-groove are approximately 60 centime-
ters each) than Figure 16. Figure 18(c) shows the depth map re-
covered using micro ToF, with two frequencies 125 and 108MHz.
Figure 18(d) shows the comparison between the computed depth
along a horizontal scan-line and the ground-truth. Due to the smaller
scale of the scene, the depth estimates have higher relative errors as
compared to the scene in Figure 16.

Results of direct-global separation. Figure 19 shows the direct-
global separation results for the v-grooves of different apex angles.

10For frequency selection, we set ωmax = 125MHz, the maximum frequency
achievable by the imaging hardware, and ωmin to be 0.8ωmax . Although
setting ωmin to an even higher value may achieve more robustness to global
illumination, in practice the difference ωmax − ωmin needs to be above a
threshold due to the limited intensity resolution and dynamic range of the
sensor and the light source.
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Fig. 16. Experimental results of depth estimation on v-groove scenes. (a) The scene consists of a fixed wall and a movable wall arranged at an angle so that
they form a v-groove. The apex angle ϒ can be changed by moving the right wall. The size of the walls is approximately 2m × 2m each, and the sensor is
placed at a distance of 5m from the corner. (b)–(d) Images captured by the PMD sensor for the v-groove in three different configurations: ϒ = 45◦, ϒ = 60◦,
and ϒ = 90◦. For micro-ToF imaging, we use two high frequencies of 125 and 108MHz. (e), (h), (k) Recovered phase maps for the two frequencies used in
micro ToF. All the phase maps have ambiguities. (f), (i), (l) The unambiguous shapes reconstructed by unwrapping the two high-frequency phases. (g), (j),
(m) Comparison of shapes reconstructed using micro ToF and conventional ToF techniques along horizontal scan-lines marked in (c)–(e). Shape computed
using the conventional ToF technique has mean errors of 87, 70, and 57 millimeters, for ϒ = 45◦, ϒ = 60◦, and ϒ = 90◦, respectively. Micro-ToF achieves
reconstructions that have 1−2 orders of magnitude lower errors (mean errors of 2.8, 6.7, and 6.2 millimeters).

The modulation frequency used was 124MHz. Three images were
used for the separation in each case. As the apex angle increases
(from left to right), the amount of inter-reflections reduces and
the global component decreases. The separated component images
have some ringing artifacts, especially around the corner of the v-
groove. These artifacts are similar to those shown in simulations in
Figure 14, and can be mitigated by using higher frequencies.

9. DISCUSSION AND LIMITATIONS

In this article, we proposed phasor imaging, a tool for light trans-
port analysis in C-ToF imaging, which can inspire novel imaging
techniques in the future. Using this framework, we studied the (tem-
poral) frequency dependence of light transport, and showed that
global transport vanishes at high modulation frequencies. Based on
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Fig. 17. Accuracy of shape recovery vs. modulation frequency for the
v-groove scenes. (a) Mean reconstruction error vs. the modulation frequency.
(b) Reconstructed apex angle vs. the modulation frequency. The apex angle
was computed by fitting two planes to the reconstructed shape and com-
puting the angle between them. For frequencies higher than 100MHz, the
reconstruction error is less than 5 millimeters and the apex angle is within
2 degrees of the ground truth.

Fig. 18. Depth recovery for the “figurine-and-box” scene. (a) A scene with
smaller scale (sides of the v-groove are approximately 60 centimeters each)
than Figure 16. (b) Two phase maps for frequencies 125 and 108MHz.
(c) Depth map recovered using micro ToF (in meters). (d) Comparison
between the computed depth profile along the horizontal scan-line (shown
in (a)) and the ground truth. Due to the smaller scale of the scene, the depth
estimates have higher relative errors as compared to the scene in Figure 16,
for the same frequencies.

this observation, we present techniques for transport-robust shape
recovery and for separation of direct and global components. Since
the presented techniques require few images and have low compu-
tational cost, we believe they can be incorporated into future ToF
imaging systems. In the following, we discuss the limitations of our
techniques.

Scope and limitations. Our techniques assume that the global
light transport is temporally continuous and smooth. While this
assumption holds for a broad range of scenes, for scenes with high-
frequency light transport such as mirror inter-reflections, the pre-
sented techniques are prone to errors. For such scenes, as well as
for discrete multipath interference that happens at depth discontinu-
ities, shape recovery techniques that assume temporally sparse light

Fig. 19. Results of direct-global separation for the v-groove scenes. The
direct and global components computed for the v-grooves. The modulation
frequency used was 124MHz. As the apex angle increases (from left to
right), the global component decreases.

transport are better suited [Godbaz et al. 2008; Dorrington et al.
2011; Kirmani et al. 2013].

Our direct-global separation technique can separate the direct ra-
diance from relatively low-frequency global radiance by capturing
only three images. Techniques which can separate both low- and
high-frequency global transport [O’Toole et al. 2014], albeit by cap-
turing more images, can be used for scenes with caustics and spec-
ular inter-reflections. It may be possible to develop hybrid scene-
dependent algorithms (for both shape recovery and light transport
analysis) where scene characteristics (low- or high-frequency light
transport) determine the reconstruction technique to be used. This
forms a promising direction of future work.

From a practical standpoint, for the proposed techniques to
achieve accurate results, the modulation frequencies achieved by
the system should be higher than the global transport bandlimit of
the scene. The higher the modulation frequency, the larger the range
of scenes (in terms of geometric scale and material properties) on
which the proposed techniques are applicable. Although there are
sensors and lasers that can achieve GHz frequencies, they are expen-
sive and require large acquisition time [Kirmani et al. 2009; Velten
et al. 2013]. LEDs and PMDs are low-cost sources and sensors that
can achieve high SNR in real time but, due to various practical con-
siderations such as power requirement, current devices are limited
to approximately 150MHz. With these devices, our techniques are
restricted to large-scale (room-size) scenes with relatively smooth
reflectance.

Future outlook on hardware devices. Fortunately, high-frequency
LEDs have been actively researched with the goal of achieving
high-bandwidth optical communication networks. Recently, several
research groups have demonstrated LEDs that can achieve modula-
tion frequencies of multiple GHz [Akbulut et al. 2001; Chen et al.
1999; Walter et al. 2009; Heinen et al. 1976; Wu et al. 2010], with
a low-power requirement. On the other hand, a new kind of PMD
sensor based on MSM technology (metal-semiconductor-metal) has
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recently been proposed that can potentially achieve > 10GHz
modulation frequencies [Buxbaum et al. 2002; Schwarte 2004].
With these advances, it would be possible to apply the proposed
techniques to a much larger class of scenes—scenes at centime-
ter/millimeter scale and comprising a broad range of reflectance
properties. An additional motivation for achieving higher frequen-
cies is that the depth resolution achieved by ToF sensors is pro-
portional to the frequency used [Lange 2000; Gokturk et al. 2004].
Thus, higher frequencies can increase both the depth resolution and
accuracy of ToF-based depth sensing systems.

Generalization of light sources. Although the analysis was per-
formed for a single point light source, the imaging framework pro-
posed in the article is applicable to extended light sources, arrays
of light sources with each source potentially having a different
phase and amplitude, or spatially modulated sources for perform-
ing spatio-temporal analysis of light transport [O’Toole et al. 2014].

ELECTRONIC APPENDIX

The electronic appendix to this article can be accessed on the ACM
Digital Library.

APPENDIXES

A. NOTATION AND SYMBOLS

Symbol convention. Right-arrow accents on the top of letters (e.g.,
�L) denote phasors. Boldface letters (e.g., M, I, L, �) are used to
denote vectors (1D arrays) and matrices. Lower-case hat-accented
letters denote the Fourier transform of corresponding upper-case
letter (e.g., î is the Fourier transform of I ). Table I gives the list of
symbols used in the article. Letters d and g in superscript represent
the direct and global (indirect) components, respectively, of the
variable (e.g., Ld and Lg denote the direct and global components
of the radiance). The letter ω in subscript denotes the value of the
variable corresponding to the modulation frequency ω.

Operators. |.| is the modulus operator on complex numbers that
returns the magnitude of the number. ||.||2 is the Euclidean norm
operator on vectors.

B. SENSOR CORRELATION MEASUREMENT

Let the sensor’s exposure function be R cos(ωt −ψ) (phasor repre-
sentation: �R = Re−jψ ). Let the incident radiance be L cos(ωt − φ)
(phasor representation: �L = Le−jφ). The measured brightness Bω

is a function of ψ and given by the correlation between the exposure
function and incident radiance:

Bω(ψ) =
τ∫

0

(R cos(ωt − ψ)) (L cos(ωt − φ)) dt

= τ
LR

2
cos(φ − ψ), (33)

where τ is the sensor integration time and assumed an integral
multiple of the modulation period 2π

ω
.

DC component. If both the radiance and the exposure function
have a DC component as well, the measured brightness also has a
DC component. Let the DC components of the exposure function
and the radiance be RDC and LDC , respectively. The DC component

Table I. Symbols Table
Symbol Description
I source radiant intensity
m source modulation function
L radiance
R sensor exposure function
B pixel brightness
τ sensor integration time
β light transport coefficient
M light transport matrix
Ld direct component of radiance
Lg global (indirect) component of radiance
� distance, length of light paths
ω temporal frequency
φ temporal modulation phase
p pixel coordinate
x 3D location in space
θ direction
t time
j

√−1
c speed of light
b BRDF
σ scattering extinction coefficient

of the measured brightness is given as

BDC =
τ∫

0

RDCLDCdt = τLDCRDC. (34)

The total brightness is the sum of Bω and BDC :

B(ψ) = τLDCRDC︸ ︷︷ ︸
off set

+ τ
LR

2︸ ︷︷ ︸
amplitude

cos( φ︸︷︷︸
phase

−ψ). (35)

Thus, the measured brightness B(ψ) is a sinusoid as a function
of ψ , with three parameters: offset, amplitude, and phase.

Ambient illumination. If the scene is illuminated by ambient light
in addition to the modulated light source, the measured brightness
has an ambient component as well. For most practical scenarios,
ambient illumination can be assumed to be temporally constant, and
thus can be treated similar to the DC component of the modulated
light source. The ambient component of the measured brightness is
given as

BA =
τ∫

0

RDCLAdt = τLARDC, (36)

where LA is the radiance incident at the sensor pixel due to ambient
illumination. The total brightness is then given as

B(ψ) = τ (LDC + LA) RDC︸ ︷︷ ︸
off set

+ τ
LR

2︸ ︷︷ ︸
amplitude

cos( φ︸︷︷︸
phase

−ψ). (37)

The expression for B(ψ) is similar to that given in Eq. (35), with
an additional term in the offset due to ambient illumination. Since
ambient illumination only increases the DC component of the mea-
sured brightness, its contribution can be removed by capturing an
additional image BA = τLARDC under only ambient illumination
and subtracting it from the rest of the images.
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C. ERROR ANALYSIS

If ω is less than the global transport bandlimit ωb, the oscillating
term of the global radiance �Gω(p) may not be zero. This will result
in errors in phase recovery (for depth estimation) and direct-global
separation. In the following, we derive the expression for the errors.

If �Gω(p) �= 0, the total radiance is given as

L(p) = [(D(p) + G(p)) IDC,
(

�Dω(p) + �Gω(p)
)

�Iω]. (38)

From Appendix B, the correlation measurement taken by the
sensor is given as

B(ψ) = τ (D + G)RDCIDC

+ τ
RωIω

2

(
D cos(φ − ψ) + Gr

ω cos(φG − ψ)
)
, (39)

where φG = arg( �Gω(p)) is the phase and Gr
ω = | �Gω(p)| is the

magnitude of the global radiance at frequency ω. Note that 0 ≤
Gr

ω ≤ G. The previous equation can be rewritten as

B(ψ) = τ (D + G)RDCIDC︸ ︷︷ ︸
offset O

+ τ
RωIω

2

√
D2 + Gr

ω
2 + 2DGr

ω cos(φ − φG)︸ ︷︷ ︸
amplitude A

cos(φT − ψ),

where φT = acos( D cos φ+Gr
ω cos φG√

D2+Gr
ω

2+2DGr
ω cos(φ−φG)

) is the phase of the

total radiance. Note that the measurement B is still a sinu-
soid, with offset Ô = τ (D + G)RDCIDC , amplitude Â =
τ RωIω

2

√
D2 + Gr

ω
2 + 2DGr

ω cos(φ − φG), and phase φT .

Phase error. The estimated phase (phase of the total radiance) is
φT . The phase error εφ is given by the difference between φT and
φ, the true phase (phase of the direct radiance):

εφ = φ − acos

⎛
⎝ D cos φ + Gr

ω cos φG√
D2 + Gr

ω
2 + 2DGr

ω cos(φ − φG)

⎞
⎠ . (40)

Direct-global errors. By using Eq. (30), the direct and global
components are estimated from Ô and Â:

D̂ =
√

D2 + Gr
ω

2 + 2DGr
ω cos(φ − φG) , (41)

Ĝ = D + G −
√

D2 + Gr
ω

2 + 2DGr
ω cos(φ − φG) . (42)

The estimation errors εD and εG for direct and global components,
respectively, are given by

εD = D −
√

D2 + Gr
ω

2 + 2DGr
ω cos(φ − φG), (43)

εG =
√

D2 + Gr
ω

2 + 2DGr
ω cos(φ − φG) − D. (44)

As ω increases, the magnitude of the global radiance Gr
ω → 0,

and thus εφ, εD, εG → 0.
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