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In this technical report, we provide an analysis on the image formulation of
structured light based techniques in the presence of strong ambient illumination.
In Section 1, we derive an analytical expression for the signal-noise-ratio (SNR)
of structured light coding schemes. We show that the SNR is proportional to
the power ratio between structured light signal and ambient illumination. In
Section 2, we formulate the theoretical relation between depth accuracy and
SNR. Based on this relation, the concept of decodability condition is present for
general coding schemes. In Section 3, we derive a theoretical lower bound on
acquisition time for different structured light coding schemes.

1 SNR formulation of structured light coding
scheme in strong ambient illumination

Structured light methods belong to the category of active triangulation tech-
niques. Its general setup consists of a strucutred light source (projector) and a
camera. We model the structured light source L as a projector that has an image
plane with C columns. The projector projects spatio-temporally coded patterns
on the scene so that a unique intensity code is assigned to each column 1.

The intensity of a scene point S in a captured image is:

I = Il + Ia + η, (1)

where Il and Ia are intensities corresponding to the light source L and ambient
illumination A, respectively. η is the camera noise. The goal is to extract the
signal component Il reliably from the captured images.

The accuracy of the estimated signal Îl is proportional to the signal-to-noise-
ratio:

1Because of epipolar geometry between the projector and camera, only 1D coding (e.g.,
along the columns) on the projector plane is sufficient to perform depth recovery using trian-
gulation.
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SNR =
∆(Il)

η
=

1

L− 1
· Il
η
, (2)

where ∆(Il) is the minimal distance required to distinguish two different signals.
L is number of different itensities used for coding. For example, since binary
methods [3] only use two different intenties, L = 2 in this case. For N-ary
coding [1] or color coding [4], L equals to N or the color number.

The components Il and Ia are proportional to the irradiance values Rl and
Ra at scene point S due to the light source L and ambient illumination A,
respectively:

Il = αRl, Ia = βRa, (3)

where α and β encapsulate the scene point’s BRDF, light fall-off, and camera
gain. β also includes the effect of any optical (e.g., spectral or polarization)
filtering used for reducing ambient illumination.

We assume the affine camera noise model, with both signal-dependent and
signal-independent terms [2]:

η2 = σ2
r +

αRl + βRa

g
, (4)

where σr is the standard deviation of the signal-independent sensor read noise,
and g is camera gain. In scenarios with strong ambient illumination, Ra >> Rl,
and the dominant source of noise is the signal-dependent photon noise, i.e.,
σ2
r << βRa

g . Then, the SNR is approximated as:

SNR ≈ λ · 1

L− 1
· Rl√

Ra

, (5)

where λ =
√

α2g
β . The reflection properties of the scene are assumed to be the

same for structured light and ambient illumination. Also, we used a narrow-
band laser light source and spectral filter in front of our camera. This suppresses
ambient illumination by a factor of 20. In specific, α = 0.250, β = 0.0125,
g = 4.0 for our setup and λ is caculated as 4.47 accordingly.

2 Theoretical relation between SNR and depth
accuracy

In this section, we derive the expression of depth accuracy given a SNR level.
We have known that this relation depends on the structured light coding and
decoding algorithms. For analysis simplicity, we assume that minimum-distance
decoding is used for all coding schemes. Also, we assume the smallest hamming
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distance of a coding scheme is always 1, which means the signal can be decoded
correctly only when all the code digits are completely correct.

Suppose Iil is an intensity code, the captured intensity is Îil = Iil + η due to
sensor noise. The condition that Iil can be decoded correctly with minimum-
distance decoder is:

|Îil − Iil | < |Îil − Ijl |, for all j ̸= i (6)

For Eq. 6 to hold for even the nearest two codes, we get the condition:

min(
Iil − Ijl

2
) >

τ

2
· η, for all j ̸= i (7)

where τ is a parameter to control the probability of decoding correctness. Since
photon noise is the dominating noise source in strong ambient illumination,
we use a gaussian distribution N(·) to approximate the noise distribution of
each intensity code. Therefore, we can give the probability pr(i) that a single
intensity code is decoded correctly:

pr(i) = N(min(
Iil − Ijl

2
) >

τ

2
· η ) = N(

1

L− 1
· Il > τ · η ) = N( SNR > τ ) (8)

where L is the number of intensity levels as discussed in Section 1.
We assume the code length of a specific coding scheme is Nc and all code

bits are independent to each other. The probability that the code sequence is
correctly decoded is:

Pr =
∏

pr(i), 1 < i < Nc (9)

The error tolerance of correspondence decoding is used as the measurement
of depth accuracy.

δ = µ · (1−
∏

pr(i)), 1 < i < Nc (10)

where µ is a weight constant set to be 10 in our setting.
In order to achieve a desired depth accuracy δ, the SNR should be higher

than a threshold τ , i.e., SNR > τ . The threshold τ increases monotonically
with δ. Substituting in Eq. 5:

1

L− 1
· Rl√

Ra

≥ τ

λ
. (11)

We call this the decodability condition. In order to achieve the desired depth
accuracy, all the captured images must satisfy the decodability condition. In
our experiment, we set the decoding error tolerance to be 0.5 column in average.
As a result, the τ equals to 3.0 in our experiment.
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3 Theoretical lower bound on acquisition time
of structured light coding schemes

In this section, we discuss the theoretical lower bound on the aquisition time of
existing structured light coding schemes. As introduced in Section 2, to achieve
a required accuracy level, structured light coding schemes have to meet the
decodability condition.

When the SNR is insufficient to hold the decodability condition, a common
technique for increasing SNR is by capturing multiple frames per image. It will
increase the SNR by a factor of

√
f when f frames are averaged per image. To

meet the decodability condition using frame-averaging, we get the expression
for the minimal number of frames per image:

f ≥
(
τ · (L− 1)

λRl

)2

Ra . (12)

Let Nc be the number of images required by the particular structured light
coding scheme used to encode all the projector columns uniquely, and f , as
defined above, is the number of frames to be averaged per image. Then, the
total number of measurements M is given as:

M = Nc × f . (13)

If we set a constant exposure time to all the captured frames, we will get a
lower bound on the total number of measurements, which is also a lower bound
on the aquisition time:

M ≥ Nc ·max(

(
τ · (L− 1)

λRl

)2

Ra, 1) . (14)

Eq. 14 is applicable to general existing structured light schemes. For exam-
ple, we set the L = 2, then we get the lower bound for binary coding. We set
the L to be the number of intensity levels in N-ary or color coding, then we also
get the lower bound for them.

In our paper, we introduce the concept of light redistribution. Then we
bring in a new dimensoin in the Eq. 14. If the total column number is C, and
K columns are illuminated at a time, Eq. 14 can be re-written as:

M ≥ C

K
·N

′

c ·max(

(
K · τ · (L− 1)

C · λRl

)2

Ra, 1) . (15)

For more discussion on the light redistribution, please check the paper for
more details.
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