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Abstract
For computer graphics rendering, we generally assume that the ap-
pearance of surfaces remains static over time. Yet, there are a num-
ber of natural processes that cause surface appearance to vary dra-
matically, such as burning of wood, wetting and drying of rock
and fabric, decay of fruit skins, or corrosion and rusting of steel
and copper. In this paper, we take a significant step towards mea-
suring, modeling and rendering time-varying surface appearance.
We describe the acquisition of the first time-varying database of
26 samples, encompassing a variety of natural processes including
burning, drying, decay and corrosion. Our main technical contribu-
tion is a Space-Time Appearance Factorization (STAF). This model
factors space and time-varying effects. We derive an overall tem-
poral appearance variation characteristic of the specific process, as
well as space-dependent textures, rates and offsets, that control the
different rates at which different spatial locations evolve, causing
spatial patterns on the surface over time. We show that the model
represents a variety of phenomena accurately. Moreover, it enables
a number of novel rendering applications, such as transfer of the
time-varying effect to a new static surface, control to accelerate
time evolution in certain areas, extrapolation beyond the acquired
sequence, and texture synthesis of time-varying appearance.

1 Introduction
Many interesting appearance properties of real-world surfaces are
directly related to their evolution with time. Consider the charring
of wood owing to heat or burning; the wetting and drying of stone,
granite or fabric due to rain or spillage of water; the decay and
ripening of fruit skins like apples or bananas; and the corrosion and
rusting of steel or the formation of oxides on copper. Each of these
natural processes forms a spatial pattern over time, often coupled
with a change in reflectance, that gives rise to dramatic effects.

These processes has been studied in biology, physics and mathe-
matics [Meinhardt 1992; Cross and Hohenberg 1993]. In computer
graphics, Dorsey and collaborators have developed a number of
specific models for flows, patina formation and weathering [Dorsey
and Hanrahan 1996; Dorsey et al. 1996; Dorsey et al. 1999]. How-
ever, the full generality of pattern formation remains beyond the
reach of any particular mathematical model or physical simulation.

In this paper, we avoid the difficulties with mathematical mod-
elling by developing a data-driven approach, conceptually similar to
recent work on data-driven static reflectance [Matusik et al. 2003]
or texture [Dana et al. 1999]. We present a complete pipeline from
acquisition of the first dense datasets of Time and Spatially-Varying
appearance of flat samples (the TSV-BRDF) to the first data-driven
models and novel renderings of time-varying appearance:
Database of Time-Varying Surface Appearance: A major con-
tribution of our work is a database of time-varying appearance mea-
surements, that we will release online upon publication. We have
captured 26 samples, listed in figure 2, some examples of which are
shown in figures 1 and 4. Because of the complexity in preparing
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the samples, and developing a suitable measurement system, this
database is likely to be a very relevant resource for future efforts.

Sample preparation requires careful control and significant
effort—for example, we must apply a heat gun for some of the
burning examples, and use special solutions to assist rusting and
copper patination. Capturing the full TSV-BRDF also necessitates
special measurement systems. We use a multi-light-source multi-
camera dome, shown in figure 3, to simultaneously acquire time-
lapse images from a variety of lighting and view directions. We
then fit spatially-varying BRDF models at each time instance, cap-
turing both spatial and temporal variation in a variety of real-world
processes. Since we acquire the full TSV-BRDF, we can capture
spatial patterns as well as changes in the BRDF, such as the sharp
reduction in specularities over time when a surface dries.
Space-Time Appearance Factorization (STAF): Time-varying
appearance is an intricate combination of many factors, such as the
static surface texture, temporal variation, and spatial patterns over
time. The acquired data can be used directly for rendering, but is
difficult to understand, or modify for production applications (such
as making wood dry faster in a wet footprint). Linear data-reduction
techniques like singular-value decomposition do not easily capture
the complex structures in time-varying appearance data.

We introduce a simple Space-Time Appearance Factorization
(STAF), that is general and data-driven. It separates temporally
varying effects from spatial variation, estimating a “temporal char-
acteristic curve” in appearance that depends only on the physical
process, as well as static spatial textures that remain constant over
time. In addition, we estimate a rate and an offset at every point,
that control the speed of time evolution. Spatial patterns arise be-
cause different points evolve at different rates. STAF is non-linear,
with the temporal characteristic curve scaled and shifted by spatial
rate and offset parameters. Our model is intuitive, accurate for the
variety of time-varying phenomena in our database, and allows a
user to separately modify space and time-varying effects.
Rendering Time-Varying Effects: One of the chief benefits of
our data-driven STAF model is the ease with which we can gener-
alize beyond the acquired data, to render a variety of time-varying
effects. For example, we cantransfera time-varying process like
rusting to a new static surface, like a steel plate. We cancontrol the
rate of time variation, such as having wet puddles or footprints on
an otherwise dry wooden floor, with drying happening more at the
boundaries. We canextrapolateto some extent beyond the acquired
data. Moreover, separation of the spatial and temporal aspects al-
lows one to use standard 2D example-basedtexture synthesis.

2 Previous Work
Physical simulation has been applied to specific weathering and
corrosion effects [Dorsey et al. 1996; Dorsey and Hanrahan 1996;
Dorsey et al. 1999; Merillou et al. 2001; Chen et al. 2005].
Patina formation has also been modeled based on surface acces-
sibility [Miller 1994], while dust accumulation has been simu-
lated based on surface geometry [Hsu and Wong 1995]. Jensen et
al. [1999] render wet surfaces by combining a reflection model for
surface water with subsurface scattering. Our data-driven approach
generalizes and complements physical simulation of specific phe-
nomena, much as static data-driven reflectance models complement
and extend specific physically-based analytic BRDFs.

Some recent work has made a first attempt at measuring appear-
ance changes. Koudelka [2004] considers time-varying textures im-
aged with fixed lighting and a single view, and extends static tex-
ture synthesis to time-varying texture synthesis. We generalize this
method with images from multiple light sources and viewpoints, al-
lowing us to fit a true TSV-BRDF model, enabling computer graph-
ics rendering with any lighting and view. More importantly, we de-
velop an intuitive data-driven STAF model to separate spatial and



       t=0.0              t=3.0 m            t=5.2 m            t=9.0 m           t=11.8 m         t=14.3 m          t=17.0 m         t=20.2 m

Wood

Pattern

Cloth

Granite

Toasting

Waffle

Charred

Wood

Apple

Banana

D
r
y
in
g

Copper

Patina

Rusting

Steel

B
u
r
n
in
g

D
e
c
a
y
in
g

C
o
r
r
o
s
io
n

       t=0.0             t=15.5 m           t=27.6 m        t=46.7 m          t=58.4 m          t=72.0 m         t=87.7 m         t=106.0 m

       t=0.0             t=7.0 m            t=14.1 m         t=21.0 m          t=28.1 m         t=35.2 m          t=42.5 m          t=49.6 m

       t=0.0             t=21.5 m          t=45.8 m         t=71.8 m          t=97.9 m        t=122.0 m         t=147.9 m      t=174.9 m

        t=0.0            t=1.8 m            t=3.8 m            t=5.6 m            t=7.3 m            t=8.9 m           t=10.4 m         t=14.9 m

        t=0.0            t=8.1 m            t=11.7 m          t=14.5 m          t=17.4 m         t=20.0 m         t=25.6 m         t=36.4 m

        t=0.0             t=0.9 h             t=1.6 h             t=2.3 h             t=3.0 h             t=3.8 h            t=4.4 h             t=5.1 h

       t=0.0              t=14.5 m        t=25.9 m           t=53.2 m        t=67.3 m           t=84.0 m         t=97.2 m        t=110.0 m

       t=0.0               t=1.0 h             t=2.4 h            t=4.4 h           t=6.5 h             t=8.9 h             t=11.4 h           t=13.7 h

time

Figure 1: Some examples of the 26 samples in our database, shown here with variation across time (in minutes m or hours h) for a singlelight source and
view. We acquire images from1280light and view directions at each time step—some of these images are shown for one of the samples in figure 4.



Appearance Time-Varying Appearance
TF (2D Texture Function) TTF (3D)
BRDF (4D) TBRDF (5D)
SV-BRDF (6D) TSV-BRDF (7D)
BTF (6D) TBTF (7D)

Table 1: Extension of common appearance concepts to time-varying ap-
pearance. We also indicate the dimensionality of the function for each cat-
egory. In this paper, we focus on TSV-BRDFs.

temporal effects, allowing a variety of rendering algorithms includ-
ing transfer, control, extrapolation and synthesis.

For the specific case of drying on stone, [Lu et al. 2005] mea-
sure the change in diffuse appearance, and propose a sigmoid model
with two spatial parameters. Similar equations can be deduced from
the drying literature [Jankowsky and Santos 2004]. We generalize
this work significantly, by acquiring a database of a variety of time-
varying phenomena, including specular effects. Our STAF model
is general and data-driven, capturing many types of time-varying
processes, with intuitive rate and offset parameters at each spatial
location. For specific drying scenarios, we essentially reproduce the
results of [Lu et al. 2005], with our temporal characteristic curves
being close to sigmoidal in those cases.

The STAF model in this paper relates to work in the statis-
tical and speech recognition literature known as dynamic time-
warping [Sakoe and Chiba 1978]. Their goal is to align time-
varying curves for different subjects, in many applications like
speech signals and human growth curves. Their data vary not only
in amplitude, but also with respect to the time axis—different sub-
jects experience events sooner or later. Classical linear methods
like PCA cannot handle this second type of variability well [Wang
and Gasser 1999]. Recently, [Kneip and Engel 1995] proposed the
“shape-invariant” model, with the overall time variation known as
the “structural average curve” (shape and structure are used rather
differently from their traditional meaning in graphics).

In our application, we seek to align time-varying appearance
curves (representing BRDF parameters like diffuse color and spec-
ular intensity) for different pixels, and we must relate this alignment
to intuitive parameters like the rates and offsets at different spatial
locations, as well as the static initial and final appearance. More-
over, as discussed in section 5, we develop methods to estimate the
time variation of the process across the full range seen by any pixel,
allowing robust extrapolation beyond the observed sequence.

3 Time-Varying Appearance

We first formalize the notion of time-varying appearance. One
can imagine extending common appearance concepts, such as the
BRDF or texture to include an additional time dimension, as shown
in table 1. In this paper, we extend spatially-varying BRDFs (SV-
BRDFs) to time and space-varying BRDFs (TSV-BRDFs). A gen-
eral TSV-BRDF is a function of 7 dimensions—2 each for spatial
location, incident angle and outgoing direction, and 1 for time vari-
ation. For surfaces that are rough, or have relief at a macroscopic
scale, the term Bi-Directional Texture Function or BTF [Dana et al.
1999], and its time-varying extension TBTF is more appropriate,
although it has the same dimensionality. While a small number of
the examples in our database do have some surface relief (and may
therefore not be as well modeled by the approach presented here),
we focus in this paper primarily on flat surfaces or TSV-BRDFs.

4 Acquisition and Database

The first step in understanding time-varying surface appearance is
to acquire datasets representing it—some examples are shown in
figure 1. Figure 2 lists all of the 26 samples we have acquired and
processed1. These samples cover 5 categories—burning and char-
ring (wood, waffles), drying of smooth surfaces (wood, fabric), dry-
ing of rough surfaces (rock, granite), corrosion and rusting (steel,
copper), and decay and ripening (apples, banana).

Type Sample Time Frames Average Time Interval
Charred Wood 1 11 2.1 m
Charred Wood 2 31 9.9 m

Burning Waffle Toasting 30 6.3 m
Bread Toasting 30 5.9 m
Light Wood 1 14 3.1 m
Light Wood 2 34 2.3 m

Drying Orange Cloth 33 4.9 m
(Smooth Surfaces) Cotton Cloth 30 11.3 m

Pattern Cloth 32 4.8 m
White Felt 28 4.4 m
Dark Wood 32 3.8 m
Paper Towel 32 7.0 m
Brick 32 22.1 m

Drying Rock 11 2.0 m
(Rough Surfaces) Cardboard 29 7.0 m

Granite 27 2.6 m
Tree Bark 11 3.4 m
Rusting Steel 1 22 7.3 m
Rusting Steel 2 35 10.8 m

Corrosion Cast Iron Rusting 30 13.9 m
Copper with Patina 34 31.6 m
Apple with Core 33 9.6 m
Apple Slice 13 3.0 m

Decaying Banana 33 11.3 m
Potato 31 8.3 m
Leaf under Humid Heat 30 12.6 m

Figure 2: The 26 samples in our database, grouped into categories. For
each sample, we list the number of time frames acquired, and average time
interval between frames (in minutes m).

Figure 3: A photograph of the multi light-source multi-camera dome used
for acquisition of our database of time-varying measurements.

4.1 Acquisition
Acquisition of time-varying appearance is challenging. While some
natural processes like drying occur over fairly short time scales (a
few minutes), many others occur over a considerable duration un-
der normal circumstances (several hours to days for decay of fruit
skins, or a few months for corrosion of metals). In the case of burn-
ing and charring, we have used a heat gun to carefully control the
process. At each time interval, we uniformly heat the sample for a
fixed duration of time (typically 30 seconds). For metal corrosion,
we have decided to speed up the process using specially prepared
solutions [Hughes and Rowe 1991]. We spray a chemical solution
before each measurement and wait a few hours. Decay of organic
samples takes several hours, and is fairly difficult to speed up—we
have decided to measure these processes without alteration.

A second difficulty is designing and building a measurement
system that meets the following resolution requirements: 1) Dy-
namic range—many of the processes (e.g, drying or rusting) in-
volve significant changes in specularity. 2) Light and view di-
rection resolution—the sampling of the light and view directions
should be sufficiently high to capture specular materials. 3) Tempo-
ral resolution—a complete acquisition at each time step, involving
images with multiple lights, views and exposure settings needs to
be conducted in a few seconds to avoid the sample changing sig-

1This entire database, and our STAF model fits will be made available
online. To request a copy, send e-mail to staf@cs.columbia.edu.
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Figure 4: Acquired images of wood drying. We show two separate
views/time instances, and all of the useful lighting directions for those.

nificantly over this time. This rules out gantry-based systems, that
typically take a few seconds to acquire even a single image.

We have decided to use a multi-light-source multi-camera dome,
shown in figure 3. The dome skeleton is based on an icosahedron.
We use 16 Basler cameras (resolution 1300×1030 pixels) placed on
the icosahedron vertices and 150 white LED light sources spaced
evenly on the edges (approximately 80 of these lights lie in the vis-
ible hemisphere with respect to the flat sample, and therefore give
useful images). This design is similar to the light stage [Debevec
et al. 2002], but includes multiple cameras as well. The cameras
and light sources are synchronized using a custom-built controller.

The cameras are geometrically calibrated by moving a small
LED diode in the working volume and detecting its 2D location in
all cameras. A bundle adjustment is performed to obtain the precise
geometric location and projection matrices for all cameras. Since
we know the dome’s design specifications, this allows us to register
all light and camera positions to a common coordinate frame. We
also perform a photometric calibration of the system, by capturing
images of a perfectly white diffuse standard (spectralon) from all
camera viewpoints under all light combinations. To obtain normal-
ized BRDF values for each surface point, we divide by the corre-
sponding observation of the white diffuse standard.

For acquisition, we place a prepared sample in the center of the
dome. At each time step, we capture a high dynamic range data
set—we take images at two different exposures (typically 2 and 82
msec) for each light-camera pair. This results in 4,800 photographs
captured in 22 seconds. It takes about 90 seconds to save the data
to the hard disk (therefore, the minimum time between two con-
secutive measurements is about 2 minutes). We typically capture
appearance data sets at 30 time frames.

Once a complete time-varying appearance data set is captured,
we resample the data on a uniform grid (typically 400×400 pixels)
for each light and view direction. Some of our data, showing time
variation for a single light source and view has already been seen in
figure 1. Figure 4 shows all of the 80 useful images (lighting direc-
tions in the visible hemisphere) for two time instances/viewpoints.

4.2 Time and Spatially-Varying Parametric Reflectance
Initially we attempted to take a straightforward non-parametric ap-
proach to represent the BRDF at every point directly by the acquired
raw data. For rendering (i.e. to create images under novel view
and lighting), we used the algorithm in [Vlasic et al. 2003] and
did barycentric interpolation twice, once over view and then over
lighting. A similar algorithm is used in [Vasilescu and Terzopoulos
2004]. However, as shown in figure 5, since the light-view sampling
of our samples is not dense enough, direct interpolation produces
artifacts. In figure 5, we have “texture-mapped”2 the TSV-BRDF

2When we refer to “texture mapping” throughout this paper, we mean
mapping the complete TSV-BRDF, i.e. all 5 BRDF parameters, including
diffuse RGB color and specularKs and σ , and including time variation.
These BRDF parameters at each point in space and time can then beused
with any lighting model and rendering computation.
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Figure 5: Comparison of (a) barycentric interpolation and (b) parametric
spatially-varying reflectance fits, texture-mapped onto a sphere. The para-
metric reflectance model is quite accurate, preserving the fine details of the
wood grain, while eliminating artifacts in the highlights and boundaries.
onto a 3D sphere to better make these comparisons.

Fortunately, we have enough measurements to effectively fit
parametric reflectance models, including specular lobes, to each
spatial location. We use a simple combination of diffuse Lamber-
tian and simplified Torrance-Sparrow reflectance, with the BRDF
given by

ρ(x,y, ~ωi , ~ωo, t) = Kd(x,y, t)+
Ks(x,y, t)

4(~ωi ·~n) (~ωo ·~n)
exp

[

−

(

cos−1 (~ωh ·~n)

σ(x,y, t)

)2
]

,

(1)
where~ωi and ~ωo are incident and outgoing directions,~n is the sur-
face normal and~ωh is the half-angle vector. The BRDF parameters
are the diffuse intensityKd, the specular intensityKs and the sur-
face roughnessσ . SinceKd is an RGB color, we have a total of 5
parameters for each spatial location(x,y) and timet.

Note that the BRDF model used to fit the raw data is independent
of the STAF model in the remaining sections. Other kinds of para-
metric BRDF models(e.g. Lafortune model) could also be used.

The diffuse and specular parameters are estimated separately in
two steps, since for some materials there are only a few samples in
the specular lobe. To fit the diffuse colorKd, we consider a frontal
view, which gives the highest-resolution image. At each spatial
location, we optimize over only those light source directions where
specular highlights are not present (conservatively, we require the
light source and the reflected view direction to be separated by at
least 30◦ which works well for most of the samples in the database).
We consider each time instance separately for the fits.

We fit the specular intensityKs and roughnessσ separately for
each spatial location. To do so, we consider all light source di-
rections and views. Sinceσ is the only non-linear parameter, we
have found it most robust to do a linear exhaustive search to deter-
mine it. For a givenσ , we solve a linear system forKd andKs,
choosing theσ (andKs) that has minimum error. Although we do
estimate the diffuseKd in this process again, we prefer to use theKd
described earlier, which is determined from the highest-resolution
frontal view, and with specularity completely absent. To make the
two estimates ofKd consistent, we scale the earlier estimate ofKd
by the average value of the latter estimate ofKd over all spatial
locations. As seen in figures 5 and 6, we capture the important
qualitative aspects of the specularity, without artifacts. Quantitative
analysis is difficult, since some spatial locations have only a sparse
set of BRDF samples in the specular lobe.

4.3 Summary and Results
From now on, we will use the notationp(x,y, t) for the parametric
fits to the TSV-BRDF.p can be thought of as a vector of 5 space
and time-varying parameters, the diffuse RGB colorKd(x,y, t) and
the specularKs(x,y, t) andσ(x,y, t). The angular dependence is im-
plicit in the form of the specular term controlled byKs andσ . Note
that although the BRDF representation is parametric, the estimated
parametersp(x,y, t) capture the space and time-variation of surface
appearance in a non-parametric way (i.e., directly from the acquired
raw data).

Even without the analysis and modeling in the rest of this paper,
our database of TSV-BRDFs can be texture-mapped onto arbitrary
3D objects and used directly for rendering with general lighting
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Figure 6: Drying wood TSV-BRDF, texture-mapped onto a sphere. This example demonstrates the power of our database, which enablesus to render with
simultaneous changes in lighting and evolution with time. Note the diffuse spatial drying patterns, and the early dimming and diffusing of specularities. The
elevation angle of the light with respect to the center is fixed at θ(L) = 30◦, while the azimuthal lighting angle varies as the sample dries.

direction, viewing angle, and time variation. Indeed, our use of
standard parametric models allows time-varying effects to be easily
incorporated in almost any interactive or off-line rendering system.
As one example, figure 6 shows drying wood texture-mapped onto
a sphere. We show a sequence of frames, where we simultaneously
change the lighting, and evolve the sample over time. Note the spa-
tial drying patterns, as well as BRDF changes, wherein the initial
sharp specularity quickly diffuses and dims over time.

5 Modeling and Analysis of Time Variation
While our TSV-BRDF database can often be used directly, there are
many rendering applications where the user desires more control.
For example, he may want to control the spatial drying patterns on
a wooden floor to dry slower near recent wet footprints. Or she may
want to remove the spatial drying patterns altogether allowing the
surface to dry uniformly. The user might also want to change the
underlying spatial texture, to create a different appearance for the
wood grain. These effects are difficult to create, because space and
time variation are deeply coupled in the TSV-BRDF, while we seek
to separately modify or edit intuitive spatial or temporal functions
(like overall spatial texture or rate of variation).

We present a Space-Time Appearance Factorization (STAF) that
separates effects because of space and time-variation, showing how
they interact. In this section, we introduce the STAF model, and
show how to estimate it from the TSV-BRDF. We present results
indicating its accuracy for the large variety of time-varying phe-
nomena in our database. In section 6, we will show the power and
flexibility of the STAF model in creating novel rendering effects.

5.1 Space-Time Appearance Factorization (STAF)
Our approach is based on the idea that most physical processes have
an overall temporal behavior associated with them. For example,
drying wood may get lighter over time. For a given parameter of
the BRDF, like the diffuse red channel, this time variation can be
expressed by a curvep(x,y, t) for each spatial location. However,
different points dry at different rates. Moreover, in situations like
a puddle, some parts start out wetter than others. Intuitively, we
seek to align the time variation for different spatial locations, by de-
forming a single “temporal characteristic curve”φ(t) according to
spatially-varying parameters for “rate”R(x,y) and “offset”O(x,y),

p(x,y, t) = A(x,y)φ(t ′)+D(x,y)

t ′ = R(x,y)t −O(x,y). (2)

In this equation, we consider each of the 5 parameters of the TSV-
BRDF separately. For example, for the diffuse component, one can
think of all quantities as being RGB colors. The model is data-
driven, since the factors or termsA, D, R, O andφ are estimated
directly from the acquired data, and represented in a purely data-
driven way. We now describe the meanings of the various terms.
φ(t ′) – Temporal Characteristic Curve: The overall time varia-
tion characteristic of the physical process is captured by the curve
φ(t ′). The form ofφ will vary with the specific phenomenon. It can
be exponential for some decays, sigmoidal for drying and burning,
a more complex polynomial form for rusting, or any other type of
curve. Since our representation is fully data-driven, we can handle
a variety of effects.φ is a function oft ′, that we call theeffective
time, as described below.

R(x,y) and O(x,y) – Spatial Rate and Offset : Different spatial
locations evolve differently. We capture these effects with spatially
varying rateR(x,y) and offsetO(x,y) parameters. IfR is large, the
rate of change will be rapid. IfO is positive, the point will start
from an earlier state. Theeffective time t′ for a given point is given
by t ′ = R(x,y)t −O(x,y), where we refer tot as theglobal time.
A(x,y) and D(x,y) – Static SV-BRDFs : A(x,y) andD(x,y) are
static over time. The diffuse components correspond to standard
spatial textures like wood-grain that remain fixed throughout the
time variation. Consider the special case whenR(x,y) = 1 and
O(x,y) = 0 so all points evolve in the same way. Equation 2 simply
becomesA(x,y)φ(t)+ D(x,y). In this case, we simply interpolate
from one texture (or more generally, SV-BRDF) to another. The
initial and final appearance are simplyAφ(0)+D andAφ(1)+D.

5.2 Discussion
Separating Spatial and Temporal Variation: The STAF model
in equation 2 has factored spatial and temporal variation in a com-
pact representation. We now have quantities (A,D,R,O), that depend
only on spatial location(x,y), and a temporal characteristic curve
φ(t) that controls time variation. Unlike linear decompositions, the
STAF model isnon-linear, becauseφ(t) is stretched and offset by
the spatial rate and offsetR(x,y) andO(x,y). A similar separation
of spatial and temporal effects could not be accurately achieved by
linear data reduction methods like PCA, nor would the terms in a
linear model correspond to physically intuitive and editable factors.
Extrapolation: Another interesting aspect of the model is its
power to extrapolate beyond the acquired sequence. Let us nor-
malize the global timet in the range of[0. . .1]. Now, consider
the effective timet ′ = R(x,y)t −O(x,y), which lies in the range
J(x,y) = [−O(x,y),R(x,y)−O(x,y)]. If eitherR and/orO is large,
this range can extend considerably beyond the global[0. . .1] time.
The valid domain of effective times for the full curveφ(t ′) is now

J =
⋃

(x,y)

J(x,y) =

[

min
(x,y)

(−O(x,y)) , max
(x,y)

(R(x,y)−O(x,y))

]

, (3)

which considers the minimum and maximum effective timet ′ over
all points(x,y). By definition, the overall range ofJ is a superset
of that for each point, enabling individual pixels to be backed up
or extended beyond the sequence captured, allowing time extrapo-
lation. This is reasonable because early-starting points can provide
information for other similar points which start later by some offset.

5.3 Estimating the STAF model
We use a simple iterative optimization to estimate the factors in
equation 2. Each iteration consists of two steps. In the first step,
we fix the spatial parametersA, D, R andO to update our estimate
φ(t ′). If the other terms are fixed, we can solve directly forφ in
equation 2. The second step of the iteration fixesφ(t ′) and solves
for the spatial parametersA, D, R andO. This requires non-linear
optimization, but can be carried out separately for each spatial lo-
cation (x,y). We have found that only 5 iterations are needed to
obtain accurate estimates of all parameters. This algorithm is very
easy to implement, requiring fewer than 50 lines of Matlab code,
while being robust and effective for the entire variety of samples
in our database. We describe the technical details below. Some
readers may wish to skip to our results in section 5.4.
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We align these time-varying curves using our model. The dataaccurately matches the temporal characteristic curveφ(t ′) computed from all the points on the
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Preprocessing: Our inputs are discrete fits of the parameters
p at pixels i and times j, which we denotepi(t j ). The pixel i
corresponds to spatial location(xi ,yi). It is simpler to work with
continuous functions of time. For each pixel, we construct a con-
tinuous curvepi(t) using the kernel-based method [Gasser et al.
1985]. Splines or local polynomial fitting can also be used. We are
now ready to begin our iterative optimization. To initialize, we set
Ai = 1 , Di = 0 andRi = 1 , Oi = 0 for all pixelsi.

Step 1 – Estimatingφ(t ′) : We first fix the spatial parametersA,
D, R, O in order to estimateφ(t ′). For estimation, we re-arrange
equation 2, writingt = (t ′ +Oi)/Ri to derive for pointi,

Aiφ(t ′)+Di = pi

(

t ′ +Oi

Ri

)

φ(t ′) =
pi ((t ′ +Oi)/Ri)−Di

Ai
, (4)

for t ′ ∈ Ji , whereJi is the range of effective times. For robustness,
and to consider the full effective time range, we add multiple points,

φ(t ′) =
∑i:t ′∈Ji

pi((t ′ +Oi)/Ri)−∑i:t ′∈Ji
Di

∑i:t ′∈Ji
Ai

. (5)

Step 2 – EstimatingA, D, R, O : We now keep our value for the
overall time curveφ(t ′) fixed, and estimate the spatial parameters.
This is a separate optimization problem for each spatial locationi,

min
N

∑
j=1

[

pi(t j )−Aiφ
(

Rit j −Oi
)

−Di
]2

. (6)

Note that this expression uses the discrete observationspi(t j ), find-
ing spatial parameters that best match our input data. This is a non-
linear least-squares optimization problem, and we use thelsqnonlin
function in Matlab, with Levenberg-Marquardt minimization.

Normalization: We are now almost ready to start a new iteration
in the optimization, returning to step 1. One final detail is that the
STAF model involves a product, and requires normalization of the
factors for uniqueness. We use the following normalization,

< Ai >= 1, < Di >= 0 < Ri >= 1, < Oi >= 0, (7)

where< · > stands for the average over all spatial locations. This
simply says that the overall spatial textures are normalized, and that
the average rate is 1, while the average offset is 0.

Let us call the un-normalized results at the end of step 2,Âi , D̂i ,
R̂i andÔi . To normalizeAi andRi , we simply divide by the average
values forÂi andR̂i . Then, we normalizeDi andOi as follows,

Di = D̂i −Ai < D̂ j >, Oi = Ôi −Ri < Ô j > . (8)

We can now start the next iteration of the optimization, returning to
step 1. In general, we find five iterations enough for convergence.

Efficiency and Robustness: For efficiency, instead of using all
the points on the sample, we randomly select 400 points as input
to the algorithm. Therefore, the iterative optimization itself takes
only a few minutes. Once the finalφ(t ′) is known, we use step
2 (equation 6) to directly estimateA,D,R,O for all points on the
original sample. Since the sample resolution is large (400×400),
and we must solve a nonlinear optimization for each pixel, the total
time can be a few hours, but the process is completely automated.

One final issue is that we want to estimateφ(t ′) in the full range
J, while the iterative optimization uses only part of the data. The
kernel-based curvepi(t) cannot extrapolate well, and therefore nei-
ther canφ(t ′) from step 1 of the optimization. Therefore, in step 2
of the algorithm, instead of usingφ(t ′) in equation 6, we fitφ(t ′)
by a smooth polynomialq(t ′) and useq(t ′) to estimateA,D,R,O.
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5.4 Results
The top row of figure 7 shows five samples, with three spatial lo-
cations marked on each. The middle row shows curves for the red
diffuse component over time (similar results are obtained for other
parameters). As can be seen, the curves from different points on the
sample are quite different. In the bottom row, we show alignment
of these separate time-varying curves by estimating our factored
representation (theφ(t ′) curve is plotted in black). Specifically,
the x-axis is theeffective time, t ′ while the y-axis is the normalized
function value(p(x,y, t)−D(x,y))/A(x,y). The green/red/blue dots
overlayed on the black curves show which portions of the black
curvesφ(t ′) correspond to each of the three original curves in the
second row. Note that theφ(t ′) curves extrapolate beyond the data,
having a larger range of effective times than[0. . .1].

If the model in equation 2 is perfect, the curves from different
spatial locations should now all be aligned, exactly fittingφ(t ′). In-
deed, the time-aligned data in the bottom row of figure 7 matches
very well to the canonical curve. The overall RMS image recon-
struction errors are computed across all temporal frames and spatial
locations. The range of the image intensity is generally in[0,1], ex-
cept for samples with strong specular components, such as the steel
for which the intensity of the specular pixels is in[0,30]. Note that
figure 7 shows a variety of phenomena, with a number of different
data-driven forms and mathematical curve-types for the canonical
φ(t ′).

The accuracy of our factored model is evaluated in figure 8. We
accurately capture drying patterns over time. We also show the
estimated diffuse “textures”. Instead ofA and D, that are some-
what harder to interpret, we show the normalized initial frame,
A(x,y)φ(0)+D(x,y) and final frameA(x,y)φ(1)+D(x,y). We also
show R(x,y) that controls the rate at which different points dry.
It corresponds closely with the spatial patterns observed at later
frames. Finally, we show the offsetO(x,y). It is mostly close to
0, since we wet our sample uniformly before starting acquisition.

However, it does indicate small non-uniformities and the slightly
faster start to drying in the top left region. We also show the canon-
ical diffuse and specularφ(t ′) curves. The specularKs decreases
exponentially, changing more rapidly than diffuse color.

One of the principal benefits of our factored representation is
that it enables a variety of rendering applications, as discussed in
the next section. Figure 8 indicates one way in which we can
separate space and time-varying effects by “time-normalization”,
making all points on the surface evolve at the same rate. For this
purpose, we leaveA(x,y), D(x,y) andφ(t) unchanged. However,
we setO(x,y) = 0 to eliminate offsets andR(x,y) = 1 to eliminate
differences in rates. The third row of figure 8 compares the time-
normalized results with the original, showing that all pixels now
change at the same rate, removing the spatial patterns. For render-
ing in the next section, we can now modifyR andO, to create the
spatial patterns and variations we desire, while still preserving the
essence of the acquired time-varying phenomenon.

Figure 9 uses the rusting steel sample to compare renderings
from the STAF model with the original TSV-BRDF. This example
is particularly challenging, because theφ(t) red curve is not even
monotonic (since rust forms, reddening the material, but also dark-
ening its base color). Nevertheless, our factored data-driven model
is accurate. We capture the dimming of the specular highlight, and
the intricate spreading of the spatial rust patterns over time.

In terms of compression, the average size of the raw data (high
dynamic range images) of one sample is about 30 GB. Fitting para-
metric BRDF models for each time step reduces the size to about
80 MB. The STAF model can further reduce the size of one sam-
ple to about 6 MB on average – we only need to store four texture
imagesA,D,R,O and the curveφ(t) for each of the five parameters
in the BRDF model. Using other image compression techniques
(e.g., JPEG), we can reduce the size even further to about 1-2 MB
without producing noticeable artifacts.
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Figure 9: Comparison of original rust TSV-BRDF (texture mapped onto asphere and rendered) with our STAF model for several time frames.

6 Rendering
It is possible to use the TSV-BRDF database directly for rendering,
even without the STAF model. However, the types of appearance
we could create are limited, since one cannot control or modify
the TSV-BRDF. On the other hand, the STAF model completely
factors space and time-varying effects, allowing either or both to be
manipulated and edited separately.
Extrapolation: The temporal characteristic curveφ(t ′) extends
beyond the actual global time range over which the data is acquired,
allowing us to back up or extend the process beyond the acquired
data for many pixels.
Control: By changing rate and offset parametersR(x,y) and
O(x,y), we can control the rate at which different points on the
surface change, while still preserving the characteristic features of
the time-varying process. We could setRandO according to phys-
ical principles like the amount of light or humidity. In practice, we
use simple procedural ideas—for example, a wet puddle dries faster
near the edges, so we increase the rates in those regions.
Transfer: By changing the texturesA(x,y) andD(x,y), to those
obtained from a new static photograph, we can transfer the time-
varying effect, such as burning or rusting, to a new object, while
still preserving the essence of the data-driven appearance change.
Time-Varying Texture Synthesis: Our database is acquired on
small flat samples. Of course, we can texture map these onto arbi-
trary 3D objects, but we also seek to use texture synthesis to create
larger spatial patterns. With our factored form, we simply synthe-
size the spatial textures using standard 2D methods.

We now use these ideas to render a variety of examples, that
showcase the full power of our method. The 3D renderings were
done using the PBRT package [Pharr and Humphreys 2004].

Figure 10 shows a texture synthesis of the drying rock example,
to create a much larger spatial pattern. To maintain temporal co-
herence from initial to final frame, we treat the spatial texturesA
andD together. We first synthesizeI0 = Aφ(0) + D using image
quilting [Efros and Freeman 2001], and then use the same patches
to synthesizeI1 = Aφ(1)+ D. Given the synthesized “initial” and
“final” textures I0 and I1, it is easy to find the newA andD. It is
possible to also apply texture synthesis to the rate and offset inde-
pendently, in a similar fashion. However, in this caseR(x,y) and
O(x,y) are not textures in the conventional sense, but encode an
overall variation over the surface, where the rock dries from left to
right. In this example, we choose to preserve this overall effect,
simply enlargingR andO with standard image processing.

Figure 11 shows how standard static texture-mapping may be
combined with TSV-BRDFs. In this case, we use a photograph of
an Apple Records logo from a Beatles album, to modulate the TSV-
BRDF in the mapping region (with an alpha blend near the edges).
Thus, we create the effect of the cut apple logo decaying.

Figure 11 also demonstrates extrapolation on the apple slice
dataset, to obtain virtual frames even before the actual start of ac-
quisition. For extrapolation, we simply use our factored represen-
tation, evaluatingφ(t ′), and clampingt ′ at its overall minimum and
maximum value as per equation 3. In this dataset, most of the decay
actually happens in the first 30 minutes, and we use input from the

corresponding 10 initial frames only for this figure. We show a sig-
nificant backing up of the process for many pixels up tot = −20m,
to the point where the apple is much greener. We can also decay the
apple beyond the end-point of the acquisition.

Figure 12 shows how the drying wood can be controlled to create
the appearance of drying footprints on a wooden floor. The offsets
O(x,y) ensure the floor starts out dry (O=−1), while the lower left
footprint dries earlier (has a smaller offsetO = 0, compared toO =
0.3 for the upper right footprint). We setR(x,y) to control the rate
of drying, depending on the distance from the edge of the footprint.
Motivated by observation, the rate is set higher towards the edges
and decreases towards the center. We compute a distance transform
d(x,y) for points inside the footprint, and setR(x,y) ∼ d−1(x,y).
Finally, we use a 7×7 Gaussian filter on the resulting mapsR(x,y)
andO(x,y) to ensure smooth transitions, especially at the edges.

In figure 13, wetransfer the rusting steel time-varying process
to a new (unrusted) steel plate, using only a single image of its
initial condition. The ratio of the new photographInew to frame 0
of the original sampleI0 is used to modulate both static textures
Anew(x,y) = A(x,y)∗ Inew/I0 andDnew(x,y) = D(x,y)∗ Inew/I0. We
then texture-map the time-varying pattern onto a 3D teapot. Note
that both diffuse and specular effects, and their time variations are
preserved. We also use control to increase the rate of rusting in high
curvature regions. In addition, we do edge detection on our static
2D image of the steel plate, to increase the rate near edges. The
net rateR(x,y) = κ(x,y)µ(x,y) whereµ is an edge map andκ is
the average curvature. The insets in the bottom row clearly show
that different parts of the object rust at different rates. We have
full 3D rendering capabilities, and can see the teapot from different
viewpoints while the appearance is evolving.

Figure 14 shows how user-specified patterns can be created in
the otherwise natural time-varying processes, with implications for
special effects and animations. We texture-mapped the burning
wood onto a bowl model; the table cover is from our drying orange
cloth dataset. Control is effected through a virtual heat source, for
both burning and drying. In addition, we manually modify the rate
R(x,y) to resemble the Siggraph logo, for both the bowl and the
cloth. For the initial frame, the samples have their normal static ap-
pearance. As time progresses, the patterns gradually appear on the
bowl and table. With further progression, charring on the bowl and
drying of cloth is complete, and the patterns disappear.

7 Conclusions and Future Work
We have presented a complete pipeline from acquisition to render-
ing for time and space-varying appearance or TSV-BRDFs. This
leads to a new capability for computer graphics imagery, to include
the dynamic evolution of surfaces and scenes. Our contributions in-
clude a newly acquired dataset of time-lapse images for many nat-
ural processes from multiple light source and viewing directions,
along with estimated parametric TSV-BRDFs. Our main techni-
cal contribution is a compact intuitive factored representation that
separates spatially varying aspects from temporal variation, being
accurate for a variety of natural phenomena. With this representa-
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Figure 10: Time-varying texture synthesis can be reduced to 2D synthesis of static spatial textures A and D with our model. We chooseto preserve the overall
drying pattern from left to right in the original sample.
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Figure 11: Decaying Apple Records logo, using our apple slice dataset,and modulating by a static texture map of the logo from a Beatles record. This example
demonstrates extrapolation, wherein we back up the decay process to considerably before actual start of acquisition—the decay is mostly complete at +30
minutes, and we back up to -20 minutes, getting a much greenerlook on the apple (we are also able to extrapolate beyond the final time frame).
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Figure 12: Footprints drying on a wooden floor. We use the drying wood dataset, controlling the rate and offset of drying as shown in the maps on the far
right. Specifically, the prints dry faster towards the edges, and the left footprint has a lower offset (higher effectivetime) and so dries earlier.

tion, we can generalize to a number of novel rendering tasks such
as transfer, control, extrapolation and texture synthesis.

In future work, we seek to address current limitations of the
STAF model. One example is the decaying apple slice with core,
where there are multiple types of time-varying processes occurring
so that the “single temporal characteristic curve" assumption does
not hold. Extending the STAF model to consist of multiple tem-
poral characteristic curves is one possible solution. Another exam-
ple is the drying tree bark which is essentially a TBTF instead of
TSV-BRDF. Explicitly modeling the relations between neighboring
spatial locations may be needed to handle these types of datasets.

The idea of time-varying surface appearance extends beyond the
datasets and models reported here. We currently represent the tem-
poral characteristic curveφ(t ′), which is effectively the overall
time-varying BRDF, in a purely data-driven way, without further
analysis. In future work, we seek to understand the time evolu-
tion of φ(t ′), to develop TBRDF models that would form the time-
varying counterpart of common static BRDF models. In general,
we believe that measuring, modeling and rendering time-varying
surface appearance is an important problem, and this paper is a sig-
nificant step towards a comprehensive study of this new area.
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