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Abstract—An image acquired by a camera consists of measured intensity values which are related to scene radiance by a function

called the camera response function. Knowledge of this response is necessary for computer vision algorithms which depend on scene

radiance. One way the response has been determined is by establishing a mapping of intensity values between images taken with

different exposures. We call this mapping the intensity mapping function. In this paper, we address two basic questions. What

information from a pair of images taken at different exposures is needed to determine the intensity mapping function? Given this

function, can the response of the camera and the exposures of the images be determined? We completely determine the ambiguities

associated with the recovery of the response and the ratios of the exposures. We show all methods that have been used to recover the

response break these ambiguities by making assumptions on the exposures or on the form of the response. We also show when the

ratio of exposures can be recovered directly from the intensity mapping, without recovering the response. We show that the intensity

mapping between images is determined solely by the intensity histograms of the images. We describe how this allows determination of

the intensity mapping between images without registration. This makes it possible to determine the intensity mapping in sequences

with some motion of both the camera and objects in the scene.

Index Terms—Calibration, histogram, response function, ambiguities, illumination, radiometry, comparagram, dynamic range,

intensity mapping, histogram specification, comparametric.

�

1 DETERMINING THE CAMERA RESPONSE FROM

DIFFERENT EXPOSURES

THE image a camera acquires consists of a collection of
measurements we refer to as intensity values.1 At a

single point in the image, an intensity value is related to the
scene radiance by a nonlinear function called the camera
response function. We will assume that the response is the
same for each point in the image. A typical camera response
has a variation across the image which is linear in scene
radiance. Once the response is found, this variation may be
calibrated separately and removed [1]. By determining the
response, or rather the inverse of the response, we can
obtain scene radiance from image intensity.

Obtaining scene radiance is required for numerous

applications in machine vision that determine properties

of the scene from the physics of the interaction of light with

scene objects. For example, Belhumeur and Kriegman

require scene radiance from images to determine the

illumination space of an object [3]. Marschner estimates

the BRDF from images [20]. Shape from shading algorithms

use scene radiance to determine the orientation of surface

normals with respect to the illumination [27]. Photometric

stereo algorithms use changes in scene radiance between
images to determine the scene structure and the illumina-
tion [22]. Color constancy algorithms use estimates of scene
radiance to separate the illumination from the reflectance of
the scene [14]. High dynamic range illumination maps
using accurate wide field of view measurements of scene
radiance permit the realistic merging of synthetic and real
objects in an image [7]. Estimating the spectral response and
the polarization of light from objects, using generalized
mosaicing, requires obtaining the scene radiance from
images [24]. In all these cases, one must find scene radiance
from measured intensity values by determining the camera
response of the imaging system.

The camera response function can be obtained by taking
an image of a uniformly illuminated chart with patches of
known reflectances, such as the Macbeth chart, as done in
[5]. Nevertheless, placing a chart in the scene can be
inconvenient or difficult in the field. For example, when
images are taken with a camera attached to a remote mobile
device. Additionally, changes in temperature alter the
response function requiring frequent recalibration.

The problems associated with using charts have led
researchers to develop methods to determine a camera’s
response from arbitrary scenes. Farid showed if one
assumes the response has the form of a gamma curve, one
can estimate the parameters of the curve by making
assumptions on the statistics of scene radiance [9]. Rather
than making assumptions about the statistics of scene
radiance, a number of researchers obtained the response
function from a sequence of images of the same scene taken
at different exposures. By comparing corresponding in-
tensity values between images in the sequence, Mann and
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1. By intensity value, we simply mean the number the camera reports at
a pixel. A typical color camera will report one number at each pixel for each
channel (e.g., red, green, and blue). We treat these channels as giving three
monochrome images.
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Picard demonstrated constraints on the response of a

camera in the pioneering paper [18]. These constraints

allowed them to determine the response at a sequence of

points. By using a parameterized model of this response,

such as a gamma curve, they determined the response

assuming known exposure ratios between the images.2

Debevec and Malik also assumed the ratio of exposures is

known, but they found the log of the inverse camera

response without using a parametric form for the response

[6]. Instead, they imposed a smoothness constraint on the

response.
In between having assumed a specific parametric form

and having assumed no parametric form, Mitsunaga and

Nayar assumed that the inverse response function can be

closely approximated by a polynomial [21]. They were then

able to obtain the coefficients of the polynomial and the

exposure ratios, from rough estimates of those ratios, by

alternating between recovering the response and the

exposure ratios. Tsin et al. [26] and, separately, Mann [17]

determined both the response and exposure ratios by

combining the iterative3 approach from [21], with the

nonparametric recovery in [6].
All chartless4 methods base the recovery of the response

function on the constraint that between a pair of images of a

static scene, all irradiances change by the same exposure

ratio [6], [17], [18], [21], [26]. The essential information from

the images that all methods use is how intensity values in

one image map to intensity values in another. We describe

this mapping with a function called the intensity mapping

function.5 Fig. 1 shows that the recovery of the response

decomposes into two parts: the recovery of the intensity

mapping function from images and the recovery of the

combination of the response and exposure ratios from the

intensity mapping function.

In this paper, we address both parts of the recovery
problem. We will first completely describe the limitations of
the second part of this problem, that is, obtaining the
response and exposure ratios from the intensity mapping
function, by answering the following questions:

1. Given the exposure ratio of an image pair, is there a
unique response function for each intensity mapping
function?

2. Is it possible to recover the response function and the
exposure ratios simultaneously and uniquely?

3. Can we recover the exposure ratio without recover-
ing the response?

We show that, given fixed exposure ratios, different
camera response functions give rise to the same intensity
mapping function. We present a self-similar ambiguity
which arises when recovering the response from an
intensity mapping function. We show that either a careful
choice of exposures or a priori assumptions on the response
are necessary to break this ambiguity. Beyond this ambi-
guity, we describe an ambiguity to recovering the response
function and exposure ratios together and prove it is the
only ambiguity. Only by making assumptions on the
response function can we expect a unique solution. We
will show when it is possible to solve for the exposure ratio
without determining the response. Having established the
limits of determining the response function and exposure
ratios from the intensity mapping function, we address the
first part of the recovery problem:

4. What information is necessary to recover the
intensity mapping function from images?

Previous work compared registered images which
required a static scene and assumed restricted camera
motion. We answer the above question by proving a
theorem which relates the intensity mapping function to
the histograms of the images. This implies that, in
situations where the distribution of scene radiances
remains almost constant between images, we can still
recover the intensity mapping function even for images
with scene and camera motion that cannot be registered.
We verify the theorem by recovering the response function
from a sequence of images with camera motion, motion of
objects in the scene, and a combination of both. This type of
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2. In later work, Mann has suggested alternate parameterized models
[16], as well as the use of nonparametric regression [17].

3. Iteration is unnecessary if the exposure ratios are known, as in earlier
methods.

4. When we refer to “chartless” methods, we do not include Farid’s
method [9]. While it does not depend on knowing the values of scene
reflectances, it makes assumptions on the higher order statistics of scene
radiances.

5. Most methods use all pairs of intensity values at corresponding points
in the images. Mann shows that the intensity mapping function, which he
calls the comparametric function, summarizes this information [16].

Fig. 1. A diagram showing the two parts of recovering the response function and exposure ratios from a sequence of images taken at different
exposures. All the information in the images relevant for chartless recovery is contained in the intensity mapping functions. These functions describe
how an intensity in one image maps to an intensity in another image. Thus, the problem of recovering the camera response function falls into two
parts: recovery of the intensity mapping functions from images and recovery of the camera response function and the exposure ratios from the
intensity mapping functions.



camera motion (where parallax occurs) and scene motion

have not been handled before.

2 THE FUNDAMENTAL CONSTRAINT FOR

CHARTLESS RECOVERY

To determine scene radiance L from an image, we first note

that the scene radiance is proportional to image irradiance

E [23]. The irradiance and radiance are related by E ¼ ePL,

where P is a factor due to the optics of the system and e is

the exposure. For a simple system, P ¼ cos4 �=c2, where � is

the angle subtended by the principle ray from the optical

axis and c is the focal length.6 The exposure is given by

e ¼ ð�d2Þt, where d is the size of the aperture and t is the

time for which the photo-detector is exposed to the light.

Even though e contains the integration time t, we can think

of E as the image plane irradiance.
A function f , called the camera response function, relates

the actual measured intensity value B ¼ fðEÞ at a photo-

sensitive element to the image irradiance.7 Imaging system

designers often intentionally create a nonlinear response,

for example, to compress the dynamic range. Since

measured intensity indicates relative irradiance, we can

assume that the response monotonically increases.8 We

normalize the domain of the response, which is the

irradiance, to go from 0 to 1. We also normalize9 the range

of f , which is the intensity, so that fð1Þ ¼ 1 and fð0Þ ¼ 0.

Up to this normalization, we can determine f if we take an

image of a uniformly illuminated chart with known

reflectance patches. Without a chart, we must find the

constraints that permit us to extract f from images without

assuming the knowledge of scene reflectances.
As a special case of howweobtain constraints, supposewe

take two images of the same scenewith different exposures e1
and e2. If the first image has image irradiance E1 at a point

and the corresponding point in the second image has

the irradiance E2, then E1=e1 ¼ E2=e2. The exposure ratio

k :¼ e2=e1 expresses the relationship between irradiances in

the two images, E2 ¼ kE1.
Typically, the response is used to convert intensity to

irradiance using the assumption that the response is

monotonic and thus invertible. Therefore, we actually need

to recover the inverse response g :¼ f�1 rather than the

response itself. If we let fðE1Þ ¼ B1 and fðE2Þ ¼ B2; we

have the equation

gðB2Þ ¼ kgðB1Þ ð1Þ

in terms of the inverse response. All chartless methods base
the recovery of the response and the exposure ratio on this
constraint equation. In each pair of images, each corre-
sponding pair of pixel intensity values gives one constraint
with a fixed exposure ratio. Assuming the exposure ratio is
known, and the inverse response is a polynomial, then (1)
becomes linear in the coefficients of the polynomial.
Mitsunaga and Nayar solve for these coefficients [21].
Debevec and Malik [6] and Mann [17] take the log of both
sides of (1). Rather than start with a parameterized model of
log g, they evaluate it at a set of discrete intensity values
and, therefore, treat it as a vector. By imposing a regularity
condition on the discrete second derivatives of log g, they
are able to obtain a solution.

When we know the response but not the exposure ratio,
we can solve (1) for the exposure ratio. Mitsunaga and
Nayar [21] and Mann [17] use an iterative scheme in which
they first solve for the inverse response with an initial guess
for the exposure ratios. Updating their estimates, they
iteratively solve for the exposure ratios and the inverse
response.

3 INTENSITY MAPPING FUNCTIONS

The pairs of intensity measurements B1 and B2 at
corresponding points in two different images of the same
scene constitute all the information available from which to
recover the response function in chartless recovery. Mann
[17] pointed out that all this information is contained in a
two variable cross-histogram he calls the comparagram. If
ðB1; B2Þ are any two pairs of intensity values, then the
comparagram JðB1; B2Þ is the number of pixels which have
intensity value B1 in the first image and B2 at the
corresponding point in the second image.

For real images, the correspondence between intensity
values in one image and intensity values in another cannot
be described by a function. The intensity values are not
related by a single function because of factors such as noise,
quantization of the intensity values, spatial quantization,
and saturated pixels. Ignoring these factors for a moment,
from (1), we see that a function � should ideally relate the
intensity values in the images

B2 ¼ �ðB1Þ :¼ g�1ðkgðB1ÞÞ; ð2Þ

which we call the intensity mapping function. This function
describes how to map intensity values in one image into the
second image. We can estimate the intensity mapping
function from the comparagram. Once we estimate the
intensity mapping � , we have a modified version of (1),
given by

gð�ðBÞÞ ¼ kgðBÞ: ð3Þ

This equation has an advantage over (1): Because the
function � contains all the information about the intensity
mapping between images, we can study the mathematical
problem of existence and uniqueness of solutions to (3). To
study solutions to (3), we must first derive some properties
of intensity mapping functions. For example, we will show
that � is monotonic so ��1 exists. Define �0ðBÞ :¼ B,
�nðBÞ :¼ �ð�n�1ðBÞÞ, and ��nðBÞ :¼ ��1ð�1�nðBÞÞ.
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6. Details of P for a simple perspective camera can be found in Horn [12].
Whereas Mitsunaga and Nayar [21] discuss selection of pixels in the image
where P is nearly constant, we will assume P is constant throughout the
part of the image we analyze.

7. Treating intensity as a function of irradiance E is a simplification since
irradiance is measured across all frequencies of light. Intensity is a function
of irradiance weighted across frequencies by a distribution (in digital
cameras called the quantum efficiency). Mann refers to this weighted
irradiance as the quantimetric exposure [17].

8. If the response f is monotonically decreasing, as in negative films, we
replace f with 1� f .

9. The minimum intensity value in a digital imaging system is often
effectively greater than zero due to nonzero mean thermal noise called dark
current. By taking an image with the lens covered, this effect may be
estimated and subtracted.



Theorem 1. Intensity Mapping Function Properties. Let g
be a smooth monotonically increasing function with smooth
inverse. Suppose that gð0Þ ¼ 0, gð1Þ ¼ 1, and k > 1, then the
function �ðBÞ :¼ g�1ðkgðBÞÞ has the following properties:

1. �ð0Þ ¼ 0,
2. � monotonically increases,
3. B � �ðBÞ, and
4. limn!1 ��nðBÞ ¼ 0.

See Appendix A for the proof.

Assuming that k > 1 just means that we order our
images so that exposure increases. To order the images,
note that, when k > 1, then g�1ðkEÞ � g�1ðEÞ since g�1

monotonically increases. In other words, every intensity
value in one image maps to a larger value in the other
image. Therefore, the intensity mapping function � goes
from the image with darker average pixel value, to the
image with lighter average pixel value.10

4 SELF-SIMILAR AMBIGUITY

Each pair of images determines an intensity mapping
function. In this section, we show that, even when the
exposure ratio between the images is known, (3) has many
solutions. Hence, the inverse camera response is not
uniquely determined by the image pair. To understand
why there are many solutions, we first note that, if the
exposure ratio k is greater than 1, the intensity mapping
function � expands the B-axis as we see from Theorem 1.1.
Thus, (3) can be interpreted as asserting that stretching the
intensity axis using the intensity mapping and applying the
inverse response g is the same as multiplying g by the
exposure ratio between the images. The left side of the
equation relates the value of g at points in ð��1ð1Þ; 1�, to the
value of g at points in ð��2ð1Þ; ��1ð1Þ� on the right side.
Nothing, however, relates the value of g at points in
ð��1ð1Þ; 1� to each other. This means as long as gð1Þ ¼ 1,
gð��1ð1ÞÞ ¼ 1=k and g is continuous and monotonic, then g

can have arbitrary values on ð��1ð1Þ; 1Þ and still be a
solution to (3). We call this ambiguity to (3) the self-similar
ambiguity.11

More formally, we state this by saying that we can build
a solution g starting with any function sðBÞ on ½��1ð1Þ; 1�:
Theorem 2. The Self-Similar Ambiguity. Suppose that �

satisfies the properties listed in Theorem 1. Suppose sðBÞ is
any continuous, monotonic function on the interval
½��1ð1Þ; 1� such that sð1Þ ¼ 1, sð��1ð1ÞÞ ¼ 1=k. Then, s
extends to a unique, continuous, and monotonic function g
on ½0; 1� such that gðBÞ ¼ sðBÞ for B 2 ½��1ð1Þ; 1� and g

satisfies gð�ðBÞÞ ¼ kgðBÞ, with gð0Þ ¼ 0 and gð1Þ ¼ 1. (See
Appendix B for proof.)

We can more easily understand this self-similar ambi-
guity by evaluating s at some sample points. Suppose we
take three points b1; b2; b3 2 ð��1ð1Þ; 1�, as shown in Fig. 2a.

We can choose the values of s and, hence, g at these points
essentially arbitrarily. The only restriction a priori is that s
be monotonic and, thus, sð��1ð1ÞÞ ¼ 1=k � sðbnÞ � 1. Each
point b1 2 ð��1ð1Þ; 1� gives rise to a sequence of points
b1 � ��1ðb1Þ � ��2ðb1Þ � . . . . Equation (3) determines this
sequence from b1. It places no restrictions on the relation-
ship between the values of s at points in ð��1ð1Þ; 1�: In
Fig. 2b, we see alternative solutions to (3).

The self-similar ambiguity presents a problem relating
different sequences of points, each obtained by choosing a
point b1 and a value sðb1Þ in ð��1ð1Þ; 1�. The choice of initial
value sðb1Þ determines each sequence, however, only up to
a single multiple. Thus, choosing the exposure ratio closer
to 1 reduces this ambiguity since 1� ��1ð1Þ is smaller.12

Choosing the exposure ratio too close to 1, however, creates
other problems. When the exposure ratio is close to one, the
images will be very similar. Thus, the intensity mapping
function will be close to the identity, as is clear from (2).
Recovery of the inverse response g from this mapping will
be very sensitive to noise. The recovery itself assumes that
the scene does not change for different exposures. If the
images are taken sequentially, even small changes in
illumination may create problems in recovering the inverse
response.

By assuming the inverse response has a particular form
or by imposing a regularity constraint, we can break the
self-similar ambiguity. For example, suppose we take a
sequence of points in the plane

ð1; 1Þ; ð��1ð1Þ; 1=kÞ; ð��2ð1Þ; 1=k2Þ; . . . ; ð��Nð1Þ; 1=kNÞ:

If we assume that the inverse response is a low degree
polynomial, then we can solve for the least squares
polynomial fit for the points. This breaks the ambiguity

1458 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 11, NOVEMBER 2003

10. Note that we do not have to register images to compare the average
pixel values.

11. Mann [17] has noted the relationship of his version of (3) to
dynamical systems and that the equations allow “ripples” in the solutions.

12. Most consumer cameras do not permit fine adjustment of exposures.
Nevertheless, it is often possible to achieve exposure ratios close to one by
varying, for example, the aperture and integration time simultaneously.

Fig. 2. (a) Graph showing the constraints of (3). The equation does not
constrain the relative values of the inverse response within the interval
ð��1ð1Þ; 1Þ such as at points b1, b2, and b3. Nevertheless, using (3), we
can generate a sequence of points from each such point, for example b1.
(b) Two arbitrary curves s on ð��1ð1Þ; 1� extended uniquely to ½0; 1�. This
means neither (3) nor its log tell us anything about the values of g in
ð��1ð1Þ; 1�: Unique solutions of g can only come from prior assumptions
on the form or smoothness of g.



by allowing the polynomial to interpolate between ��1ð1Þ
and 1 based on the best fit to the rest of the points.

Clearly, multiple exposures cannot help if the same
exposure ratios are used, as in [6], [18], [21]. Dror pointed
out that, for three exposures, with k1 the exposure ratio of
the first and second exposures, with k2 the exposure ratio of
the second and third exposures, and with logk1k2 irrational,
then, in theory, the self-similar ambiguity disappears [8].
More formally, if we let the intensity mapping functions for
the two pairs written as �k1 and �k2 , then

�mk1 ð�
�n
k2

ð1ÞÞ ¼ g�1ðk1m=k2ngð1ÞÞ ¼ g�1ðk1m=k2nÞ: ð4Þ

It can be shown that k1
m=k2

n is dense in ½0; 1� if and only if
logk1k2 is irrational (see Appendix C). Therefore, the inverse
response is constrained everywhere. In practice, the
numerical irrationality of logk1k2 is meaningless for a
physical quantity such as the ratio of exposures. Never-
theless, some choices of logk1k2 are particularly poor. For
example, when k1 � k2, as is commonly the case [21], [18],
[6], multiple exposures offer no advantage over the two-
image case, in terms of the self-similar ambiguity. It should
also be noted that repeated application of �k1 and �k2 will
accumulate errors; thus, choosing at least one of the
exposure ratios closer to one, for example,

ffiffiffi
2

p
, is advisable.

Implications. Since the extension from s to g is unique,
recovering the inverse camera response by solving (3) when
the exposure ratio is known is unique up to the self-similar
ambiguity. This ambiguity decreases when the exposure
ratio is close to 1, keeping in mind that an exposure ratio too
close to 1 creates other problems. By taking at least three
exposures with exposure ratios, k1, k2 with logk1k2 irrational,
the self-similar ambiguity can be broken. Furthermore, this
ambiguity can be broken even for two images or for
multiple images taken with the same exposure ratio by
making a priori assumptions on the inverse response
function g.

5 THE EXPONENTIAL AMBIGUITY

In Section 4, we analyzed the recovery of the inverse
response when the exposure ratios are known by solving
(3). Can we solve (3) to determine the inverse camera

response and the exposure ratios simultaneously? As an
example, suppose we have two imaging systems: One
system has the inverse response g1ðBÞ ¼ B� , an example
of a “gamma” curve, and another system has a linear
inverse response g2ðBÞ ¼ B. Each system takes two images
of the same scene. Both systems have identical initial
exposures. We change the exposure by a factor of k ¼ 2�

for the first system and k ¼ 2 for the second system. The
intensity mapping function of the first system is
�ðBÞ ¼ g�1

1 ð2�g1ðBÞÞ ¼ ð2�B�Þ�� ¼ 2B. The second system
also has intensity mapping function �ðBÞ ¼ 2B. The two
systems produce different pairs of images but an identical
intensity mapping function for each pair of images, as
illustrated in Fig. 3. It is therefore impossible to recover the
exposure ratio and inverse response simultaneously from
the intensity mapping, without making a priori assump-
tions on the inverse response and exposure ratio.

This exponential ambiguity in solutions for the exposure
ratio k and inverse response g is general and not limited to
gamma curves. For example, if g and k are arbitrary
solutions to �ðBÞ ¼ g�1ðkgðBÞÞ, then so are g� and k� . In
other words, if we are given two sets of images of the same
scene with identical initial exposure, one from an imaging
system with an inverse response g and exposure ratio
between the images of k and a second with inverse response
function g� and exposure ratio k� , they have identical
intensity mapping functions. The following theorem shows
that there are no other ambiguities in (3):

Theorem 3. Exponential Ambiguity. Suppose we have inverse
response functions g1, g2 and exposure ratios k1, k2, so that

g1ð��1ðBÞÞ ¼ k�1
1 g1ðBÞ

g2ð��1ðBÞÞ ¼ k�1
2 g2ðBÞ:

ð5Þ

Define �ðBÞ :¼ g2ðg�1
1 ðBÞÞ, which is an ambiguity in the

solutions g; k to (3), then �ðBÞ ¼ KB� and k�1 ¼ k2, for some
constants � and K. (See Appendix D for proof.)

Mitsunaga and Nayar [21] discussed this ambiguity in
their method for simultaneous recovery of the inverse
response and the exposure ratio. They broke the ambiguity
by assuming that the inverse response is polynomial. This
restriction limits the possible values of �: They also
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Fig. 3. Shown above is a graph of different response functions giving rise to the same intensity mapping function. The intensity mapping function

�ðBÞ ¼ 2B results from an inverse response function B� and exposure ratio between images of 2� , independent of �. This shows we can only recover

the inverse response of the camera and the exposure ratio simultaneously by making assumptions on the inverse response and the exposure ratio

that break the ambiguity.



assumed they had rough estimates of the exposure ratios.
They showed that the multiple solutions are far enough
apart so that starting from the rough estimates of the
exposure ratios, the correct solution can be found with an
iterative method. Tsin et al. break the ambiguity by
imposing constraints on the errors in their estimates of the
exposure ratios, as well as smoothness and monotonicity of
the functions [26]. Without assumptions on the response
functions, no method can resolve this ambiguity.

It is also worth noting that using multiple images and,
thus, multiple intensity mappings does not break this
ambiguity. Suppose we start with three images at different
exposures with exposure ratio k1 between the first and
second images and k2 between the second and third images.
Thus, between the first and third images the exposure ratio
is ðk1k2Þ. Further, suppose the inverse response function is
g. We have already shown that using the exposure ratio k�1
between the first and second images with camera response
g� will give the same intensity mapping as when � ¼ 1. We
may apply the same logic to the second and third images to
show that the intensity mapping does not change. What
about the first and third images? The exposure ratio
between these images is the product of the exposure ratios
k�1 and k�2 : Since, however, k�1k

�
2 ¼ ðk1k2Þ� , the intensity

mapping between the first and third images does not
change either. The same holds for an arbitrary number of
images. Thus, no algorithm applied to these images can
recover exposure ratios and inverse response functions
simultaneously without assumptions on the response
function.

Implications. Recovery of the exposure ratios and the
response function is only possible by making assumptions
on the form of the response function or by starting with
rough estimates on the exposure ratios as in [21]. We should
be wary of applying any algorithm for recovering the
response and exposure ratios in situations where we know
nothing about either.

6 RECOVERY OF THE EXPOSURE RATIO

We have just shown that it is impossible, without further
assumption on the response, to recover the response and
exposure ratio together. If we know the response, we can
simply recover the exposure k from (3). We now show that,
in theory, it is possible to recover the exposure ratio when
we don’t know the response. If we differentiate both sides
of (3) and solve for k, we get

k ¼ � 0ðBÞg0ð�ðBÞÞ=g0ðBÞ: ð6Þ

Evaluating this at B ¼ 0 using �ð0Þ ¼ 0 and assuming that
the derivative of the inverse response is not zero at zero,
g0ð0Þ 6¼ 0, we have k ¼ � 0ð0Þ: This tells us that we can, in
theory, directly estimate the exposure ratio from � , as
illustrated in Fig. 4. This may seem to contradict the
exponential ambiguity of Section 5. It does not, however,
because ðgðBÞ�Þ0 ¼ �gðBÞ��1g0ðBÞ, so, since gð0Þ ¼ 0 if � > 1,
then g� has a zero derivative at B ¼ 0, and, if � < 1, then g�

has an infinite derivative at B ¼ 0. In either case, we cannot
cancel g0ð0Þ.

Unfortunately, in practice, estimating the exposure ratio
using this observation is often impractical. Many cameras
have a response which is a gamma curve or have a response
which is zero for a significant range of irradiances. In such
cases, the camera response violates the hypothesis on g0ð0Þ.
Moreover, estimating � 0ð0Þ is difficult since SNR is often
very low for small intensity values. Nevertheless, we now
show that � 0 close to 0 often serves as a rough approxima-
tion. Using the Taylor approximation of g0 in (6), we get

k � 1þ g00ðBÞ
g0ðBÞ ð�ðBÞ �BÞ

� �
� 0ðBÞ: ð7Þ

For small B, �ðBÞ �B is often small, so, if g0ðBÞ is nonzero,
the derivative of the intensity mapping function is a rough
estimate of the exposure ratio.

Implications. It is theoretically possible to recover the
exposure ratio from � as long as g0ð0Þ 6¼ 0: In practice, gðBÞ
must be well-behaved with a limited amount of noise near
B ¼ 0 for this recovery to be possible.

7 INTENSITY MAPPING FUNCTION FROM

HISTOGRAMS

As discussed in Section 2, all the information we can
recover about the exposure ratios and the response function
of the camera comes from the correspondence of intensity
values between images. When the images are registered, the
pairs of corresponding intensity values may be aggregated
as a comparagram, J (see Fig. 5a). The intensity mapping
function may be estimated from the comparagram by
regression.

Obtaining the comparagram from a pair of images
requires the images to be registered. When a scene remains
static and the camera motion can be considered a homo-
graphy, a number of methods have been presented for
simultaneously registering images spatially, while recover-
ing the intensity mapping function [2], [4], [15], [19].
Nevertheless, pixel-to-pixel registration between the images
can be problematical. Due to occlusion, general object and
camera motion can make registration impossible. Even for
static scenes and static cameras, pixel-to-pixel estimates of
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Fig. 4. Graph showing that the exposures ratios k are equal to the slope
of the intensity mapping function at the origin, � 0ð0Þ. As an example, we
choose the inverse camera response gðBÞ ¼ 2B=ðBþ 1Þ The curves are
intensity mapping functions for exposure ratios 2, 4, and 8. This shows
that, if the intensity mapping function can be estimated near B ¼ 0, the
exposure ratios may be recovered without recovering the response
function.



the comparagram can be unreliable for edges and textures

due to aliasing. While some of these concerns may be

addressed by disregarding outliers, it raises the question:

What information is required from an image pair to

determine the intensity mapping function?
The intensity mapping function is a characteristic of the

camera and the exposures and, thus, is not scene depen-
dant. This suggests that it should be possible to determine
the intensity mapping by analyzing the change in histo-
grams of the images, as in Fig. 5b. We note that, if the
histograms of either image have empty bins, then the
images give no information about the intensity mapping
function for the corresponding intensities.13 As an extreme
case if one image is completely saturated, the image pair
does not have any information about the the intensity
mapping. Assuming the image histograms do not have
empty bins we have the following theorem:

Theorem 4. Image Information Determining the Intensity

Mapping. Given the histogram of one image, the histogram of

the second image is necessary and sufficient to determine the

intensity mapping function.

To prove this, we start by normalizing all images to have

unit area. The total area of the image with intensity values

between intensity 0 and intensity B is given by a monotonic

function we call HðBÞ: The continuous histogram of

intensity values can be defined as the unique function h

such that

HðBÞ ¼
Z B

0

hðuÞdu: ð8Þ

This also means that HðBÞ is the cumulative histogram.

Consider two images of a static scene with no camera

motion. Ignoring saturation and quantization for the

moment, each intensity B2 in the second image maps to

an intensity B1 in the first image, B1 ¼ �ðB2Þ. The set of

image points in the first image with intensity less than B1,

must be the same as the set in the second image with

intensity less than B2 since they correspond to the same set

of scene points. Hence, these sets must have equal area, so

H1ð�ðB2ÞÞ ¼ H2ðB2Þ. This implies that the intensity map-

ping function and the first histogram determine the second

histogram. Replacing B1 ¼ u and solving for � , we have

�ðuÞ ¼ H�1
2 ðH1ðuÞÞ: ð9Þ

This shows that the two histograms determine the

intensity mapping function, completing the proof of

Theorem 4.
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Fig. 5. (a) Diagram showing the recovery of the intensity mapping function from registered images at different exposures. The comparagram counts

the number of pixels which have intensity B1 in one image and intensity B2 at the corresponding pixel in the second image. From this, we can find a

best fit for the intensity mapping function. (b) Diagram showing the recovery of intensity mapping function from differently exposed images without

registration. We first compute histograms of the images. Histogram specification gives the intensity mapping function between the images.

13. This is an issue for all chartless recovery methods. Since we do not
control the scene radiances, we must take enough exposures for the scene
radiances to provide information across the entire range of intensities.
Nevertheless, a parameterized model for the inverse response makes the
recovery more robust to missing intensity values and saturation.



We can interpret this theorem in terms of histogram
modeling [13]. Histogram modeling changes the histogram
of the image by remapping the intensities. One example of
histogram modeling is histogram equalization. Assume we
have normalized our histograms h1 and h2 so that
H1ð1Þ ¼ H2ð1Þ ¼ 1. When intensities in the image are
remapped via the function H1ðuÞ, the resulting image has
a histogram that is uniform. Another example of histogram
modeling is histogram specification, where we attempt to
specify the desired histogram for an image. For example, if
we want one image to have the same histogram as a second
image, we use the function H�1

2 ðH1ðuÞÞ to remap the
intensities.

A method obtaining the intensity mapping from the
histograms and, thus, omitting the step of registering the
images, achieves computational savings. More importantly,
recovery of the intensity mapping from the histograms does
not require the scene to remain static or camera motion to
be a homography. When camera motion involves parallax
simple registration is often not possible. If a camera moves
around an object, such as a plant, the images may share
relatively few scene points due to occlusion. Nevertheless,
due to the fact that the images are of the same object from a
different viewing direction, it will often have a similar
distribution of scene radiances.

Often, scene motion will not change the histogram of
scene radiances significantly. For example, consider a
natural landscape with trees and grass on a windy day.
While scene points may move around spatially in the
image, as long as the distribution of scene radiances
remains roughly constant, the intensity mapping can be
recovered from the image histograms. By not requiring
registration, it is possible to extend recovery of the intensity
mapping function to a much wider class of images than
those permitting registration.

Implication. We have shown that the histograms of an
image pair are necessary and sufficient to determine the
intensity mapping function. Histogram specification deter-
mines the intensity mapping function whenever we expect
the histograms of scene radiance to remain approximately
constant between images taken under different exposures.
This means it is possible to recover the intensity mapping
functions in the presences of some scene or camera motion,
where registration would be difficult or impossible. It also
makes it possible to avoid registration for static scenes,

reducing computational effort and eliminating any errors
coming from the registration process.

8 EXPERIMENTAL VERIFICATION

A practical and robust algorithm to recover the intensity
mapping function from images using histograms must
address a number of issues. We must evaluate the
sensitivity of the histogram to missing bins, the sensitivity
to changes in scene radiance and to the algorithm’s
complexity. In this section, we only verify that recovery of
the intensity mapping function from images taken at
different exposures is possible even in the presence of
scene and camera motion.14 We will verify our recovery of
the intensity mapping by determining the inverse response
function of the camera. We also show that, under the
assumption that the inverse response has nonzero deriva-
tive at zero, we can obtain rough estimates of the exposure
ratios from our recovered intensity mappings.

Figs. 6a, 6b, 6c, 6d, and 6e show a sequence of five
images taken at different exposures with the Nikon 990
Coolpix camera. In order to vary the exposure, we changed
the integration times which were: (a) 1=500 seconds,
(b) 1=250 seconds, (c) 1=125 seconds, (d) 1=60 seconds,
and (e) 1=30 seconds. Larger apertures can introduce a
spatial variation of image irradiance so we used a small
aperture setting of F ¼ 7:1.

In between each pair of adjacent images in Fig. 6, the
man in the image raises or lowers one limb. This scene
motion makes registration difficult since some scene points
are occluded in the image while others move. For example,
in the image in Fig. 6d, the man’s arm covers the building,
while, in the image in Fig. 6e, his lower right arm covers the
grass. Moreover, the grass and leaves in the scene move due
to wind. Registration of such images would require
complex tracking and elimination of points that cannot be
registered. Nevertheless, this kind of motion does not effect
the overall histogram significantly. Hence, we can recover
the intensity mapping function simply from histogram
specification.
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14. For our examples, we have changed the exposures manually. In [15],
Mann exploits the automatic gain control (AGC) of a camera to obtain
different exposures. Since the AGC changes the exposure as a reaction to a
change in the distribution of scene radiance, it is difficult to rely on the AGC
in our case.

Fig. 6. Sequence of images (a)-(e) with motion of objects in the scene. Here, the man changes the position of one limb between each image. In
image (c), both his arms are raised, occluding scene points in the upper part of the background, whereas, in (d), his left arm is lowered, both
revealing some pixels in the background and occluding others in the lower part of the image. Even this kind of motion, present in all the image pairs,
makes registration of the images impossible. Since the histogram of scene radiance values remains roughly the same, the intensity mapping may be
obtained using histogram specification.



An example of a scene with static objects and camera
motion is shown in Figs. 7a, 7b, 7c, 7d, 7e, and 7f. The
camera here is translated along a circle and rotated while
keeping the optical axis intersecting the axis of the flower
vase. Each image represents motion along the circle of
roughly 5�: The scene is relatively close and this camera
motion introduces parallax and occlusions in the images.
For example, the flower pot on the far left of Fig. 7c is
outside of the field of view in Fig. 7a, while the bowl of
chocolates wrapped in foil is visible in Fig. 7a, but out of the
field of view in Fig. 7c. The flowers occlude part of the chair
in Fig. 7f and part of the wall in Fig. 7a.

The motion used to create the images in Figs. 7a, 7b, 7c,
7d, 7e, and 7f cannot be modeled by a homography, as
in [2], [4], [15], [19], making it impossible to establish
correspondences without determining the scene structure.
Nevertheless, the overall histogram of scene radiances
does not change dramatically between the images as is
often the case when changing the viewing direction by a
modest amount for the same objects. The images were
taken with the aperture fixed at F4.1 and the integration
times were (a) 1/30 second, (b) 1/15 second, (c) 1/8
second, (d) 1/4 second, (e) 1/2 second, and (f) 1 second.
The images were cropped to minimize spatial variations in
exposure.

Finally, Figs. 8a, 8b, 8c, 8d, 8e, and 8f show a sequence of
images with both camera motion and complex motion of
objects in the scene. In this image sequence, the camera was
translated along a line parallel to the face of the building in
the image. The camera was rotated to keep the optical axis
pointed at the large seated metal statue in the center of the
steps. The rotation was approximately 5� between each
image. The time between when the images were taken was
around 3-4 minutes. In that time, some people seated on the
stairs left while others arrived. Other people passed
through the field of view of the camera. The camera’s
aperture was fixed at F = 6.2 and the shutter speeds for the
images were 1/1,000 sec for (a), 1/500 sec for (b), 1/250
second for (c), 1/125 second for (d), 1/60 second for (e), and
1/30 second for (f). Since the overall histogram of scene

radiances remains roughly constant, the changes of ex-
posure allow us to obtain the intensity mapping using
histogram specification.

We computed the cumulative histograms for all the
images in Fig. 6. We inverted the cumulative histograms of
the images using linear interpolation. For each pair of
consecutive images, we computed the intensity mapping
using histogram specification. Fig. 9 shows four intensity
mapping functions from the intensity values given by the
average of the three color channels of the image pairs
(a)-(b), (b)-(c), (c)-(d), and (d)-(e), from Fig. 6. The exposure
ratios, computed from the integration times reported by the
camera for these images, were 2, 2, 2.08, and 2. As pointed
out in Section 6, we were able to obtain rough estimates of
these ratios from the inspection of the slopes of the
intensity mapping near 0. From the graphs, we estimated
these slopes by fitting a degree 4 polynomial passing
through 0 to the intensity mapping function values for
intensity values less than 64. The estimated slopes were 2.4
for image pairs (a)-(b), 2.9 for (b)-(c), 2.6 for (c)-(d), and 1.2
for (d)-(e). These estimates are very rough because it is
precisely this part of the intensity mapping function which
is most sensitive to noise.

In order to recover the inverse response function of the
camera from the intensity mapping, we must make
assumptions that break the ambiguities of chartless recov-
ery. We will assume that the inverse response is a low-
degree polynomial,15 as in Mitsunaga and Nayar [21]. We
modify their method to recover the camera’s response
function from the intensity mapping functions, rather than
the images. We did not attempt to use our rough exposure
estimates as inputs to their iterative scheme for recovering
the exposure ratios between pairs of images. For each pair
of images, we generated a set of pairs of intensity values B1

and B2 ¼ �ðB1Þ. We combined the pairs ðn=255; �ðn=255ÞÞ
for 256 intensity values 0 � n � 255, with the pairs
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Fig. 7. A sequence of images (a)-(f) of a static scene with camera motion. Each image was taken with the camera directed at the flower vase in the

center of the table. The camera’s position was moved 5� about the axis of the vase. In image (b), a flower pot in the background moved into the field

of view on the left. In image (c), a glass bowl of silver wrapped chocolates left the field of view to the right. As in Fig. 6, the parallax and occlusions are

problematic for image registration.

15. The assumption that the response can be approximated by a
polynomial is based on the Taylor polynomials (see [25]). This method is
more stable for small intensity values than methods that use the log of (3),
such as used in [6].



ð��1ðn=255Þ; n=255Þ. Each pair ðB1; B2Þ gave a constraint

from (1).

Not all the pairs ðB1; B2Þ generated from � should be

weighted equally. Our certainty about our estimation of � at

various intensity values depends on how many pixels in the

images have those intensity values. Thus, we weight the

pair ðB1; �ðB1ÞÞ by the number of pixels with value equal to

B1, which is C ¼ h1ðB1Þ. To weigh the least squares

problem, we multiplied the constraint (3) by
ffiffiffiffi
C

p
. Similarly,

we weighed the constraints for the pairs ð��1ðB2Þ; B2Þ with

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðB2Þ

p
. Putting all the constraints together, we

assumed that g is a sixth order polynomial and solved a

linear system for the coefficients of the polynomial g.

In Fig. 10, we show the recovery of the RGB response

curves from the image sequence in Fig. 6. The result is

compared with reference points obtained from images with

the same camera using a Macbeth chart. Several images of

the chart were taken and the data merged using the

camera’s reported exposure values. Since the global

irradiance scale of the response function is unrecoverable,

we chose a single best fit scale factor which allows the

recovered curve to pass near Macbeth chart points in the

middle of the graph. We see that we have excellent overall

agreement with the chart recovered response samples. This

shows that, from the intensity mapping functions obtained

using histogram specification, we can recover the response

curves in the presence of modest scene motion.
Fig. 11 shows the recovery of the RGB response curves

from the image sequence of Fig. 7. We recovered the curves

in Fig. 11 as we did for Fig. 10. The recovery of the red and

green channel are in excellent agreement with the Macbeth

data. We do not recover the blue channel curve accurately

for large blue values. This is because the image does not

have enough pixels with information in that part of the blue

histogram. This problem faces any chartless recovery

method. Chartless recovery is based on the assumption

that the scene contains a range of irradiances so that, when

combined with the changes of exposure, information about

the irradiances associated with each intensity is obtained. If

the scene is poor in some range of irradiance, we have no

information there. The recovery method used simply

extrapolates and, thus, is likely to give poor agreement.
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Fig. 8. A sequence of images (a)-(f) of a scene with both object and camera motion. The camera was translated and rotated while facing the large
seated statue in the center of the steps in front of the building. The total rotation was approximately 5� between each image. The total translation
from the image in (a) to the image in (f) was approximately 80 feet. Since each image was taken several minutes apart, people sitting on the steps
present in one image are often not in the previous or following image. Other people walk through the field of view of the camera. Despite the scene
and camera motion, the overall histogram of scene radiances remains roughly constant permitting recovery of the intensity mapping using histogram
specification.

Fig. 9. Intensity mapping functions for the average of the color channels
between image pairs from Fig. 6. Very rough estimates of the slopes of
these curves near the origin are 2.4 for the image pair Fig. 6a and 6b,
2.9 for Fig. 6b and 6c, 2.6 for Fig. 6c and 6d, and 1.2 for Fig. 6d and 6e.
The ground truth ratios of the shutter speeds are 2, 2, 2.1, and 2,
respectively.



In Fig. 12, we see the recovered RGB curves from the

images in Fig. 8. In all channels, we have good agreement

with the Macbeth data. This demonstrates that image

histograms can be used to recover the camera response

even with camera motion and scene motion as long as the

basic assumption that the histogram of irradiances does not

change significantly.

9 SUMMARY

We have proven that the constraints of chartless recovery

are not sufficient to allow unambiguous recovery of the

camera response function. We have derived a self-similar

ambiguity in recovering the camera response function from

two images when the exposure ratios are known. We have

shown that chartless recovery methods break this ambi-

guity by assuming a smoothness constraint or using a

parameterized form of the response function. We have

described how this ambiguity may be reduced or elimi-

nated by choosing appropriate exposure ratios for multiple

images. We have proven that assumptions on the response

function and the exposure ratios are necessary to recover

them simultaneously due to an exponential ambiguity. We

have proven these are the only ambiguities. We have shown

when the exposure ratios can be found directly from the

intensity mapping function. We have shown that the

intensity mapping function can be determined by histogram

specification. We have proven that chartless recovery can be
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Fig. 10. The recovered red, green, and blue responses computed from Fig. 6 compared with ground truth from the Macbeth chart. We extracted

intensity mapping curves from image pairs in Fig. 6 using histogram specification. We broke the ambiguities of recovery by assuming the inverse

response to be a polynomial of order 6 as in [4]. The excellent agreement with the Macbeth chart shows that we can extract the intensity mapping

functions and recover the inverse camera response even with some scene motion.

Fig. 11. The recovered red, green, and blue camera responses computed from Fig. 7 compared with ground truth from the Macbeth chart. We
recovered these curves as we did for Fig. 7. Note that Fig. 7 is a warm image with red, brown, green, and yellow tones dominating. Here, we see
excellent agreement with the Macbeth chart for the red and green responses. We failed to recover the blue response for larger pixel values because
there was little information for those colors in Fig. 7. All chartless recovery methods depend on sufficient information across the range of intensity in
each channel.

Fig. 12. The recovered red, green, and blue camera responses computed from Fig. 8 compared with ground truth from the Macbeth chart. We

recovered these curves as we did for Figs. 10 and 11. Despite the motion of the camera and motion in the scene, we still recover the curves in good

agreement with the Macbeth charts in each channel.



accomplished without registration. Finally, we verified that

the image histograms alone determine the intensity map-

ping function. Thus, these histograms can be used to

recover a camera response curve from image sequences

with both motion of the camera and objects in the scene

whenever the histograms of scene radiances are roughly

constant.

APPENDIX A

PROOF OF THE PROPERTIES OF THE INTENSITY
MAPPING FUNCTION

Recall that we have normalized intensity and irradiance so

gð0Þ ¼ 0 and gð1Þ ¼ 1.

1. Evaluating at zero, we find

�ð0Þ ¼ g�1ðkgð0ÞÞ ¼ g�1ð0Þ ¼ 0:

2. Since g is smooth and monotonically increasing
g0 � 0. From (3), we have � 0ðBÞ ¼ k g0ðBÞ=g0ð�ðBÞÞ.
Thus, � 0ðBÞ � 0 so � is monotonically increasing.

3. Since g is monotonically increasing, if B1 � B2, then
gðB1Þ � gðB2Þ. Since k > 1, then gðBÞ � kgðBÞ ¼
gð�ðBÞÞ. Since g�1 is also monotonically increasing,
B ¼ g�1ðgðBÞÞ � g�1ðgð�ðBÞÞÞ ¼ �ðBÞ.

4. Consider the sequence of decreasing points
B > ��1ðBÞ > ��2ðBÞ > . . . . We know that these
points are bounded from below by 0. Thus, the
sequence must converge to a limit point B�. At this
point, �ðB�Þ ¼ B�. This means gðB�Þ ¼ gð�ðB�ÞÞ ¼
kgðB�Þ. Since k > 1, it must be that gðB�Þ ¼ 0, thus
B� ¼ 0.

APPENDIX B

PROOF OF THE SELF-SIMILAR AMBIGUITY

PROPOSITION

Consider the decreasing sequence of points 1 � ��1ð1Þ �
��2ð1Þ � . . . . For any point B 2 ½0; 1�, since limn!1 ��nð1Þ
¼ 0, there is some nonnegative integer rðBÞ such that

B 2 ð��rðBÞ�1ð1Þ; ��rðBÞð1Þ�. Note that rð�ðBÞÞ ¼ rðBÞ � 1.

Define the function

gðBÞ ¼ 1

krðBÞ
sð�rðBÞðBÞÞ for B > 0; gð0Þ ¼ 0: ð10Þ

Now, observe that

gð�ðBÞÞ ¼ 1
krð�ðBÞÞ

sð�rð�ðBÞÞð�ðBÞÞÞ
¼ 1

krðBÞ�1 sð�rðBÞ�1ð�ðBÞÞÞ
¼ k

krðBÞ sð�rðBÞðBÞÞ ¼ kgðBÞ:
ð11Þ

Thus, we see that g satisfies gð�ðBÞÞ ¼ kgðBÞ. Since s

continuous and monotonic, then so gðBÞ is inside the union

of the disjoint intervals ð��n�1ð1Þ; ��nð1ÞÞ. Since sð1Þ ¼ 1,

sð��1ð1ÞÞ ¼ 1=k and h is monotonic, so g is from (10).

Because sðBÞ is continuous both at hð1Þ and hð��1ð1ÞÞ, so is

g at ��nð1Þ. We have limn!1ðgð��nð1ÞÞ ¼ limn!1 1=kn ¼ 0.

Thus, g is continuous at 0.

APPENDIX C

PROOF THAT SELF-SIMILAR AMBIGUITY CAN BE

BROKEN WITH THREE EXPOSURES

Equation (4) shows that the self-similar ambiguity can be

broken using three images with exposure ratios k1, and k2 if

km1 =k
n
2 is dense on ð0; 1Þ: Here, we give a proof for Dror’s

observation that km1 =k
n
2 is dense on on ð0; 1Þ if and only if

logk1 k
n
2 is irrational [8].

Kronecker’s Theorem states that the set fz� bnzcg1n¼1 is

dense on the interval ð0; 1Þ if and only if z is irrational (see

[11]). This implies that fmþ nzjðm;nÞ 2 ZZg is dense on the

whole real line. Hence, it is also dense on ð�1; 0Þ. Thus,
exponentiating with any positive number k1; we have that

km1 k
�nz
1 is dense on the interval ð0; 1Þ: If we set z ¼ logk1 k2,

then km1 k
�nz
1 ¼ km1 k

�n
2 ; therefore, km1 =k

n
2 is dense on the

interval ð0; 1Þ if and only if logk1k2 is irrational.

APPENDIX D

PROOF OF THE EXPONENTIAL AMBIGUITY

If g1, g2 are monotonic functions, then so is �. Note

that �ðg2ðBÞÞ ¼ g1ðBÞ. Since �ðk�n
1 g1ðBÞÞ ¼ �ðg1ð��nðBÞÞÞ ¼

g2ð��nðBÞÞÞ ¼ k�n
2 g2ððBÞÞ ¼ k�n

2 �ðg1ððBÞÞÞ, we can simplify

this equation by calling c ¼ g1ððBÞÞ, � ¼ ln k2= ln k1, and

k�n
1 ¼ a. Then, the equation becomes �ðacÞ ¼ a��ðcÞ.
Note that � ¼ ln k2= ln k1 implies k�1 ¼ k2. Now, for a

sequence of points of b � ��1ðbÞ � ��2ðbÞ � . . . , the re-

sponse g1 has values g1ðbÞ�ð1=k1Þg1ðbÞ � ð1=k21Þg1ðbÞ � . . . ,

while the response g2 has the sequence K � ð1=k�1ÞK
� ð1=k12�ÞK � . . . , where K ¼ �ðg1ðbÞÞ. Since these se-

quences are only determined up to a factor of scale, we

have shown that these sequences can have at most an

ambiguity up to an exponential �ðBÞ ¼ KB� . If �ðBÞ ¼
g2ðg�1

1 ðBÞÞ for all B (not just along the sequence) then, since

�ð1Þ ¼ 1, K ¼ 1.
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