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Abstract. An imaging model provides a mathematical description of correspondence between points in a scene
and in an image. The dominant imaging model, perspective projection, has long been used to describe traditional
cameras as well as the human eye. We propose an imaging model which is flexible enough to represent an arbitrary
imaging system. For example using this model we can describe systems using fisheye lenses or compound insect eyes,
which violate the assumptions of perspective projection. By relaxing the requirements of perspective projection, we
give imaging system designers greater freedom to explore systems which meet other requirements such as compact
size and wide field of view. We formulate our model by noting that all imaging systems perform a mapping from
incoming scene rays to photosensitive elements on the image detector. This mapping can be conveniently described
using a set of virtual sensing elements called raxels. Raxels include geometric, radiometric and optical properties.
We present a novel ray based calibration method that uses structured light patterns to extract the raxel parameters
of an arbitrary imaging system. Experimental results for perspective as well as non-perspective imaging systems
are included.
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1. Introduction

Central to computer vision is the interpretation of a
scene from one or more images. To accomplish this, we
must have a model of the imaging process which relates
the location and intensities of intensity values in the im-
age to radiance in the scene. Through the widespread
use of cameras whose optics were designed for conven-
tional photography it has been possible to use the sim-
ple and well understood perspective projection model.
This model is based on three essential assumptions:

1. Each point in the image corresponds to a ray enter-
ing the imaging system.

2. All rays entering the imaging systems intersect at

a single point called the center of projection (COP)
or viewpoint.

3. The correspondence between rays passing through
the viewpoint and image is given by intersection of
the rays with a plane.

Perspective projection closely corresponds to the orig-
inal device engineered to create an image, the camera
obscura. The camera obscura has been known since
the renaissance if not much earlier (Hammond, 1981).
In a camera obscura rays of light pass through a hole
in one wall of a room and fall on the opposite wall
forming an image. Originally an artist was required
to record the image. The artist has been replaced first
by the advent of photographic film, and more recently
by solid state devices which can record the image



120 Grossberg and Nayar

virtually instantaneously. More importantly, the hole
has been replaced by complex optics. These optics per-
mit the aperture of imaging device to be large, cre-
ating a bright image, while essentially still follow-
ing the perspective imaging model. Geometers have
studied the properties of this model and derived a
large suite of projective invariants that provide in-
sights into the relationship between configurations of
points in a scene with their projection in the image
(Faugeras, 1993).

Despite its great relevance, the perspective model
no longer suffices to describe all imaging systems used
for computer vision. In recent years, the notion of a
“vision sensor” has taken on a much broader meaning.
Researchers developed a variety of devices that sample
the light field (Gershun, 1939) or the plenoptic function
(Adelson and Bergen, 1991) associated with a scene in
interesting and useful non-perspective ways. Figure 1
shows some examples currently used. Figure 1(a)
shows a commercially available system consisting of

Figure 1. Examples of non-perspective imaging systems: (a) A catadioptric system consisting of a camera with a tele-centric lens and parabolic
mirror (RemoteReality). This system has a single viewpoint but is not perspective. (b) A system consisting of a perspective lens and a conical
mirror, which is used to collect data for a stereo panorama. The design requirements for this application dictated the use of a non-single viewpoint
device. (d) The M2A camera pill from Given Imaging. Once swallowed the system provides imaging for medical diagnosis. The imaging system’s
fisheye lens does not have a single viewpoint. (e) Ladybug imaging system from Point Gray Research for producing spherical panoramas. The
system is a camera cluster having multiple viewpoints. None of these systems can be described by the perspective projection model.

a parabolic mirror and a tele-centric lens. Systems
combining lenses and mirrors are called catadioptric.
In this case the system has a single viewpoint. The
image formed cannot, however, be described by
the intersection of rays from that viewpoint with a
plane, thus violating the assumptions of perspective
projection (Baker and Nayar, 1999; Nayar and Baker,
1997; Nayar and Peri, 1999; Yagi and Kawato, 1990).
The properties of systems consisting of perspective
cameras with quadratic surface mirrors have been
explored in Swaminathan et al. (2001). For many of
theses systems there is no single viewpoint through
which the incoming rays pass. It is interesting to
note that certain applications, such as panoramic
stereo, require an imaging system to have a locus of
viewpoints (Peleg et al., 2000). Figure 1(b) shows a
conical mirror attached to a perspective camera. This
rotating system, designed for capturing data to create
stereo panoramas, does not have a single viewpoint
(Nayar and Karmarkar, 2000; Pajdla, 2002).
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Similarly, commercially available wide-angle lens
systems (Miyamoto, 1994) create severe distortions
and do not have a single viewpoint. For example the
commercial system shown in Fig. 1(c) incorporates a
camera with a 140◦ field-of-view wide-angle lens into
a pill. The distorted images this camera produces when
swallowed are used by medical specialists to diagnose
a range of gastrointestinal illnesses.

Clusters of cameras like the commercial system
shown in Fig. 1(d) have become popular for cre-
ating high resolution mosaics (McCutchen, 1991;
Swaminathan and Nayar, 2000). Camera clusters have
been used to recover ego-motion (Baker et al., 2001;
Neumann et al., 2003). Planar mirrors create virtual
camera clusters, which have been applied to stereo re-
covery (Gluckman and Nayar, 1999). Such systems in-
clude multiple viewpoints, each one associated with
one of the cameras in the cluster. In the case of insects,
nature has evolved eyes that have compound lenses
(Dawkins, 1996; Gaten, 1994). These eyes are com-
posed of thousands of “ommatidia”, each ommatidium
including a receptor and lens. It is only a matter of time
before we see solid-state cameras with flexible imag-
ing surfaces that include a large number of such om-
matidia. More generally, flexible imaging surfaces that
can change over time have already been used in adap-
tive optics (Tyson, 1998). We may accommodate some
imaging systems with extensions to perspective imag-
ing models such as by considering radial and tangential
distortions (Brown, 1966; Conrady, 1919; Goshtasby,
1989; Tsai, 1987; Weng et al., 1992). However, to cre-
ate a unified model covering all above examples must
entirely rethink our imaging model.

For many vision applications, such as structure from
motion, or shape from shading the exact nature of the
imaging process may make little difference to the ap-
plication. If the details of the imaging process do not
matter we should be able to treat the imaging process
as a black box which takes a scene as input and outputs
an image. A general imaging model should capture the
relevant information for the black box by relating radi-
ance at scene points and their location in space to points
in the acquired images. In this paper we address two
questions that we believe are fundamental to imaging:

• Is there an imaging model that is general enough to
represent an arbitrary imaging system?

• Given an unknown imaging system (a black box), is
there a simple calibration method that can estimate
the parameters of the imaging model?

Our approach to formulating a general imaging model
to exploit the fact that all imaging systems perform a
mapping from incoming scene rays to a set of photo-
sensitive elements. The most general imaging model
we consider is simply a discrete representation of this
map. The smallest element of our imaging model is a
virtual photosensitive element that measures light in
essentially a single direction. We refer to these virtual
elements as ray pixels, or raxels. For the class of imag-
ing systems where we can assume a 2-dimensional im-
age plane and a continuous mapping, the model can be
conveniently represented by a ray surface which is a
surface in 3-dimensional space from which the rays are
measured in various directions.

While there are many possible choices for a ray sur-
face we show that the caustic of the imaging system
provides an essentially unique and natural choice. Thus
the caustic gives a natural geometric parametrization of
the imaging system raxels. In addition to its geometric
parameters, each raxel may have its own radiometric
response function and local point spread function. To
accommodate adaptive optics, for example, the param-
eters of our model may also be made time dependent.
We note that since we first proposed a model of this type
in Grossberg and Nayar (2001), some of the machin-
ery from the perspective model has been generalized to
apply to the general imaging model. These include an
analysis of epi-polar constraints, ego-motion and struc-
ture from motion (Pless, 2002, 2003; Neumann et al.,
2003).

After describing the general imaging model and its
properties, we present a simple method for finding the
parameters of the model for any arbitrary imaging sys-
tem. We will describe our calibration method for a
still camera with fixed components. Were the com-
ponents to change, as would be the case for adaptive
optics, the calibration could be repeated very rapidly,
in principle. It is also important to note that, given
the non-perspective nature of a general device, con-
ventional calibration methods (Tsai, 1987; Faugeras,
1992; Hartley, 1993), cannot be directly applied. Since
we are interested recovering the mapping from rays
to image points, we need a dense ray-based cal-
ibration method. We describe a simple and effec-
tive ray-based approach that uses binary-coded light
patterns like those described in Sato and Inokuchi
(1985). This method allows a user to obtain the ge-
ometric, radiometric, and optical parameters of an
arbitrarily complex imaging system in a matter of
minutes.
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2. General Imaging Model: Geometry

As shown in Fig. 2,an arbitrary imaging system has
two essential components: imaging optics, which direct
and focus light; and photosensitive elements, which re-
spond to the intensity of that light. These photosensitive
elements, corresponding to pixels, could be elements of
an electronic chip (CMOS or CCD), film, or any other
light sensitive device. They may be arranged on a plane,
or a curved surface. The elements may be uniformly
spaced, log-polar spaced to create a foveal region, or
randomly arranged according to some distribution, as
in the human retina (Moini, 2000).

The imaging optics directing the light to the pho-
tosensitive elements typically include several parts.
Even a relatively simple optical component has about
five individual lenses within it. In our arbitrary sys-
tem, there may be additional optical elements such
as mirrors, prisms, or beam-splitters. In fact, the sys-
tem could be comprised of multiple individual imaging
systems, each with its own imaging optics and image
detector.

Irrespective of its specific design, the purpose of an
imaging system is to map incoming rays of light from
the scene onto pixels of the detector. Each pixel collects
light energy from a bundle of closely packed rays in any
system that has a non-zero aperture size. We can, how-
ever, represent this bundle by a single chief (or princi-
ple) ray when studying the geometric properties of the
imaging system. As shown in Fig. 2, the system maps
the ray Pi to the pixel i . Even in a perspective system

Figure 2. An arbitrary imaging system consisting of imaging op-
tics, which direct incoming light rays, and photosensitive elements
(pixels). Each pixel collects light from a bundle of rays that pass
through the finite aperture of the imaging system. Nevertheless, we
can assume a correspondence between each individual detector ele-
ment i and a specific ray Pi , representing a narrow bundle of light
rays entering the system.

the actual path that a single incoming ray traverses to
the pixel can be arbitrarily complex.

If the imaging system is perspective, all the incoming
light rays converge through a single viewpoint, namely,
the center of projection of the perspective system. This
is not true in an arbitrary imaging system. For instance,
in Fig. 2, if we extend the captured rays, they do not
meet at a single viewpoint. The goal of this section is to
present a geometrical model that can represent arbitrary
imaging systems.

2.1. Raxels

It is convenient to represent the mapping from scene
rays to pixels in a form that easily lends itself to manip-
ulation and analysis. Once we treat our imaging system
as a black box, the physical location of our photosen-
sitive elements do not matter. If pixel i responds to the
intensity of light associated with the chief ray Pi as
in Fig. 2, we may as well assume that the photosen-
sitive element i is actually located along the ray Pi .
Thus, we replace our physical pixels with an abstract
mathematical equivalent we refer to as a ray pixel or
raxel. A raxel is a virtual photosensitive element that
measures the light energy of a compact bundle of rays
represented by a single principle incoming ray.1

The abstract optical model of our virtual raxel is
shown in Fig. 3. Each raxel includes a pixel that mea-
sures light energy and imaging optics (a lens) that col-
lects the bundle of rays around an incoming principal
ray. In this section, we will focus on the geometric
properties (locations and orientations) of raxels. Each
raxel, however, can posses a radiometric (brightness

Figure 3. (a) A raxel, the virtual replacement for a real photosen-
sitive element combining a ray and a pixel. The physical location
of the photosensitive element may not lie along the principle ray of
light associated to it. Nevertheless, we are treating our imaging sys-
tem as a black box so in our model we may as well assume that the
photosensitive element lies along the principle ray it detects. Thus a
raxel has both location and orientation. In addition, a raxel may have
radiometric and optical parameters. (b) The notation for a raxel used
in this paper.
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and wavelength) response as well as optical (point
spread) properties.

2.2. The Plenoptic Function and the Discrete
Raxel Model

What does an imaging system see? The input to an
imaging system is the intensity of light along rays
in space. This information is called the light field
and is encoded in the plenoptic function (Gershun,
1939; Adelson and Bergen, 1991). The plenoptic func-
tion �(p, q, t, λ) gives the intensity of light at each
point p in space, from direction q, at an instant of
time t and wavelength λ. We can specify position by
(pX , pY , pZ ) and direction by the vector (qX , qY , qZ ).2

Still images represent an integration of light energy
over a short time period, given by the effective shutter
speed. Further, each photosensitive element will av-
erage the plenoptic function across a range of wave-
lengths. Although adding time and wavelength would
not introduce any new theoretical complications to our
model, it would require our notation to become more
complex. Thus to keep the exposition simpler we set
aside time and wavelength by considering monochro-
matic still imaging. In this way we consider the plenop-
tic function as a function on R6, depending on only
position and direction: �(p, q).

If the plenoptic function is the right mathematical
abstraction to describe the input to the system, then
we may ask, what abstraction describes a raxel? As-
sume, for the moment, that our photosensitive element
responds linearly to intensity. Since a raxel samples �

at (p0, q0), a raxel is just a constant times the delta func-
tion δp0,q0 in R6.3 The parameters for the raxel are thus
just position p0 and direction q0 as well as the multi-
plicative constant of the delta function. Hence, we can
define a geometric model of the camera as follows:

Geometric Model 1 (Discrete Raxel Model). The geom-
etry of an imaging system is specified by a sequence of
positions and directions indexed by the N image pixels:

{(p1, q1), . . . (pN , qN )} (1)

The advantages of this representation is the generality
it affords. Since no assumptions are made about the
source of the image pixels this covers camera clusters
or even a sequence of images in a video. One potential
problem is that our assumption that a raxel is a delta

function and hence responds linearly to input. Photo-
sensitive elements of film, for example, do not usually
respond linearly. In that case, the raxel is a delta func-
tion only after the response is linearized. We easily
address this by attaching other parameters to a raxel
such as a response function.

One price of generality is that we lose the simple
geometry afforded in the perspective model. A second
cost is that the representation is not unique to a given
imaging system. We have the freedom to change the
position of pi along the ray associated to the raxel.4

We can address these issues but only by making further
assumptions on the imaging system.

2.3. Pencils of Rays and Ray Surfaces

The raxel model we described in Section 2.2 can be
interpreted as a discrete mapping from the set of pix-
els to a selection of rays in space. For many imaging
systems this mapping is really a discrete sampling of a
continuous mapping. To see this, consider the case of
the perspective model. The viewpoint and image plane
together determine a continuous mapping from points
in the image plane to the pencil of rays passing through
the single viewpoint. The discrete raxel model selects
one ray for each pixel in the image plane, discretely
sampling this mapping.

For many non-perspective imaging systems we can
make two assumptions. Firstly we assume that the im-
age plane is 2-dimensional. Secondly we assume that
the mapping from the image plane to rays in space is
piecewise continuous. These two assumptions cover
all the examples shown in Fig. 1. For camera clusters
or image sequences we may arrange all the images in
a single plane. Since we only assume the mapping to
rays to be piecewise continuous it can be described by
a single map.5

Generalizing from continuous to piecewise contin-
uous mappings amounts to treating each piece inde-
pendently. Thus for clarity of our presentation we will
assume the mapping of the image plane to rays is ac-
tually continuous. The continuous mapping selects a
pencil of rays which represent locations and directions
in space that the imaging system sees. For the perspec-
tive imaging system, this pencil of rays is compactly
characterized by the single viewpoint. How do we gen-
eralize this?

While we may not be able to organize our raxels to
reside at a single viewpoint, we can organize the raxels
on a surface we call a ray surface (Grossberg and Nayar,
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Figure 4. An imaging system may be modeled as a set of raxels on
a sphere surrounding the imaging system. Each raxel i has a position
pi on the sphere, and an orientation qi aligned with an incoming ray.
Multiple raxels may be located at the same point (p1 = p2 = p3),
but have different directions.

2001). For example, consider a sphere enclosing our
imaging system, as shown in Fig. 4. The ray associated
with a photosensitive element i must pass through the
sphere at some point pi and in some direction qi . The
sphere determines the placement of a raxel for each ray.
Classifying the positions and directions determined by
a light source, a related concept, was explored in Langer
and Zucker (1997). We also note that our concept of a
ray surface is similar to the concept of a “generator”
introduced in Seitz and Kim (2001) to classify the space
of stereo images.

A choice of ray surface fixes the location of a raxel
for each ray, but the surface need not parameterize the
rays. There may be several rays that enter the sphere
at the same point but with different directions (see q1,
q2 and q3 in Fig. 4). For example, if the imaging de-
vice is perspective and the single viewpoint lies on the
sphere, all the rays pass through the same point. Thus
the direction q is not, in general, a function of p, even
for a sphere.

The sphere is convenient because it works even when
an imaging device has a wide field of view. The choice
of intersecting the incoming rays with a sphere is arbi-
trary. In Gortler et al. (1996) and Levoy and Hanrahan
(1996), it was suggested that the plenoptic function can
be conveniently restricted to a plane. The important
thing is to choose some ray surface so that an incom-
ing ray intersects this surface at a unique point. This

leads to a model for imaging systems with continuous
raxels.

Geometric Model 2 (Continuous Raxel Model). The ge-
ometry of an imaging system is specified by a mapping
from the image plane to a set of points, called the ray
surface,6 and a set of direction vectors in space from
that surface.

Note that the ray surface allows us to arrange the geo-
metric parameters of the raxels. As delta functions the
raxels continue to be defined in R6. Setting our nota-
tion, if the incoming rays are parameterized by image
coordinates (x, y), each ray will intersect a ray surface
at one point p(x, y). We can write the ray surface as a
function of (x, y) as:

s(x, y) = (p(x, y), q(x, y)). (2)

We can express the position of any point along the ray
as p(x, y, r ) = p(x, y) + rq(x, y). This allows us to
express the domain of the plenoptic function which the
imaging system can see as the range of

L(x, y, r ) = (p + rq, q). (3)

In the case of a known imaging system we are able
to compute s(x, y) a priori. We trace the rays through
each optical component to establish a ray surface for
the incoming rays captured. Using Eq. (3) we may ex-
press one ray surface in terms of another ray surface
such as a sphere or a plane. In the case of an unknown
imaging system we must measure s(x, y) along some
ray surface via calibration, as we will describe. In any
case a ray surface provides a compact and convenient
representation of the geometry of the raxels.

3. Caustics

The primary weakness of the continuous raxel model
described above is that the representation is not unique.
For comparison, consider the perspective model. In that
model the single viewpoint is determined by the geom-
etry of rays and is unique. This makes it very easy to
compare imaging systems. Suppose two imaging sys-
tems have the same single viewpoint. Suppose also that
mapping from the image plane to rays passing through
the single viewpoint is the same corresponding to iden-
tical internal camera parameters. Even though the two
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imaging systems may have radically different optics,
we can consider these systems equivalent.

It is difficult to determine when two general imag-
ing systems are equivalent if we choose arbitrary ray
surfaces to characterize them. We would like to find a
natural ray surface which is uniquely determined from
the geometry of the rays. We motivate our choice of
such a surface by exploring in greater detail how the
single viewpoint is picked out by the geometry of rays
in a perspective system.

To understand this geometry, we consider all rays in
2-dimensions where position is given by (X, Y ) and di-
rection of a ray is given by θ . Figure 5(a) shows points
on the rays of a perspective system in 2-dimensions on
the bottom. At the top of the figure, the third dimen-
sion is used to indicate the directions of the rays. In this
space of positions and directions, the rays do not inter-
sect. In algebraic geometry this is called a “blow up”
(Griffiths and Harris, 1978). When projected back to the
plane the lines intersect. The mapping from positions
and directions to only positions is singular at the inter-
section as the mapping becomes many to one. We may
also understand the singularity by seeing how the map-
ping effects area. If we mark a rectangular area in the
space of positions and directions as in Fig. 5(a), away
from where positions converge, we see it projects in the
plane to a similar area. Near where the points converge
the rectangular area will collapse, that is, the area after

Figure 5. Rays in 2-dimensions (X, Y ) shown with their directions θ plotted in the third dimension. Below, points on rays are projected back
to the plane of positions. (a) The perspective case. Rays pass through a single point in 2-dimensions. The singularity of the map, the caustic,
can be seen where the projection is many-to-one. It can also be located by noting where the area of an infinitesimal rectangle collapses under
projection. (b) A non-perspective case. Shown are rays resulting from parallel rays reflecting off a circular reflector. The caustic can be found
where area collapses under projection. The caustic is the envelope of the rays in the plane.

projection will be dramatically reduced indicating the
singularity.

There can be a singularity even if the rays do not
converge to a point. In Fig. 5(b), we see rays resulting
from reflection of parallel rays off a circular reflector.
In this example the rays do not converge to a single
point in the space of positions and directions, or in the
plane after projection. Nevertheless, from looking at
small rectangles of area under projection, we see that
there is also a singularity in the rays. In this case the
singularity occurs along the envelope of the rays in the
plane.

3.1. Caustic Raxel Model

Singularities in the set of rays of an imaging system
are called caustics. In Section 2.3, we described the
set of points and directions that can be detected by
the imaging system. We parameterized this set using
Eq. (3) as the range of the function L(x, y, r ). The po-
sition component functions for L are X = pX (x, y, r ),
Y = pY (x, y, r ), and Z = pZ (x, y, r ). The mapping
from (x, y, r ) to (X, Y, Z ) can be viewed as a change
of coordinates.

Definition. The caustic is defined as the locus of
points in X, Y, Z space where this change of coordi-
nates is singular.7
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Figure 6. The caustic is a good candidate for the ray surface of an
imaging system as it is closely related to the geometry of the incoming
rays; the incoming ray directions are tangent to the caustic.

Caustics are important in understanding the prop-
erties of optical components and have been impor-
tant for analyzing telescopes as well (Born and Wolf,
1965; Burkhard and Shealy, 1973). For optical systems
the caustics characterize the geometry of the rays. Thus,
we use the caustic to define a geometric model of our
imaging system (see Fig. 6).

Geometric Model 3 (Caustic Raxel Model). The ge-
ometry of an imaging system is specified by a piece-
wise differentiable mapping from the image plane to
the caustic of the imaging system’s incoming rays.

We must assume the mapping from the image plane to
the caustic is piecewise differentiable to compute the
caustic. In principal, our assumption that the mapping is
piecewise differentiable, and that the caustic character-
izes the geometry of rays further restricts our model. In
practice the all imaging systems in Fig. 1 satisfy these
assumptions.

We also note the term caustic usually refers to the
loci of positions of the singularity. Each ray passing
through the caustic determines both a position and a
direction on the caustic. Thus the caustic raxel model is
a special case of the continuous raxel model where take
the caustic to represent both the positions and directions
of the raxels associated to a points in the image plane.

Consider rays in 2-dimensions. When the singularity
is a curve rather than a point, the unit tangents along
the curve give the directions of the ray surface as in
Fig. 6. For rays in 3-dimensions, caustics can be 0-, 1-,
or 2-dimensional. When the caustic is 2-dimensional
the directions of the rays will be tangent to the surface.
Each point on a surface has a plane of tangent vectors.

For the sphere ray surface, in Section 2.3, we needed
two parameters to specify direction. In the case of a
caustic surface we only need to specify one parameter:
a single direction for each tangent plane. On caustic
surfaces, the direction q is really a function of position
p, and the incoming rays are tangent to the surface.

Emphasizing direction q as a function of position p is
misleading. An imaging model must not only describe
the rays in space but their relationship to points in the
image. Thus p and q should be functions of (x, y) in the
image plane. Some simple examples illustrate the point.
In Fig. 7(a), the caustic of the perspective system is a
single point, and the relationship to the image is given
by the intersection with the image plane. In Fig. 7(b) a
camera has a tele-centric lens. All the incoming rays to
the camera are parallel. The parallel rays are allowed to
reflect off a parabolic mirror whose axis of symmetry
is aligned with the direction of the rays. Tracing the
incoming rays, we find that they all meet at the focus
of the parabola (Cornbleet, 1994). Thus this system also
has a single point caustic. Nevertheless, the system is
not perspective. The mapping of rays to image points is
not given by intersection with a plane but is given by a
more complex mapping. Finally, in Fig. 7(c), when the
rays entering a perspective camera are first allowed to
reflect off a parabolic mirror, they form a 2-dimensional
caustic.

The singular nature of caustics is best illustrated by
considering rays of illumination. A caustic formed by
rays of illumination generates a very bright region when
it intersects a surface (Mitchell and Hanrahan, 1992).
For example, when light refracts through shallow water
of a pool, bright curves can be seen where the caustics
intersect the bottom (Watt, 1990). In the context of
illumination we also note that since projectors can be
thought of a dual to cameras, our raxel model can be
applied to projection systems as well.

3.2. Computing Caustics

Determining the geometric parameters of the caustic
raxel model for a given imaging system amounts to
computing the caustics of the incoming rays. When
the optical components and parameters of a system are
known a-priori we can derive the mapping from the im-
age plane to the incoming rays analytically or compute
it numerically. For a black box imaging system we can
measure the mapping of pixels to incoming rays via a
calibration procedure. Whatever the case, our goal is to
compute the caustic surface from the given mapping.
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Figure 7. (a) The perspective system, with caustic given by a point. The correspondence between image points and rays is given simply by
intersection with a plane. (b) A catadioptric system consisting of a camera with tele-centric lens, and a parabolic mirror. Incoming rays intersect
in a single point. The mapping from rays to image points, however, is more complex than intersection with plane. (c) A catadioptric system
consisting of a perspective camera and a parabolic mirror. Here the caustic is a surface. The mapping from the image plane, to the caustic curve
and its tangent vectors, completely describes the geometry of system.

When the mapping is given numerically, a host of
methods (Jensen, 1997; Mitchell and Hanrahan, 1992;
Watt, 1990), may be used. When this mapping is known
in closed form, analytic methods can be used to derive
the caustic surface (Cornbleet, 1994; Born and Wolf,
1965; Burkhard and Shealy, 1973). The method we
use assumes regularity of the mapping and computes
the caustic by finding all the points where the change
in coordinates described above is singular (Born and
Wolf, 1965; Burkhard and Shealy, 1973).

Equation (3) expresses L in terms of a known or
measured ray surface s(x, y). The caustic is defined as
the singularities in the change from (x, y, r ) coordi-
nates to (X, Y, Z ) coordinates given by p. Singularities
arise at those points (X, Y, Z ) where the Jacobian ma-
trix J of the transformation does not have full rank. We
find those points by computing the determinant of the
Jacobian.

det(J ) =

∣∣∣
∣∣∣∣∣

∂pX

∂x + r ∂qX

∂x
∂pX

∂y + r ∂qX

∂y qX

∂pY

∂x + r ∂qY

∂x
∂pY

∂y + r ∂qY

∂y qY

∂pZ

∂x + r ∂qZ

∂x
∂pZ

∂y + r ∂qZ

∂y qZ

∣∣
∣∣∣
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, (4)

and setting it equal to zero. Since this is quadratic in r
we can solve for r explicitly in terms of p, q, and their
first derivatives with respect to x and y. Plugging this
back into L gives us an expression for the caustic ray

surface parameterized by (x, y) as in Eq. (2). In general
the caustic has two solutions with either acceptable as
a ray surface.

If the optical system has translational or rotational
symmetry then we need only consider one parameter,
for example x , in the image plane. In this case the de-
terminant Jacobian becomes linear in r and the solution
simplifies to:

r =
(
qX

dpY

dx − qY
dpX

dx

)

(
qY

dqX

dx − qX
dqY

dx

) . (5)

Note that the determinant of the Jacobian represents
the infinitesimal change volume between two coordi-
nate systems in 3-dimensions, and in 2-dimensions the
infinitesimal change in area. This is why the collapse of
areas in the projections of Fig. 5(a) and (b) determine
the caustic.

3.3. Derived Properties: Field of View

Some parameters used to specify a perspective camera
model are derived from the ray surface representation
in our general imaging model. Other parameters de-
pend on the perspective assumption and are ill-defined
in our model. For example, field of view presents an
ambiguity, since in the non-perspective case the rays
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may no longer form a simple rectangular cone. One
candidate for a field of view is the range of q(x, y)
over the image. This is the same as the range of the
Gauss mapping (Horn, 1986). The range of the Gauss
mapping is a good approximation to the field of view
when the scene points are distant relative to the size of
the imaging system. If a single number is needed then
the solid angle coming from this range may be used.
Other geometric parameters of a perspective imaging
system, such as aspect ratio and the distortion (Tsai,
1987), are simply ill-defined in the general imaging
model.

4. Non-Geometric Raxel Parameters

A raxel is just a very narrow field of view, perspective
imaging system. Many of the conventional parameters
associated with a perspective or near-perspective sys-
tems may be attributed to a raxel.

4.1. Point Spread

Imagine our scene point as single impulse or point
source of light. Suppose it is a distance r along the
incoming ray from our raxel, as in Fig. 8(a).When only
one raxel detects the light, that scene point is in perfect
focus. More likely, nearby raxels will also detect some
light from the impulse. The function that describes the
response of the raxels to a single impulse at depth r is
the point spread function.

Figure 8. (a) The point spread of a raxel. Assume an impulse at distance r lies on a chief ray of a raxel. Light from that impulse may be
measured at other raxels perceived as blur in the image. Here it is modeled, naively with an Gaussian. (b) An elliptical Gaussian point spread
function. The ellipse has a major and minor axis, when their lengths, σM , σm , are distinct, as well as the angle ψ the major axis makes with the
x axis in the image. The parameters of the point spread here are functions of r , distance to the impulse.

Approximations to the point spread may be inter-
preted in terms of various aberrations such as spherical
aberration, coma, and astigmatism, as well as higher
order effects (Hecht, 1998; Guillemin and Sternberg,
1977). A complete description of aberrations associ-
ated with a general imaging system is a worthy sub-
ject in and of itself. Here we will satisfy ourselves
by naively approximating the point spread by ellipti-
cal Gaussian as Fig. 8(b). For each depth the elliptical
Gaussian has a major and a minor axis (assuming they
are different). This in turn leads to a standard deviation,
σM (r ), σm(r ) as well as an angle ψ(r ) the major axis
make with the x axis in the image plane. This is enough
to capture effects such as local spherical aberration and
astigmatism, but not coma.

In Section 2.2 we pointed out that a raxel with a linear
response could be modeled as a delta function. Point
spread smears the delta function out. Thus a raxel is
really a density on positions and directions. When we
integrate against the plenoptic function of a scene, the
number obtained represents the measurement at that
raxel.

4.2. Radiometry

Recall that in Section 2 we isolated two essential com-
ponents for an imaging device: photosensitive elements
and imaging optics. We have seen that these compo-
nents choose the rays which effect a raxel. These com-
ponents also effect how a raxel responds to intensities
along that ray.
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As light passes through the imaging optics some
light is lost. Moreover, since an imaging device has
a finite aperture, our idealized chief ray really repre-
sents a bundle of rays. The size of that bundle, along
with the intensities of light, determines the irradiance
at the photosensitive elements. The size of the bundle
of rays generally varies across the image. At any point
(x, y) in the image, we can model the attenuation of
the scene radiance due to the optics by a single factor
h(x, y), which we will call the fall-off function. This
accounts for such effects as vignetting. For a simple
lens, one can derive that this function should be pro-
portional to cos4 φ (Horn, 1986). It is important to note
that systems like those shown in Fig. 7(b) and (c) have
varying resolution. As resolution changes, the size of
the bundle of rays associated to a chief ray will change
too, effecting the fall-off. When the fall-off is normal-
ized so its maximum is one, we call it the normalized
fall-off.

While the effect on the intensities due to the optics
may be described by fall-off, which is a linear factor for
each point in the image, the response g(e) of the pho-
tosensitive elements need not be linear in the intensity
e. In fact both for film and in electronic imaging, it is
often chosen to be non-linear. Sometimes this is done
to enhance or decrease contrast or to capture a wider
range of intensities. We may assume that g, called ra-
diometric response function, is smooth and monotonic.

It may be approximated by a gamma function, a poly-
nomial, or discretely with a regularity constraint (Mann
and Picard, 1995; Debevec and Malik, 1997; Mitsunaga
and Nayar, 1999). If one can compute the radiomet-
ric response function of each raxel, one can linearize
the response with respect to scene radiance, assuming
the response is monotonic. It is only after linearizing
the response that we can treat a raxel as a delta function
times a constant, h(x, y).

4.3. Complete Imaging Model

The general imaging model consists of a set of raxels
parameterized by x and y in pixel coordinates. The
parameters associated with these raxels (see Fig. 9), are
(a) position and direction, that describe the ray surface
of the caustic, (b) major and minor standard deviations
as well as an elliptical orientation, each a function of
depth, (c) a radiometric response function, and (d) a
fall-off constant for each pixel.

Camera parameters are separated into external and
internal parameters. A coordinate frame specifies the

Figure 9. Each raxel has the above parameters of image coordi-
nates, position and direction in space, major and minor standard
deviation, elliptical orientation, radiometric response, and fall-off
factor. These parameters are measured with respect to a coordinate
frame fixed to the imaging system.

external parameters. The internal parameters (Fig. 9)
are specified with respect to that coordinate frame. In
particular, for each raxel i , the parameters pi , qi are
measured with respect to a single coordinate frame
fixed to the imaging system. If the system is rotated
or translated, these parameters will not change but the
coordinate frame will.

In the case of perspective projection, the essential
(Faugeras, 1992) or fundamental (Hartley, 1993) ma-
trix provides the relationship between points in one
image and lines in another image (of the same scene).
Some progress has been made in generalizing the ma-
chinery of projective imaging to the general imaging
model (Pless, 2002, 2003; Neumann et al., 2003).

5. Finding the Model Parameters

Determining the general imaging model parameters for
a given imaging system requires determining the geo-
metric and non-geometric parameters of all the raxels.
We begin by discussing the determination of the ge-
ometric raxel parameters. The geometric raxel model,
whether discrete, continuous, or caustic, describes the
correspondence between the location of points in im-
age plane and rays in space. When the components of
the imaging system are known this may be computed.
When the components of the imaging system are not
known this correspondence must be determined exper-
imentally. In order to determine this correspondence
we construct a calibration environment where the ge-
ometric and radiometric parameters can be efficiently
estimated. It is important to note that given the non-
perspective nature of a general device, conventional ge-
ometric calibration methods are not directly applicable
(Faugeras, 1992; Hartley, 1993; Tsai, 1987) .

For this calibration assume we have a known plane
in the scene. Suppose that by imaging this plane we
can establish a correspondence between each pixel i of
the image and a point p f on the plane whose location
is known (Fig. 10).This determines that the incoming
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Figure 10. A ray corresponding to a pixel i intersects two planes,
separated by a known distance z, at points pn and p f . If these posi-
tions are known, the direction of the ray q f may be determined for
each pixel. From this we compute the raxel parameters. To determine
from the image the positions of pn and p f we place an active display
at the planes and use binary coding patterns. By rotating the image
device we may perform ray-based calibration for imaging systems
with an arbitrary field of view.

ray associated to pixel i passes through the point p f .
We now move the plane by a known distance z. Again
we establish the point pn corresponding to the pixel i .
The two points pn , p f determine the ray and thus the
direction of the ray q f .

If we assume our raxels to be located at the first
plane then the pairs (p f , q f ) determine the discrete
raxel model. Suppose that the geometry of imaging
system may be assumed continuous. Given dense mea-
surements of all the pixels, we fit a continuous mapping
to the discrete samples to obtain the continuous raxel
model. This model yields a ray surface where p f and
q f are parameterized by image plane coordinates. If
we assume this mapping is smooth we can determine
the caustic for the caustic raxel model by the Jacobian
method described in Section 3.2. We emphasize that
for a black box imaging system a dense calibration is
required.8 The two-plane method densely recovers the
image plane to scene ray correspondence for systems
with a limited field of view. We may calibrate wide-field
of view systems by placing them on a turntable and ro-
tating the coordinate frame of the imaging system.

5.1. Caustic Raxel Model: Simulation

We simulated the recovery of the caustic for three imag-
ing systems. The first system is a catadioptric system
consisting of a perspective camera pointed at a spheri-
cal reflector. The system is assumed to be rotationally
symmetric about the optical axis. Due to symmetry
we can solve for the caustic along a cross section of
the system as shown in Fig. 11(a).The sphere was as-

sumed to have a radius of
√

2/8 units and the center of
the projection was at .25 units from the sphere center.
The parameters were chosen so that with a 60 degree
field of view of the perspective camera, the spherical
system would have a 120 degree field of view. We as-
sumed that we had one plane at a distance .5 units along
the optical axis and one plane at 1 unit along the axis.

Along the cross section of the planes we created a
uniform distribution of reference points perpendicular
to the axis of symmetry. The positions of these points
were assumed known precisely. In practice the accu-
racy of the locations of the world points is not a limiting
factor. The limiting factor on accuracy is the resolution
of the imaging system. We simulated this by assum-
ing a finite spatial resolution in the imaging plane and
adding half a pixel of uniformly distributed noise to the
measured locations in the image plane.

The recovery of the caustic involved the following
steps:

1. We smoothed the simulated noisy measurements
of the image plane locations using a local linear
regression.

2. We then fit a cubic spline to the data to obtain a
smooth correspondence between the scene planes
and the image plane.

3. From the difference of the spine mappings we were
able to obtain a mapping from the image plane to
directions of the corresponding rays.

4. We used Eq. (5) to compute the caustic.

In Fig. 11(a), the curve labelled “System Caustic” was
the recovered caustic without noise while “Simulated
Recovered Caustic” was recovered with noise. The res-
olution was assumed to be 1000 along the cross section
for the spline shown in the figure. Figure 11(b) shows
the mean RMSE for 10 simulated recoveries with the
same parameters at different resolutions. The standard
deviation of the RMSE is also shown. The recovered
curve has the correct shape and is localized fairly ac-
curately.

For our second example consisted of a perspective
camera viewing a conic mirror as shown in Fig. 11(c).
The system is rotationally symmetrical but we per-
formed the recovery in 3D. The perspective camera’s
single viewpoint was again located at a distance of
.25 units from the origin and the equation of the cone
was 4x2+4y2 = 4z2. We assumed that the scene points
imaged were uniformly spaced for planes at z = 1 and
z = 5. Again, these points were assumed to be known
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Figure 11. Simulated recovery of the caustic raxel model for three imaging systems. In (a) the system consists of a spherical mirror and
perspective camera. Because the system is rotationally symmetric the caustic was recovered from a cross section. Localization of position
in the image plane was corrupted by 1/2 pixel of uniform noise. The mean errors and standard deviations of the RMSE errors for 10 sim-
ulated recoveries are shown in (b). In (c) the imaging system consists of a perspective camera and conical mirror. Here a full 3D recovery
is performed with the quantitative results shown in (d). In (e) a simulated crossed slit imaging system is calibrated with the errors shown
in (f).

precisely but half a pixel of uniform noise was added
to the simulated measured positions in the image pane.

As before, the simulated recovered data was first
smoothed with a local linear regression. The image to

plane mappings were fit with 5th order tensor product
splines. To avoid extrapolation with the spline we chose
a square sub-patch on the scene plane which corre-
sponds to the dark blue patch on the mirror surface



132 Grossberg and Nayar

shown in Fig. 11(c). To obtain the entire caustic we
would repeat this procedure for a set of square patches
covering the field of view. The caustic was recovered
using Eq. (4). The expected caustic should be a circle.
The noise free computed caustic did give points along a
circle. The simulated recovery was exceptionally sen-
sitive to noise as can be seen from the table of errors
in Fig. 11(d). Even with smoothing the results were
essentially a point cloud around the predicted caustic.

Our third example system is a cross slit system
(Feldman et al., 2002). The rays in this system pass
through two fixed orthogonal lines before intersecting
the image plane as shown in Fig. 11(e). The caustic
was recovered using as in the second example. The ta-
ble of errors is shown in Fig. 11(f). While the caustic is
localized properly the quality of the results were again
sensitive to resolution.

From our simulation we found that when symmetry
of the imaging system can be exploited a reasonably
accurate recovery of both the shape and location of the
caustic is possible using Eq. (5). Accurate recovery of
the caustic of a completely black box system is pos-
sible using Eq. (4) but requires very high resolution.
Even then smoothing may be required and the results
are likely to be very sensitive to the choice of regu-
larization. Nevertheless even a point cloud caustic can
give useful information such as an estimate of the size
of the caustic. For a small caustic parallax effects may
be neglected and the system can be assumed to have an
effective single viewpoint. The sensitivity to resolution
means that without a-priori knowledge of the imaging
system we can not calibrate the system from sparse
features.

5.2. Calibration Using an Active Display

To create distinguishable features for each pixel i we
place an active display at the plane and take multiple
images. If a display has N locations, we can make each
point distinct in log N images using simple gray coding
or bit coding like those described in Sato and Inokuchi
(1985). A million pixel display requires only twenty
images to encode every point. A calibrated active dis-
play also permits the calibration of the non-geometric
parameters of the model. We display a linearly increas-
ing constant brightness sequence to our imaging sys-
tem. First, we calibrate the radiometric response func-
tion for a representative point in the image from the
known input brightness. We may then compute the fall-
off function across all the points.

We used twenty binary coded images for each plane
for ray-based calibration (assuming a one mega-pixel
display). We compute both the radiometric response
function and the fall-off from seventeen uniform bright-
ness levels. Thus, with roughly 60 images we have mea-
sured the parameters of our general imaging model,
with the exception of point spread. To make those
60 images robust to noise each image was an av-
erage of 30 captured images of the same display
input.

5.3. Experimental Apparatus

We calibrated two imaging systems to demonstrate
the generality of our method. One imaging system
was a perspective camera. The second imaging sys-
tem was a non-perspective catadioptric system con-
sisting of a perspective camera and a parabolic mirror
(Swaminathan et al., 2001). In both experiments the
camera was a Cannon Optura digital video camera. Bit
patterns were displayed on a laptop with a 14.1 inch
LCD screen with resolution 1024 × 768 pixels. Rather
than move the display, the camera was mounted on
a stage, which was translated 60 mm in the direction
normal to the screen.

The perspective imaging system, consisting of just
the camera itself, can be seen in Fig. 12(a). Figure 12(b)
shows an image of a pattern of vertical bars from the
perspective camera. In Fig. 13(a) the parabolic cata-
dioptric system is shown. This is the same system we
described in Fig. 7(c). Not only is the system not per-
spective but also the caustic of the system can be seen to
form a curve in the plane, or a surface when the figure
is rotated about the axis of symmetry. The parabolic
mirror we used had an outer diameter of 100 mm and
an inner diameter of 3 mm. The focus of the parabola
was 25 mm from the base. The laptop was oriented
so as to give the maximum screen resolution along
the axis of symmetry. Figure 13(b) shows a sample
binary pattern as seen from the parabolic catadioptric
system.

5.4. Experimental Results: Geometric Parameters

Even though the raw binary patterns were averaged
to reduce noise, pixels imaged on the edge, between
black and white regions, must be ignored as they give
an ambiguous response. When the information for the
patterns is combined this creates holes for which we do
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Figure 12. (a) A calibration apparatus, which consists of a laptop and a translating stage, and perspective imaging system consisting of a Canon
Optura video camera. The axis of perspective camera is normal to the plane of the screen. The laptop displays 26 patterns. Images were taken
at two positions of the translating stage. (b) A sample bit pattern as seen through the perspective system.

Figure 13. (a) The same calibration apparatus that was used for the perspective system, here with a non-perspective imaging system. The
non-perspective catadioptric system consists of a perspective camera a parabolic mirror. (b) A sample bit pattern as seen through the parabolic
catadioptric system.

Figure 14. The perspective caustic is a small cluster of points corresponding to the single viewpoint.
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Figure 15. The caustic recovered for a parabolic catadioptric system. A cross section of the caustic of the system is similar shown in
Fig. 7(c).

not have data. In the perspective case we fit a polyno-
mial to our data. We found a second-degree polynomial
produced a good fit. Once we had parameterized the po-
sitions on the near and far planes in image coordinates,
we were able to find directions at the far plane. This
gave us a ray surface for the far plane. Using this we
solved for the zeros of the 3-dimensional Jacobian of
Eq. (4) to recover the caustic scatter plot as seen in
Fig. 14. Since the caustic of a perspective camera is
the single viewpoint, the point-like measured caustic
agrees with expectation.

Figure 15 shows the recovery of the caustic for the
non-perspective catadioptric system using ray-based
calibration. The system is rotationally symmetric so we
used the 2-dimensional recovery method which is less
sensitive to limited resolution. The caustic was com-
puted using Eq. (5). Since there is no data along the axis
of symmetry, its position was estimated. A cross sec-
tion of the system is shown in Fig. 7(c). The caustic is
shown as the envelope of rays (see Swaminathan et al.
(2001) for details). The recovered caustic of Fig. 15
matches that part of the curve near the cusp. We only
see this part of the caustic because the outer field of
view of the imaging system ends where the rays are
nearly normal to the mirror’s axis of symmetry. Near
the axis of symmetry the radial partial derivative in-
creases faster. This means that near the axis, smaller
changes in position on the caustic yield larger changes
in angle. Thus, there is a drop in resolution near the
axis of symmetry.

5.5. Experimental Results: Non-Geometric
Parameters

Figure 16(a) shows the normalized radiometric re-
sponse function. As is the case with higher quality
digital imaging devices, the response is close to lin-
ear over much of its dynamic range. The curve shown
is a polynomial fit with the non-linear constraint that
the curve must have a positive derivative.

For the perspective system, we might expect a cos4 α

type fall-off (Horn, 1986). However, many lens systems
have been designed to remove this effect. Indeed, we

Figure 16. The normalized radiometric response is calculated from
images of 17 uniform screens. The curve shown is a polynomial fit
with the endpoints constrained and the first derivative required to be
positive.
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Figure 17. (a) A plot of the radial fall-off function for the perspective system. It is nearly constant because the optics and electronics were
designed to minimize this effect. (b) The radial fall-off function of the parabolic catadioptric system. Because resolution is higher at greater
radii, the amount of light collected there drops.

find no significant fall-off as the function is nearly con-
stant. This can be seen in the graph of a radial slice
16(b).

We linearized the response and calculated the
radiometric fall-off for the non-perspective case
(Fig. 17).The fall-off is normalized so the maximum
is unity. The directionality of the LCD irradiance has
been measured and normalized to be uniform with re-
spect to direction. The pronounced fall-off away from
the axis of symmetry is due to the higher resolution
of non-perspective system there. Image pixels away
from the axis of symmetry see a smaller object area.
Hence, they gather less light from a uniform radiator.
To conclude, this simple calibration procedure allows
us to compute the parameters of our general and flexible
model.

6. Conclusion

We have provided a general model for imaging sys-
tems. This provides a unified model for growing num-
ber of imaging systems which do not satisfy the per-
spective imaging model. For finite resolution systems
this geometry can always be represented as a list of
raxels with geometric and radiometric parameters. By
assuming the correspondence is continuous we can rep-
resent the set of raxels in terms of a ray surface. A spe-
cial and essentially unique ray surface called a caustic
provides a generalization for the single viewpoint in
the perspective model. Since an early version of this
model was proposed in Grossberg and Nayar (2001),
it has been shown that the epi-polar constraints, ego-
motion and structure from motion can be generalized

for this model (Pless, 2002, 2003; Neumann et al.,
2003). We have also shown that we can attach non-
geometric parameters to raxels to provide a complete
imaging model.

We have shown that our calibration technique yields
excellent results for symmetric systems and gives ac-
ceptable results for general systems. Recovery of the
caustic for general system is sensitive to the limits
of image resolution and noise. Thus there is room
for improvement in finding the ideal regularization to
recover the caustic in the general case. This model
provides a framework for camera designers to ex-
plore a wide range of new camera designs. We also
note that because cameras and projectors are in some
sense dual our model can also be applied to projection
systems.
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Notes

1. This is similar to the observation of Mann, who noted that a
perspective system could be considered a bundle of light detecting
elements he called a pencigraph (Mann, 1996).
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2. We really only require two angles φ, θ to specify direction but it
is more convenient to work with vectors. The plenoptic function
is simply assumed constant as |q| varies.

3. The delta functions are not actually functions. They are dual to
functions in that they take functions as input and produce a number
as output. Delta functions are a special case of a distribution
(Zemanian, 1965). Since we have assumed a raxel to be localized
at a point and to view along a single ray we have not considered
more general distributions.

4. We may place a raxel anywhere along a ray. This is because
intensities usually do not change much along a ray (particularly
when the medium is air) provided the displacement is small with
respect to the total length of the ray.

5. For a camera cluster it is usually more convenient to index each
camera by an independent index. This can be thought of as a
hybrid between the case of a continuous mapping and the discrete
mapping used for the discrete raxel model. Rather than listing
individual raxels, we list the continuous mappings corresponding
to the cameras.

6. Generically this must be a surface. For certain imaging systems
however, it is possible to choose a ray curve or even point. For
example in the perspective model the ray “surface” can be chosen
to be the single viewpoint.

7. We have explicitly assumed that our image plane is 2-dimensional.
An b-dimensional image plane would lead to a mapping from a
b + 1 parametrization of the rays to 3-dimensional space. In this
case, the caustic is still the locus of singularities of correspond-
ing map. It is not clear in this case whether the geometry of the
imaging system is completely determined by the caustic.

8. If enough is known about a particular non-perspective sys-
tem, calibration can also be accomplished using the correspon-
dence of known 3D points under known motion. For example
in Swaminathan et al. (2001), a non-perspective system was as-
sumed to belong to a family of models specified by a small number
of parameters. In this case the parameters can be estimated from
sparse feature correspondence under known motion.
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