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Abstract. Brightness values of pixels in an image are related to im-
age irradiance by a non-linear function, called the radiometric response
function. Recovery of this function is important since many algorithms
in computer vision and image processing use image irradiance. Several
investigators have described methods for recovery of the radiometric re-
sponse, without using charts, from multiple exposures of the same scene.
All these recovery methods are based solely on the correspondence of
gray-levels in one exposure to gray-levels in another exposure. This cor-
respondence can be described by a function we call the brightness trans-
fer function. We show that brightness transfer functions, and thus im-
ages themselves, do not uniquely determine the radiometric response
function, nor the ratios of exposure between the images. We completely
determine the ambiguity associated with the recovery of the response
function and the exposure ratios. We show that all previous methods
break these ambiguities only by making assumptions on the form of the
response function. While iterative schemes which may not converge were
used previously to find the exposure ratio, we show when it can be recov-
ered directly from the brightness transfer function. We present a novel
method to recover the brightness transfer function between images from
only their brightness histograms. This allows us to determine the bright-
ness transfer function between images of different scenes whenever the
change in the distribution of scene radiances is small enough. We show
an example of recovery of the response function from an image sequence
with scene motion by constraining the form of the response function to
break the ambiguities.

1 Radiometric Calibration without Charts
An imaging system usually records the world via a brightness image. When we
we interpret the world, for example if we try to estimate shape from shading,
we require the scene radiance at each point in the image, not just the bright-
ness value. Some devices produce a brightness which is a linear function of scene
radiance, or at least image irradiance. For most devices, such as consumer dig-
ital, video, and film cameras, a non-linear radiometric response function gives
brightness in terms of image irradiance.1

1 We are ignoring spatially varying linear factors, for example, due to the finite aper-
ture. We will assume that the response function is normalized both in domain (irra-
diance) and range (brightness).
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Some vision applications such as tracking may not require precise linear ir-
radiance values. Nevertheless, when one estimates the illumination space of an
object as in [1], estimates the BRDF from images [2], determines the orientation
of surface normals [3], or merges brightness images taken at different exposures
to create high dynamic range images [4], one must find irradiance values from
brightness values by determining the radiometric response of the imaging system.

We can recover the radiometric response function by taking an image of
a uniformly illuminated chart with patches of known reflectance, such as the
Macbeth chart. Unfortunately, using charts for calibration has drawbacks. We
may not have access to the imaging system so we may not be able to place a
chart in the scene. Changes in temperature change the response function making
frequent recalibration necessary for accurate recovery of the response. Addition-
ally, we must uniformly illuminate the chart which may be difficult outside of a
laboratory environment.

The problems associated with using charts have lead researchers to develop
methods to recover the radiometric response from registered images of a scene
taken with different exposures. Mann and Picard assume the response function
has the form of a gamma curve [5]. They estimate its parameters assuming
they know the exposure ratios between the images. Debevec and Malik also
assume the ratio of exposures is known, but they recover the log of the inverse
radiometric response without a parametric form [6]. To obtain a solution they
impose a smoothness constraint on the response. Mitsunaga and Nayar assume
that the inverse response function can be closely approximated by a polynomial
[4]. They are then able to recover the coefficients of that polynomial and the
exposure ratios, from rough estimates of those ratios. Tsin, Ramesh and Kanade
[7] and separately, Mann [8] recover both the response and exposure ratios by
combining the iterative approach from [4], with the non-parametric recovery in
[6].

The essential information all methods use for recovery is how brightness gray-
levels in one image correspond to brightness gray-levels in another. Ideally a
function we call the brightness transfer function describes this correspondence.2

Figure 1 illustrates the role of the brightness transfer function. All chart-less
recovery methods [4, 5, 6, 7, 8] use the constraint that all irradiances change
by the exposure ratios to recover response function and exposure ratios from
exactly the information contained in the brightness transfer function.

Previous authors have not completely addressed whether there actually is
enough information in the images to recover the response function and exposure
ratios from images without charts. Put another way, since the brightness transfer
function contains all the information about the response function, we could ask:
given the exposure ratio, is there a unique response function for each brightness
transfer function? We show that solutions to this inverse problem are not unique.
We demonstrate that due to a fractal-like ambiguity any method to recover
the response function must constrain the function, for example with regularity,

2 Most methods use all pairs of gray-levels at corresponding points in the images.
Mann [8] shows that the brightness transfer function summarizes this information.
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Fig. 1. A diagram showing the role of the brightness transfer function. All the infor-
mation in the images, relevant for chart-less recovery is contained in the brightness
transfer functions. These describe how a brightness in one image corresponds to a
brightness in another image. Thus, the problem of recovering the radiometric response
function falls into two parts: recovery of the brightness transfer functions from images,
and recovery of the radiometric response function and the exposure ratios from the
brightness transfer functions.

to break this ambiguity. Beyond this ambiguity, is it possible to recover the
response function and the exposure ratios simultaneously and uniquely? We
show that there are families of solutions, arising from what we call an exponential
ambiguity. Again, only by making assumptions on the response function can we
expect a unique solution. Can we recover the exposure without recovering the
response? We will show when this is possible.

Given that it is possible to recover the response function and exposure ratios
from the brightness transfer function by making assumptions on the form of
the response, how do we recover the brightness transfer function from images?
Previous work compared registered images of a static scene taken at different
exposures to recover the brightness transfer functions. Is it necessary for the
scene to be static and do we require any spatial information to recover the
brightness transfer function? It is not, since we show that the brightness transfer
function can be obtained from the histograms of the images. This implies that
in situations where the distribution of scene radiances remains almost constant
between images we can still recover the brightness transfer function. To illustrate
this, we recover the response function from a sequence of images with scene
motion.

2 The Fundamental Constraint for Chart-Less Recovery

The brightness value at a point in the image should allow us to determine the
scene radiance. The ideal brightness value I is linear in the scene radiance L.
The ideal brightness is related to scene radiance by I = LPe, where P is a factor
due to the optics of the system, and e is the exposure, following the notation
of [4]. For a simple system, P = cos4 α/c2, where α is the angle subtended by
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the principle ray from the optical axis and c is the focal length.3 The exposure
is given by e = (πd2)t, where d is the size of the aperture and t is the time
for which the photo-detector is exposed to the light. Even though e contains
the integration time, t, we can think of the ideal brightness I as image plane
irradiance.

A function f called the radiometric response function relates the actual mea-
sured brightness value M = f(I) at a photosensitive element to the image plane
irradiance I. Imaging system designers often intentionally create a non-linear
radiometric response function f , to compress the dynamic range, for example.
Since measured brightness indicates relative irradiance, we can assume that the
response function f monotonically increases.4 The minimum irradiance is 0,
while the maximum irradiance, Imax is a single, unrecoverable parameter. Thus
we normalize domain of f, irradiance I, to go from 0 to 1. We also normalize the
range of f , brightness M , so that f(1) = 1 and f(0) = 0.5 Up to this normaliza-
tion, we can determine f if we take an image of a uniformly illuminated chart
with known reflectance patches. Without a chart we must find constraints that
permit us to extract f from images without assuming the knowledge of scene
reflectances.

As a special case of what we mean, suppose we take images A and B of the
same scene with different exposures eA and eB . If image A has image irradiance
IA at a point and the corresponding point in image B has the irradiance IB ,
then IA/eA = IB/eB . The exposure ratio k := eB/eA expresses the relationship
between the two images, IB = kIA. Relating this back to measurements in images
A and B we have f(IA) = MA and f(IB) = MB . Monotonicity of radiometric
response function makes it invertible. Let g := f−1 be the inverse of f . Then,
we have the equation,

g(MB) = kg(MA). (1)

All chart-less methods base recovery of g and k on this equation. In each pair of
images, each corresponding pair of pixel brightness values gives one constraint.
The exposure ratio k is constant for each pair of images. When k is known, this
gives a linear set of equations g. If g is a polynomial, then equation (1) becomes
linear in the coefficients of the polynomial. Mitsunaga and Nayar solve for these
coefficients [4]. Debevec and Malik [6] and Mann [8] take the log of both sides
of equation (1). Rather than start with a parameterized model of log g they
discretely sample it at the gray-level values, treating it as a vector. By imposing
a regularity condition on the discrete second derivatives of log g, they are able
to obtain a solution.
3 Details of P for a simple perspective camera can be found in Horn [9]. Whereas
Mitsunaga and Nayar [4] discuss selection of pixels in the image where P is nearly
constant, we will assume P is constant throughout the part of the image we analyze.

4 A monotonically decreasing response function is also possible, as in negative films.
We can, however, re-normalize f so that f increases with irradiance, for example by
multiplication by −1.

5 The minimum brightness value in digital imaging systems is often effectively greater
than zero due to non-zero mean thermal noise called dark current. By taking an
image with the lens covered, this effect may be estimated and subtracted.
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When we know g but not k, we can solve equation (1) for k. Mitsunaga and
Nayar [4] and Mann [8] use an iterative scheme in which they first solve for g
with an initial guess for k. Updating their estimates, they iteratively solve for k
and g.

3 Brightness Transfer Functions
The pairs of measurements MA and MB at corresponding points in different
images of the same scene constitute all the information available from which to
recover the response function in chart-less recovery. Mann [8] pointed out that
all this information is contained in a two variable histogram he calls the com-
paragram. If (MA,MB) are any two pairs of brightness values, then J(MA,MB)
is the number of pixels which have brightness value MA in image A and MB at
the corresponding point in image B.

The comparagram encodes how a gray-level in image A corresponds to gray-
level in image B. For real images, a probability distribution most accurately
models this correspondence, rather than a function. A function fails to model
all the pixel pairs because of noise, quantization of the brightness values, spatial
quantization, and saturated pixels. Ignoring these considerations for a moment,
from equation (1), we see that a function should ideally relate the brightness
values in the images

MB = T (MA) := g−1(kg(MA)) (2)

which we call the brightness transfer function. This function describes how to
transfer brightness values in one image into the second image. We can estimate
the brightness transfer function T from J .6 For a collection of images A1, A2,
A3, . . . Al the brightness transfer functions of all possible pairs Tm,n summarize
the correspondence of gray-levels between the images. Once we estimate T , we
have a modified version of equation (1), given by

g(T (M)) = kg(M). (3)

This equation has an advantage over equation (1): because the function T con-
tains all information about the gray-level correspondence between images, we
can study the mathematical problem of existence and uniqueness of solutions to
equation (3).

To study solutions to equation (3) we must first derive some properties of
brightness transfer functions. From equation 2 we know that the monotonicity
of g implies the monotonicity of T and so T−1 exists. Define T 0(M) := M ,
Tn(M) := T (Tn−1(M)) and T−n(M) := T−1(T 1−n(M)).

Theorem 1 (Properties of the Brightness Transfer Function). Let g be
a smooth monotonically increasing function with smooth inverse. Suppose that
g(0) = 0 and g(1) = 1, and k > 1, then the function T (M) := g−1(kg(M))
6 Mann [8] calls T the comparametric function, and the process of going from J to T ,

comparametric regression.
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has the following properties: (a) T monotonically increases, (b) T (0) = 0, (c)
limn→∞ T−n(M) = 0, and (d) if k > 1, then M ≤ T (M). [see appendix A for
proof].

Assuming that k > 1 just means that we order our images so that exposure
increases. For example, for a pair of images with 0 < k < 1, we can replace
equation (3) with the equation f(T−1(M)) = (1/k)f(M), where (1/k) > 1. By
replacing k with 1/k and T with T−1, we have reordered our images so that k > 1.
To order the images themselves note that when k > 1, then g−1(kI) ≥ g−1(I)
since g−1 monotonically increases. In other words every brightness value in one
image corresponds to a brighter value in the other image. Therefore, for k > 1,
T goes from the image with darker average pixel value, to the image with lighter
average pixel value.7

4 Fractal Ambiguity
If the exposure ratio k > 1, the brightness transfer function T expands the M -
axis as we see from theorem 1(d). Equation (3) says by stretching the domain of g
with T , and multiplying the range of g by k, the function g becomes self-similar.
This kind of self-similarity is the hallmark of fractals. The left side of equation (3)
relates the value of g at points in (T−1(1), 1], to the value of g at points in
(T−2(1), T−1(1)] on the right side. Nothing, however, relates the value of g at
points in (T−1(1), 1] to each-other. This means as long as g(1) = 1, g(T−1(1)) =
1/k, and g is continuous and monotonic, then g can have arbitrary values on
(T−1(1), 1), and still be a solution to equation (3). We call this ambiguity to
equation (3), the fractal ambiguity.8 More formally, we state this by saying that
we can build a solution g starting with any function s(M) on [T−1(1), 1]:

Theorem 2 (The Fractal Ambiguity Theorem). Suppose that T satisfies
the properties listed in theorem 1. Suppose s(M) is any continuous, monotonic
function on the interval [T−1(1), 1] such that s(1) = 1, s(T−1(1)) = 1/k. Then
s extends to a unique, continuous, and monotonic function g on [0, 1] such that
g(M) = s(M) for M ∈ [T−1(1), 1], and g satisfies g(T (M)) = kg(M) for M ∈
[0, T−1(1)], with g(0) = 0, and g(1) = 1. [see appendix B for proof].

We understand this fractal ambiguity by looking at a sampling of s. On the
left in figure 2, take any three points p1, p2, p3 ∈ (T−1(1), 1]. We can choose the
values of s hence g at these points essentially arbitrarily. The only restriction a-
priori is that s be monotonic, and thus s(T−1(1)) = 1/k ≤ s(pn) ≤ 1. Each point
p1 ∈ (T−1(1), 1] gives rise to a sequence of points p1 ≥ T−1(p1) ≥ T−2(p1) ≥ . . ..
Equation (3) determines this sequence from p1. It places no restrictions on the
relationship between the values of s at points in (T−1(1), 1]. On the right in fig-
ure 2 we see alternative solutions to equation (3). The fractal ambiguity presents
a problem relating different sequences of points, each obtained by choosing a
7 Note that we do not have to register images to compare the average pixel values.
8 Mann [8], has noted the relationship of his version of equation (3) to dynamical
systems, and that the equations allow “ripples” in the solutions
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Fig. 2. Left: Graph with arbitrary increasing values chosen at points p1, p2, p3. Each
point, p1, generates a sequence of points. Right: Two arbitrary curves s on (T −1(1), 1]
extended uniquely to [0, 1]. This means neither equation (3), nor its log, tell us anything
about the values of g, in (T −1(1), 1]. Unique solutions of g can only come from prior
assumptions on the form or smoothness of g.

point p1 and a value s(p1) in (T−1(1), 1]. The choice of initial value s(p1) de-
termines each sequence, however, only up to a single multiple. Only by con-
straining the form of g, or imposing a regularity constraint, can we break this
ambiguity. For example, suppose we take a sequence of points in the plane (1, 1),
(T−1(1), 1/k), (T−2(1), 1/k2), . . . (T−N (1), 1/kN ). If we assume that g is a low
degree m << N polynomial, then we can solve for the least squares polynomial
fit for the points. This breaks the ambiguity by allowing the polynomial to in-
terpolate between T−1(1) and 1 based on the best fit to the rest of the points.
Choosing multiple exposure ratios k reduces this ambiguity only to the extent
that for some exposure ratio, 1 − T−1(1) is smaller.
Implications: Since the extension from s to g is unique, solving equation (3)

when k is known is unique up to the fractal ambiguity. The fractal ambiguity
suggests that it would be best to choose an exposure ratio as close to 1 as
practical. Unfortunately, in the presence of noise, T may be difficult to recover
accurately when k is close to 1. Nevertheless, minimizing 1 − T−1(1), which
shrinks as k approaches 1, minimizes the fractal ambiguity. The fractal ambiguity
also shows that the values of any solution g, on (T−1(1), 1), to equation (3) must
come from a-priori assumptions on g.

5 The Exponential Ambiguity
If solutions to equation (3) for known exposure ratios are unique up to the
fractal ambiguity what happens as we try to solve for both g and k together?
As an example, suppose we have two imaging systems: System A has an inverse
response gA(M) = Mγ and system B has a linear inverse response gB(M) = M .
Each takes two images of the same scene. Both systems have identical initial
exposures. We change the exposure by a factor of 2γ for system A, and 2 for
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Fig. 3. Several different response functions giving rise to the same brightness transfer
function T . The brightness transfer function T (M) = 2M results from an inverse
response function Mγ , and exposure ratio between images of 2γ , independent of γ.
This shows we can only recover the radiometric response and exposure simultaneously
by making assumptions on the solutions, g and k, that break this ambiguity.

system B. System A has brightness transfer function is T (M) = g−1
A (2γgA(M) =

(2γMγ)−γ = 2M . System B also has brightness transfer function T (M) = 2M .
Systems A and B will produce different images and brightness values but the
correspondence between gray levels in one image and gray-levels in the other, the
brightness transfer function is identical. As illustrated in figure 3, it is therefore
impossible to recover k and g simultaneously from T alone, without making
a-priori assumptions on g and k.

It is easy to see that this exponential ambiguity does not only come from
gamma curves. For example, if g and k are solutions to T (M) = g−1(kg(M))
then so are gγ and kγ . In other words, if we are given two sets of images of the
same scene with identical initial exposure, one from an imaging device with an
inverse response function g and exposure ratio between the images of k, and a
second with inverse response function gγ and exposure ratio kγ , they have the
identical brightness transfer functions. The following theorem shows that there
are no other ambiguities in equation (3):

Theorem 3 (The Exponential Ambiguity Theorem). Suppose we have
inverse response functions g1, g2, and exposure ratios, k1, k2, so that

g1(T−1(M)) = k−1
1 g1(M)

g2(T−1(M)) = k−1
2 g2(M)

(4)

Define β(M) := g2(g−1
1 (M)), which is an ambiguity in solutions g, k to equa-

tion (3), then β(M) = KMγ , and that kγ
1 = k2, for some constants γ, and K

[see appendix C for proof.]

Mitsunaga and Nayar [4] discussed this ambiguity in their method for simul-
taneous recovery of g and k. They resolved it by assuming that g is polynomial.
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Fig. 4. Directed graph of images at different exposures. The exponential ambiguity
cannot be broken by taking more images. If the inverse response function and all the
exposure ratios are raised to the same power, the brightness transfer functions do not
change. We cannot tell situation (a) from situation (b) from T (M).

This restriction limits the possible values of γ. They assumed also they have
rough estimates of the exposure ratios. They show that the multiple solutions
are far enough apart so that from the rough estimate of exposure ratios the
correct solution can be found with an iterative method. In [7] they break the
ambiguity by imposing constraints on the errors in their estimates of the expo-
sure ratios, as well as smoothness and monotonicity of the functions. Without
assumptions on the response functions, no method can resolve this ambiguity.

It is also worth noting that using multiple images and thus multiple T does
not break this ambiguity. In figure 4, we see that the images form a directed
graph with arrows going from darker images to brighter images. If we start with
images at different exposures with exposure ratios k1,k2, and (k1k2), and inverse
response function g as in figure 4(a), and raise all the exposure ratios and the
inverse response function by γ, we get an identical brightness transfer functions
figure 4(b). Thus, no algorithm applied to these images can recover exposure
ratios and inverse response functions, simultaneously without assumptions on
the response function.
Implications: Recovery of the exposure ratios and the response function is

only possible by making assumptions on the form of the response function or
by starting with rough estimates on the exposure ratios as in [4]. We should be
wary of applying any algorithm for recovering response and exposure ratios in
situations where we know nothing about either.

6 Recovery of the Exposure Ratio

We have just shown that it is impossible, without further assumption on the re-
sponse, to recover the response and exposure ratio together. It is not surprising
that if we know the response, we can simply recover the exposure k from equa-
tion (3). It is surprising that it is possible to recover the exposure ratio when
we don’t know the response. If we differentiate both sides of equation (3) with
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Fig. 5. Graph showing that the exposures ratios k are equal to the slope of the bright-
ness transfer function at the origin, T ′(0). As an example, we choose the inverse radio-
metric response g(M) = 2M/(M + 1) The curves are brightness transfer functions for
exposure ratios 2, 4, and 8. This shows that if the brightness transfer function can be
estimated near M = 0, the exposure ratios may be recovered without recovering the
response function.

respect to M , we get g′(T (M))T ′(M) = kg′(M). Evaluating this at M = 0, and
using the fact that T (0) = 0 we get g′(0)T ′(0) = kg′(0). We have T ′(0) = k,
when g′(0) �= 0. This tells us that we can, in theory, directly estimate the ex-
posure ratio from T , as illustrated in figure 5. This seems to contradict the
exponential ambiguity of section 5. It does not, however, because (g(M)γ)′ =
γg(M)γ−1g′(M), so since g(0) = 0, if γ > 1, then gγ has a zero derivative at
M = 0, and if γ < 1, then gγ has an infinite derivative at M = 0. In either case
we can not cancel g′(0).

Unfortunately, in practice, estimating T ′(0) may not be practical. The SNR
is often very low for small gray-levels, making estimation of T (M) near M = 0
difficult.
Implications: It is theoretically possible to recover the exposure ratio from

T alone as long as g′(0) > 0. In practice g(M) must be well behaved with a
limited amount of noise near M = 0 for this recovery to be robust.

7 Recovering the Brightness Transfer Function from
Histograms

As discussed in section 2, all the information we can recover about the exposure
ratios, and the radiometric response function comes from the correspondence
of gray-levels between images of the same static scene taken at different expo-
sures. Previous work recovered this correspondence by registering the images.
The brightness values at corresponding points may be collected in a compara-
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gram, J . From the comparagram, J the brightness transfer function, T (M) can
be estimated.

The need for registration restricts the camera motion and requires static
scenes. We will show we can broaden the kinds of images we may use by elim-
inating the need for spatial correspondence. In this context previous methods
needed spatial correspondence between images to obtain gray-level correspon-
dence between images. In fact, we may use any feature of gray-levels that allows
us to establish this correspondence, and thus T (M). For example, we will now
show how we can recover T (M) using the histogram, a simple statistic of gray-
levels.

Suppose we have two images, µA, and µB , of the same scene taken with
different exposures. We interpret both µA(x, y), and µB(x, y) as functions of
brightness with x and y coordinates in the image. We denote the set of all points
in the image taking values between 0 and MA by µ−1

A ([0,MA]) := {(x, y)|0 ≤
µA(x, y) ≤ MA}. The continuous histogram of brightness values, can be defined
as the unique function hA such that

∫
µ−1

A
([0,MA])

dxdy =
∫ MA

0
hA(u)du. (5)

This integral, the cumulative histogram HA(MA), can be interpreted as the
area of image points with gray-levels less than MA. Ignoring saturation and
quantization for the moment, each gray-level MB in image B corresponds to a
gray value MA in image A, MB = T (MA). The set of image points in image
A with gray-levels less than MA, must be the same as the set in image B with
gray-levels less than MB , since they correspond to the same set of scene points.
Hence, these sets must have equal area, so HA(MA) = HB(MB) = HB(T (MA)).

Finally, replacing MA = u and solving for T we have

T (u) = H−1
B (HA(u)). (6)

We can interpret this equation in terms of histogram modeling, as in [10].
Histogram modeling changes the histogram of the image by remapping the inten-
sities. One example of histogram modeling is histogram equalization. Assume we
have normalized our histograms hA, and hB so that HA(1) = HB(1) = 1 so the
image has unit area. When intensities in, for example image µA are remapped via
the function HA(u) is resulting image has a histogram that is uniform. Another
example of histogram modeling is histogram specification, where we attempt to
specify the desired histogram for an image. For example if we want image µA

to have the same histogram as image µB , we use the function H−1
B (HA(u)) to

remap the intensities.9

9 Histogram specification will not give information about T (M) for gray-levels M
where the histogram is zero. This is not a weakness with this method but rather
with all chart-less recovery methods. Since we do not control the scene radiances, we
must take enough exposures for the scene radiances to provide information across
the entire range of brightnesses.
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Fig. 6. (a)Diagram showing recovery of the brightness transfer function from registered
images at different exposures. The comparagram counts the number of pixels which
have gray-level MA in image A and gray-level MB at the corresponding pixel in image
B. From this we can find a best fit brightness transfer function T. (b) Diagram showing
recovery of brightness transfer function T from differently exposed images without
registration. We first compute histograms of the images. Histogram specification gives
the brightness transfer function between images.

We have shown that if we assume our images µA and µB are different ex-
posures of the same scene can recover the brightness transfer function T from
the histograms of the image, via histogram specification. By omitting the step of
registering the images, we achieve some computational savings as well as remove
a potential source of error. More importantly we can relax the assumption that
the scene remains static. Often scene motion will not change the histogram sig-
nificantly. While scene points may move around spatially in the image, as long
as the distribution of scene radiances remains roughly constant, our method
can be applied. The same is true for camera motion provided the distribution
of scene radiances remains roughly constant. Scene radiances will not remain
constant for arbitrary scene changes, for example, if the illumination changes
significantly. Nevertheless, by not requiring registration our method works on a
much wider class of images than previous methods.
Implication: Histogram specification gives a simple way to recover T when

we expect the histograms of scene radiance to remain approximately constant
between images taken under different exposure. Eliminating registration makes
it possible to recover the brightness transfer functions in the presences of some
scene or camera motion, where registration would be difficult or impossible. It
also makes it possible to avoid registration for static scenes, reducing computa-
tional effort and eliminating any errors coming from the registration process.

8 Experimental Verification
In this section we recover the brightness transfer function from images with
scene motion using our histogram specification method. In order to recover the
radiometric response function and exposure ratios we must make assumptions
that break the ambiguities of chart-less recovery. We modify the method in
Mitsunaga and Nayar [4] to recover the radiometric response function from the
brightness transfer functions, rather than images. Our goal in recovering the
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Fig. 7. Five different exposures of similar scenes taken with a Nikon 990 Coolpix cam-
era. We vary exposures in the images by changing the integration time: (a) 1/500 sec,
(b) 1/125 sec, (c) 1/60 sec, (d) 1/30 sec, and (d) 1/15 sec. Not only does the figure in
the foreground change pose but the plants in the background are blowing in the wind.
There is no point to point correspondences between the images. Previous algorithms
for recovering the response curve or exposure ratios from images, cannot handle this
case.

response is to simply verify our recovery of the brightness transfer functions. We
also show that under the assumption that the response function has non-zero
derivative at zero, we can obtain rough estimates of the exposure ratios from
our recovered brightness transfer functions.

Figure 7 shows a sequence of 5 images taken at different exposures with
the Nikon 990 Coolpix camera. In order to vary the exposure we changed the
integration times which were: (a) 1/500 sec, (b) 1/125 sec, (c) 1/60 sec, (d)
1/30 sec, and (d) 1/15 sec. Larger apertures decrease the uniformity of image
irradiance at the image plane so we used a small aperture setting of F = 8.

In the images, the man with the cricket bat moves in the scene. The plants
in the background move with the breeze.10 Our assumption, however, is that
although scene points move, the overall distribution of intensities in the scene
remains approximately constant between the images. On the other hand, this
motion is sufficient to make point to point correspondence between the images
impossible. Thus previous chart-less methods cannot be used on such image
sequences.

We computed the cumulative histograms for all the images in figure 8.
We inverted the cumulative histograms using linear interpolation. For each
image pair µA, and µB , we computed T using the histogram specification
T (M) = H−1

A (HB(M)). Figure 8 shows 4 brightness transfer functions T (M)
corresponding to image pairs (a)-(b), (b)-(c), (c)-(d), and (d)-(e), from figure 7.
The exposure ratios, computed from the integration times reported by the cam-
era for these images, are 4, 2.08, 2, and 2. As pointed out in section 6, we can
obtain rough estimates of these ratios from inspection of T ′(M) at M = 0. From
the graphs we estimated T ′(0) at 4.3 ± 1 for image pairs (a)-(b), 2.4 ± .4 for
(b)-(c), 1.8 ± .4 for (c)-(d), and 1.8 ± .4 for (d)-(e). These estimates are very

10 The illumination does not change.
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Fig. 8. Brightness transfer curves obtained by histogram specification, from image pairs
(a)-(b), (b)-(c), (c)-(d), (d)-(e), in figure 7. We estimate that the curve corresponding
to the exposure pair 1/500 sec to 1/125 sec roughly has slope 4.3 ± 1 near the origin.
Near the origin, the curve for (b)-(c) has slope 2.4 ± .4 and the other curves slopes
1.8 ± .4, which provide very rough estimates of their exposure ratios.

rough because it is precisely this part of the curve which is most sensitive to
noise.

The algorithm in Mitsunaga-Nayar [4] was designed for registered images
rather than recovery of the response from T (M). Also, we did not attempt to
use our rough exposure estimates as inputs to their iterative scheme for re-
covering the exposure ratios. Rather, since we are just verifying the brightness
transfer functions, we used their assumptions on g to break the ambiguities
and recover the inverse response curve. For each pair of images µA and µB

we generated pairs of brightness values MA and MB using T . We combined
the pairs (n/255, T (n/255)) for 256 gray-levels 0 ≤ n ≤ 255, with the pairs
(T−1(n/255), n/255). Each pair (MA,MB) gives us a constraint from equation 1.

The cumulative histograms, HA, HB , from which we computed T, are not
uniform. This means our certainty about our estimation of T at various gray-
levels depends on how many pixels in the images have those gray-levels. We
need to weight our constraints by our certainty. For the pairs (MA, T (MA)),
the number hA(MA) = C is the number of pixels with value equal to MA. The
number C gives us some indication of our confidence in T at gray-level MA.
To weight the least squares problem we multiplied the constraint by

√
C, so

the constraint became g(T (MA))
√
C = kf(MA)

√
C. Similarly we weighted the

constraints for the pairs (T−1(MB),MB) by
√

HB(MB). Putting the constraints
together we had 4 pairs of images × 256 gray-levels × 2 kinds of brightness pairs
(those where n/255 is a gray-level in A or B) to get 2048 constraint equations,
weighted by the root of the histograms. We broke the ambiguity as was done in
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Fig. 9. The inverse radiometric response curves recovered from the image sequence in
figure 7 compared to data from a Macbeth chart. The image sequence was used to
obtain the brightness transfer curves from figure 8. To recover the inverse response
curve we broke the ambiguity in the constraint equation by assuming g to be a polyno-
mial of order 6. The excellent agreement with the Macbeth chart shows that by using
our method to extract the brightness transfer functions, we can recover the inverse
radiometric response even with some scene motion.

[4]; we assumed that g is a sixth order polynomial and solved the 2048 equation
linear system for the coefficients of the polynomial g.

In figure 9, we show the recovery of the RGB response curves. The result
is compared with reference points obtained from images with the same camera
using a Macbeth chart. Several images of the chart were taken and the data
merged using the cameras reported exposure values. Since the global irradiance
scale of the response function is unrecoverable, we chose a single best fit scale
factor which allows the recovered curve to pass near Macbeth chart points in the
middle of the graph. We see that we have excellent overall agreement with the
chart recovered response samples. This shows that by using histogram specifica-
tion to recover the brightness transfer function, we can recover the radiometric
response curves, even in the presence of modest scene motion.

A Appendix: Proof of the Properties of T

(a) Evaluating at zero, we find T (0) = g−1(kg(0)) = g−1(0) = 0.
(b) Since g is smooth and monotonically increasing g′ ≥ 0. From equation 3 we

have T ′(M) = kg′(M)/g′(T (M)). Thus T ′(M) ≥ 0 so T is monotonically
increasing.

(c) Since g is monotonically increasing, if M1 ≤ M2 then g(M1) ≤ g(M2). Since
k > 1 then g(M) ≤ kg(M) = g(T (M)). Since g−1 is also monotonically
increasing, M = g−1(g(M)) ≤ g−1(g(T (M))) = T (M).

(d) Consider the sequence of decreasing points M > T−1(M) > T−2(M) > . . ..
We know that these points are bounded from below by 0. Thus the sequence
must converge to a limit point M∗. At this point T (M∗) = M∗. This means
g(M∗) = g(T (M∗)) = kg(M∗). Since k > 1, it must be that g(M∗) = 0,
thus M∗ = 0
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B Appendix: Proof of the Fractal Ambiguity Proposition

Consider the decreasing sequence of points 1 ≥ T−1(1) ≥ T−2(1) ≥ .... For any
point M ∈ [0, 1], since limn→∞ T−n(1) = 0, there is some non-negative integer
r(M) such that M ∈ (T−r(M)−1(1), T−r(M)(1)]. Note that r(T (M)) = r(M)−1.
Define the function

g(M) =
1

kr(M) s(T
r(M)(M)) for M > 0, g(0) = 0 (7)

Now observe that g(T (M)) = 1
kr(T (M)) s(T r(T (M))(T (M))) =

1
kr(M)−1 s(T r(M)−1(T (M))) = k

kr(M) s(T r(M)(M)) = kg(M). Thus we see that
g satisfies g(T (M)) = kg(M). Since s continuous and monotonic, then so
is g(M) inside the union of the disjoint intervals (T−n−1(1), T−n(1)). Since
s(1) = 1, s(T−1(1)) = 1/k, and h is monotonic, so is g from equation 7. Because
s(M) is continuous both at h(1) and h(T−1(1)), so is g at T−n(1). We have
limn→∞(g(T−n(1)) = limn→∞ 1/kn = 0. Thus g is continuous at 0.

C Appendix: Proof of the Exponential Ambiguity

If g1, g2 are monotonic functions then so is β. Note that β(g2(M)) = g1(M).
Since β(k−n

1 g1(M)) = β(g1(T−n(M))) = g2(T−n(M))) = k−n
2 g2((M)) =

k−n
2 β(g1((M))), we can simplify this equation by calling c = g1((M)), γ =
ln k2/ ln k1, and k−n

1 = a. Then the equation becomes β(ac) = aγβ(c).
Note that γ = ln k2/ ln k1 implies kγ

1 = k2. Now for a sequence of points of
p ≥ T−1(p) ≥ T−2(p) ≥ . . . The response g1 has values g1(p) ≥ (1/k1)g1(p) ≥
(1/k2

1)g1(p) ≥ . . ., while the response g2 has the sequence K ≥ (1/kγ
1 )K ≥

(1/k2γ)K ≥ . . ., where K = β(g1(p)). Since these sequences are only determined
up to a factor of scale, we have shown that these sequences can have at most an
ambiguity up to an exponential β(M) = KMγ . If β(M) = g2(g−1

1 (M)) for all
M not just along the sequence, then since β(1) = 1, K = 1.
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