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Abstract

We present a method for controlling the appearance of an arbi-
trary 3D object using a projector and a camera. Our goal is to
make one object look like another by projecting a carefully de-
termined compensation image onto the object. The determina-
tion of the appropriate compensation image requires account-
ing for spatial variation in the object’s reflectance, the effects
of environmental lighting, and the spectral responses, spatially
varying fall-offs, and non-linear responses in the projector-
camera system. Addressing each of these effects, we present a
compensation method which calls for the estimation of only a
small number of parameters, as part of a novel off-line radio-
metric calibration. This calibration is accomplished by pro-
jecting and acquiring a minimal set of 6 images, irrespective
of the object. Results of the calibration are then used on-line
to compensate each input image prior to projection. Several
experimental results are shown that demonstrate the ability
of this method to control the appearance of everyday objects.
Our method has direct applications in several areas including
smart environments, product design and presentation, adap-
tive camouflages, interactive education and entertainment.

1 Introduction

An object’s color and texture are critical to its appearance. The
ability to control these attributes has powerful implications.
For instance, objects can be camouflaged by blending them
into the background. Existing patterns or colors on products
can be made invisible in order to preview new designs. We
know that changing an object’s intrinsic color or texture can-
not be accomplished without physically modifying the object.
However, the object’s apparent color and texture can be con-
trolled using the illumination. Precise control of an object’s
illumination can be achieved using existing projection display
technology.

Projection display technology has dramatically advanced in
the past decade. Projectors are able to display images with
high spatial resolution and dynamic range. Innovations in
manufacturing have resulted in projectors which are both com-
pact and inexpensive. All these developments make it practical
to use projectors as components of complex display systems.
Such systems integrate projectors, cameras, and computational
devices for a wide range of applications. For example, multi-
ple projector systems have been used to create large seamless
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high resolution displays [8, 6, 4, 7], to produce high quality
images that have several component images [9], to create im-
mersive environments [2, 14], and to eliminate shadows cast
on a screen [1]. Projectors have also been used to change the
appearance of a 3D object. For instance, a Lambertian white
object can be made to appear colored or textured [15]. If the
observer’s position is known, a matte white object can be made
to appear specular or even transparent [5].

The goal of this work is to provide a method to control the
appearance of a colored and textured 3D object. We achieve
this with a system that uses a projector and a camera. The
user specifies the object’s desired appearance from the cam-
era’s viewpoint. Success in controlling this appearance is de-
fined by how similar the image acquired by the camera is to
the desired appearance. To generate the desired appearance
we project an appropriate image onto the object. Any image
projected onto the object is modulated by the spatially vary-
ing reflectance properties of the object’s surface. Humans are
very sensitive to such modulations. Hence, in determining the
image to project, we must account for the contribution of the
spatially varying reflectance to the appearance of the object. A
major challenge is to efficiently account for this contribution
at every pixel, along with the other components that affect the
measured appearance. These components are the environmen-
tal lighting on the scene, and the spectral responses, spatially
varying fall-offs, and non-linearities of the projector-camera
system.

In [18], a method was presented that color corrects an image
when it is projected on a flat screen with homogeneous color.
Controlling the appearance of a surface that has spatially vary-
ing color and texture requires a more sophisticated radiometric
model. A model that takes us all the way from a display im-
age to the image captured by the camera was presented in [12].
This model was used to correct for markings or imperfections
on a flat projection screen or surface.

This paper describes an improved radiometric model which is
dramatically less complex. While the previous model in [12]

requires over 500MB to store the parameters, our model re-
quires just 7.7MB. This is critical when using the model for
real-time compensation because this data must be accessed for
each image displayed. We also provide a simple and effective
off-line radiometric calibration method that recovers the model
without knowing the radiometric parameters of the individual
components of the system.1 A major contribution of our work

1Note the ability to control the appearance of a surface using a projector
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is to show that this calibration can be done very efficiently and
only requires projecting and capturing 6 images. This number
is the minimum needed and is a significant improvement over
the 260 images required in [12].

Results of the radiometric calibration are used on-line to com-
pensate each display image prior to projection. The compen-
sation step is simple and hence can be done at frame-rate. By
displaying compensated images on the object, we can control
the object’s appearance as desired. We show several experi-
mental results that demonstrate our method’s ability to control
the appearance of brightly colored and highly textured 3D ob-
jects.

Our method has direct applications in many areas. Smart envi-
ronments can be enhanced by allowing the display of readable
text on colored and textured everyday objects. Our method can
be applied to product design, allowing designers to control the
appearance of existing products in order to preview new de-
signs. Classes can become more interactive and communica-
tive. By making existing objects such as globes or posters take
on different, dynamically changing appearances, it is possible
to present educational material in a more compelling manner.

2 Model of a Projector-Camera System

Fig. 1 shows the dataflow pipeline for our projector-camera
system. The projector displays a user-selected image onto the
screen. The resulting appearance is captured by the camera.
Note that the camera side of this system (bottom part of the
pipeline) is used only during off-line calibration. After calibra-
tion, our system computes the display image I which, when
projected on the scene, will produce a desired camera image
M
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Figure 1: The dataflow pipeline for a projector-camera system.

The projector-camera system we have used is shown in Fig. 2.
The projector is a Sony SVGA VPL-CS5. It has a native res-
olution of 800×600 pixels. We have constructed a variety of
textured objects and backgrounds (an example scene is shown
in Fig. 2) for testing our algorithms. The camera we have used

depends on the dynamic range of the projector and the surface reflectance
having a significant diffuse component.

Poster

Projector
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Camera

Computer

Figure 2: The projector-camera system we have used in our experi-
ments. Images are displayed using a Sony SVGA VPL-CS5 projector
and captured using a Sony DXC 950 Power HAD camera. The cali-
bration and compensation algorithms are run on a Dell Precision 330

computer that uses an ATI Radeon VE card to output images and a
Matrox Meteor II frame-grabber to capture images.

is a Sony DXC 950 Power HAD model with a resolution of
640×480 pixels. Images are sent to the projector via a ATI
Radeon VE display card and images from the camera are cap-
tured using a Matrox Meteor II frame-grabber. Our algorithms
are run on a Dell Precision 330 computer with a Pentium P4
(1.8 GHz) processor and 1 Gb of memory.

2.1 Geometric Mapping

In this work, our focus is on the radiometric aspect of control-
ling appearance. However, to achieve this we need to know
the geometric mapping between points in the projector plane
x and the image plane x as shown in Fig. 1. We note that
a projector-camera system can be designed such that the ge-
ometric mapping between the displayed and acquired images
is fixed and is unaffected by the location or the shape of the
scene. This is achieved by making the optics of the projection
and the imaging systems coaxial.2

Although our system is not a coaxial one, the camera is placed
close to the projector. Hence, the geometric mapping between
the camera and projector can be modeled with a piecewise
2D mapping. To determine this 2D mapping, we first obtain
a sampling of corresponding points by projecting 1024 uni-
formly spaced square patches on the scene and acquire the cor-
responding images. The patches are efficiently scanned using
binary coding; the correspondences for the centers of all 1024
patches are obtained using just 10 projected images.

We model the mapping between the two coordinate frames us-
ing piecewise second-order polynomials. We divide the cam-
era and projector planes into small regions. In each region, we

2For instance, the same lens can be used by the projector and the camera
by means of a beam-splitter placed behind the lens. The use of coaxial optics
has the added benefit that all points that are visible to the projector are also
visible to the camera; there is no possibility of occlusion.

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 



fit a single second-order polynomial using the corresponding
points previously obtained. This piecewise approach produces
very accurate results as it can accommodate for geometric dis-
tortions that may be caused by the optics of the projector and
the camera as well as parallax due to the shape of the scene.
The final geometric mappings (both ways) between the pro-
jector and the camera are stored as look-up tables; each point
in one domain is used as an index to obtain the corresponding
point in the other. Details are described in [13].

2.2 Radiometric Model

Having obtained a geometric mapping between the projector
and camera image planes, we focus on the radiometric aspect
of the problem. Again, consider the projector-camera pipeline
in Fig. 1. Note that each of the devices in our system has its
own unknown, non-linear response. Since the process of ra-
diometric compensation requires us to invert these responses,
we will assume that the individual responses are monotonic.
This is a reasonable assumption as all the devices are expected
to increase in output with input.

We begin with a model for a single point in the scene. The
projector and camera may have multiple color channels. To
begin, we assume that the projector has only a single channel
denoted by . The input brightness value (scalar value) is
passed to the display device. It is mapped by the radiometric
response function3 of the electronics of the projector to a
projector brightness

= ( ) (1)

This projector brightness is modulated by the spectral response
( ) of the projector channel, where is wavelength. The

projector illuminates the scene point to contribute a scene irra-
diance of

( ) = ( ) (2)

The total irradiance on the scene point is given by the sum of
the projector illumination and the environmental lighting. Let
the irradiance due to the environmental lighting be ( ). Let
the spectral reflectance of the irradiated scene point be ( ) in
the viewing direction of the camera. Then, the radiance of the
scene point in the direction of the camera can be written as

( ) =
¡
( ) + ( )

¢
( ) (3)

Now, let us assume that the radiance of a scene point is being
measured by a camera with a single spectral channel with
the spectral response ( ). Then, the irradiance measured by
the camera’s sensor is

=

Z ¡
( ) + ( )

¢
( ) ( ) (4)

This irradiance is processed by the electronics of the camera
to produce a camera output. The camera output is mapped
to the final measured brightness by the capture device (frame-
grabber). The relationship between the camera irradiance

3We will use small letters to denote functions.

and the measured brightness is described by a non-linear
response ,

= ( ) (5)

The recovery of the response is a well studied problem
and can be accomplished from a small number of images
of an arbitrary scene obtained at different exposures [10, 3,
11]. Applying the inverse response 1 to linearizes mea-
sured brightness with respect to . In the remainder of this
paper, we will assume that the measured brightness is linear
in camera irradiance. Note that we are assuming the model
to be independent at each point. Thus we must assume that
inter-reflection in the scene is negligible.

The above expressions, together, model the whole pipeline in
Fig. 1, from input projector brightness to the measured camera
brightness. Since this model only describes a single channel,
we must generalize for the case of multiple color channels. It
is important to note that the spectral responses of the projec-
tor and camera channels can be arbitrary and are unknown to
us. Let us assume that the projector and the camera each have
three color channels (RGB). Then, we can extend the above
radiometric model and write it compactly using vectors and
matrices as

C = VP+F (6)

where:

C =

V = P = F =

=

Z
( ) ( ) ( )

=

Z
( ) ( ) ( )

= ( )

The matrix V is referred to as the color mixing matrix. The
matrix captures all the couplings between the projector and
camera channels and their interactions with the spectral re-
flectance. Note that even if the scene were an ideal white, and
the camera and projector had channels with identical spectra
we cannot assume V is diagonal. This is because the , ,
and channels typically have broad and overlapping spectral
curves in both cameras and projectors. The contribution of en-
vironmental lighting in the scene (independent of the projec-
tor) to camera irradiance is the vector F. Note that a projector
will also output some light even for a black display image.
Since this offset can be considered independent of the input
value to the projector, we absorb this offset into the environ-
mental lighting term F.

The above model nicely separates brightness non-linearities of
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the system from the spectral characteristics of the system.4

This model is valid at each point x in the projector plane.
We note that the color mixing matrix Vx and the environ-
mental lighting component Fx spatially vary with x but do
not depend on the vector of input projector brightness values
I = ( ). We make the crucial observation that for
a typical projector the non-linear projector response function
p(I) = ( ( ) ( ) ( )) is the same for all points.
Therefore, the model in Eq. (6) can be simplified to

C = Vx p(I) +Fx (7)

Since the projector response function p is the same at every
point, our radiometric model can be represented with a small
number of parameters. The model is minimal in the sense that
reducing the number of parameters further would require as-
sumptions on the scene or the environmental lighting. In this
model, p can be parameterized using splines, or simply rep-
resented with lookup tables. With a lookup table with 16-bit
precision, this requires just over 390K for all three channels.
The 3x3 matrix Vx and the 3-vector Fx together require 12
values per pixel. At a resolution of 640x480 this only requires
7.7MB at 16-bit precision to store all the parameters of the
model. This modest memory requirement makes real-time ap-
plication of the model possible.

3 Efficient Recovery of Model Parameters

The model parameters in Eq. (7) depend on the scene. When
the scene changes, these parameters must be recalibrated.
Thus, a simple and efficient calibration method is required.
The efficiency of the calibration process is fundamentally lim-
ited by the number of images needed to recover the model
parameters. In this section, we show that we can accurately
estimate these paramters by acquiring just 6 images.

3.1 Decoupling the Color Channels

The first step in recovering the model parameters in Eq. (7)
is to find the values of the matrix Vx at each pixel x . We
omit the subscript x for the remainder of this section, but it is
important to keep in mind that V varies spatially. It turns out
to be convenient to treat the recovery of diagonal entries
of V separately. Let D be the diagonal matrix with diagonal

entries Then we define a matrix Ṽ = VD 1 so that
˜ = 1. The entries of the matrix Ṽ encode the mixing
between unlike projected and measured color channels.

To determine Ṽ we change the input projector brightness of
one channel while keeping the others fixed. For example, con-
sider the case where we only change the red channel of the
input brightness:

I(1) =

(1)

(1)

(1)

I(2) =

(2)

(1)

(1)

(8)

4In our experiments, we have used a DLP projector. It is known that a DLP
projector adds a “white” component that is a function (possibly non-linear) of
the RGB color values (see [17, 19] for details). For this case, the color mixing
is more complex. However, our experimental results indicate that the above
model works as a reasonable approximation.

From Eq. (6), we have

(1)

(1)

(1)

= ṼD

(1)

(1)

(1)

+F

(2)

(2)

(2)

= ṼD

(2)

(1)

(1)

+F

(9)

Since we have changed only the red channel of the input, the
corresponding changes in the three channels are simply:

= ˜

= ˜ (10)

= ˜

Since ˜ = 1, we have,

˜ = and ˜ = (11)

Similarly, the unknown elements of Ṽ corresponding to the
green and blue channels are obtained by changing the input
brightness for each of those channels while keeping the others
fixed. We can assume that each of the channels is changed with

respect to a single base image. The 6 parameters in Ṽ require
exactly 4 images to estimate.5 In our experiments, we used
one image with a low input brightness value. For the other
three images, we changed the input brightness by a significant
amount in each respective channel.

The recovery of Ṽ thus allows us to decouple the color chan-

nels by multiplying Eq. (7) by Ṽ 1. This gives

C̃ = Dp(I) + F̃ (12)

where C̃ = Ṽ 1C and F̃ = Ṽ 1F. The key point is that
the rows of Eq. (12) decouple into an independent equation for
each channel

˜ = ( ) + ˜ (13)

Thus, at each pixel, ˜ depends on the input brightness
for the channel and is independent of the other channels..

3.2 Recovering the Projector Non-Linearity

The relationship between input projector brightness and cam-
era irradiance can be determined at each pixel, and for each
channel, by exhaustively capturing one image for each possi-
ble input projector brightness = 1 to 255. This is highly
inefficient given that, for each channel, the projector non-
linearity is the same at every pixel. Consider a perfectly uni-
form white projection surface and a projector and camera with

5The 3 channels per image give 12 measurements at each pixel. We note

that recovering Ṽ is invariant to the additive factor F (3 parameters) and
rescaling byD (3 parameters). Hence at each pixel, the images give 12-6=6
constraints.
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perfectly uniform optics. In this special case the matrix Ṽ is
the same for all pixels. We could perform the calibration of the
projector non-linearity using just one calibration image. For
example, let U be the calibration image, shown in Fig. 3(a),
that consists of 20x20 pixel squares going from possible in-
put brightness black (gray-level 0) to white (gray-level 255) in

steps of one. Once we decouple the channels using Ṽ 1 we
can determine camera irradiance as a function of input projec-
tor brightness by regression on each channel independently.

In our case, however, the optics are not uniform and the scene
has varying surface reflectance and environmental lighting. To
handle these variations, we construct an invariant of the projec-
tor illumination. Let S and T be uniform input images where
all channels are equal to gray-levels and , respectively. Let
˜

S , ˜ T , ˜ U , be the corresponding decoupled camera
irradiances for the images S, T and U at x . It follows from
Eq. (13) that we can define a value given by

=
( ˜ U

˜
S)

( ˜ T
˜

S)
(14)

=
( ( ) ( ))

( ( ) ( ))
(15)

where is the input projector brightness value of the im-
age U at x . Eq. (14) shows that is invariant to any si-

multaneous scaling of all the camera irradiances ˜ U , ˜ S ,
˜

T It is also invariant to simultaneous addition by a con-
stant to all the camera irradiances. At a pixel, the contribution
of reflectance, environmental lighting, and the fall-offs of the
projector-camera system all scale, or add constants to, the cam-
era irradiances. From Eq. (15) we see that the value only
depends on the value in the image U since the projector re-
sponse is the same at every point. Since is monotonic,
it follows from Eq. (15) that there is a monotonic function
such that = ( ). We therefore can determine by
regression of the values vs. for all pixels.

In our experiment, we choose brightness values = 85 and
= 140. Fig. 3(b) shows a sample poster we used to test

our three-image calibration. The image in Fig. 3(c) shows the
camera measurement of the spatially varying image projected
on the poster. In Fig. 3(d) is an image whose intensities are
the normalized values of the invariant . This image should
look similar to Fig. 3(a) since the values of the invariant are
projector input values re-mapped by 1 for each channel.

From Fig. 3(d), it is clear that some values of depend on
the reflectance values from the poster shown in Fig. 3(b). This
is explained by the fact that the invariance does not hold at
points where a pixel is too dark to be measured or saturates in
one of the channels. Invariance also fails at points where there
is a strong variation in either the object’s reflectance or illu-
mination.6 We remove these points from consideration using
a mask (see Fig. 4(a)) indicating the valid pixels. The mask

6Pixels near an edge in the acquired image represent an average of values.
This breaks the invariant. The camera and the projector also do not behave ide-
ally with respect to step edges. For instance, there are slight misalignments of
the color channels. Manufacturers may also introduce mild sharpening filters
to enhance typical images. These factors produce artifacts at edges.

is zero at pixels that are saturated or black in the captured im-

ages ˜ S , ˜ T , ˜ U In addition a mask pixel is zero if the
corresponding point in the input image U (varying projector il-
lumination) or the image acquired when projecting T (varying
reflectance) has large variance in a neighborhood. All other
mask pixels are one. We also exclude pixels where the esti-

mate of Ṽ is corrupted by saturation.

(b) Poster of Tulips(a) Calibration Pattern

(c) Pattern Projected on Tulips (d) Computed Invariant

Figure 3: (a) A spatially varying calibration image used to recover
the projector non-linearity. (b) A poster of tulips we used to test our
three-image calibration method. The spatially varying image from
(a) is projected on the poster and results in (c) when captured by the

camera. From this an invariant image (d) is computed using Eq. (14)
which depends on the projector illumination in (a). Note the invari-
ance fails to be independent of the poster reflectance and environ-
mental lighting at some points. This is due to saturated, dark and

high variance pixels.
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Figure 4: (a) Mask used to exclude points which are either saturated
or have too much local variance. Black mask points were not used
in determining the non-linearity of the display system. (b) Plot of

projector input brightness vs. an invariant of projector output (for the
Green channel).

Fig. 4(b) shows a scatter plot of pairs of values and for
the green channel ( = ). The plots for the other channels
look similar. The green curve shown in Fig. 4(b) was obtained
by non-parametric regression. The regression was performed
at 1000 sample points to obtain . As is clear from Fig. 4(b),
almost all of our data lies very close to a smooth curve. We

note that we recover Ṽ with 4 images and with 3, requiring
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a total of 7 images. However, the darker constant image S can
be used for both sets of images. Hence, we need just 6 images
for calibration.

4 Computing the Compensation Image

Let = ( ) . We write the formula for the vector
of RGB input values I = ( ) required to achieve the
camera vector of RGB camera irradiance values C at a point
x in vector form as

I =
³
(Ṽ 1C C̃S) (C̃T C̃S)

´
(16)

where the notation . denotes component-wise division, and

C̃S and C̃T are the measured camera values for the projected
images S and T . We note that our on-line compensation
method does not use the camera; we directly compute the com-
pensation image from Eq. (16). This is critical to making real-
time compensation possible.

5 Experimental Results

We have evaluated our algorithm on the colorful poster shown
in Fig. 3(a). In Fig. 5(a) we see the results of projecting flat-
gray uncompensated input images on the poster for three levels
of gray (100,150,200). After performing our calibration, we
used Eq. (16) to determine the corresponding compensation
images shown in Fig. 5(b). These were projected on the poster
producing a near uniform gray appearance. At points where
the measured camera brightness saturates or at strong edges
on the poster, the correction fails as is seen in the result for the
brightest image (gray-level 200).7

The remainder of the small artifacts are due to the relatively
low resolution camera we used as well as color abberations
introduced by the projector at strong edges.

In general, however, the errors are quite small as can be seen
from Table. 6, which shows maximum and RMS errors. We
compared our results against those achieved from correction
based on the calibration algorithm of [12] that uses 260 im-
ages. The errors were comparable. This shows that the com-
pactness of our model and the efficiency of our calibration al-
gorithm does not compromise performance.

We also applied our correction to achieve more complex (non-
uniform) desired appearances on the tulip poster. For example,
we would like to change our tulip poster to look like a poster of
the woman’s face shown Fig. 7(a). Simply projecting this im-
age on the poster results in the appearance shown in Fig. 7(b).
The result has an undesirable mix of appearances. In addition,
the captured image is very dark. The compensation image in
Fig. 7 (c) both increases the brightness and corrects for the
spatially varying reflectance. The new appearance shown in
Fig. 7(d) is very close to the desired appearance despite the
strong colors on the tulips poster.

7The edge artifacts mentioned in Sec. 3.1 as well as camera’s resolution
place limits on the frequency of surface modulations a system can correct.
This limitation required us to use smoothed reflectance patterns.

(a) Uniform gray (values 100,150,200) projected on flat poster

(b) Compensation images for uniform gray (values 100,150,200) 

(c) Result of projection of compensation images on poster

Figure 5: Experimental results showing control of the appearance of
the poster in Fig. 3(b). Despite the strong colors in the poster we are
able to give it a near uniform gray appearance using our method.

50, 50, 50

100, 100, 100

150, 150, 150

200, 200, 200

Max. Error R,G,B
Projected 

Brightness  
R, G, B

RMS Error R,G,B

8,6,7

12,8,10

13,13,14

31,23,31

Compensated

25,26,25

66,70,69

77,89,83

53,81,62

Uncompensated

4,3,4

3,2,3

6,3,3

8,4,4

Compensated

23,24,23

59,66,64

42,74,66

36,47,27

Uncompensated

Figure 6: Table showing numerical errors with and without compen-
sation. The errors remain quite small as long as the compensation

remains within the dynamic range that the projector can produce.

(a) Desired Appearance (b) Uncompensated

(c) Compensation Image (d) New Appearance

Figure 7: Experimental results showing the tulip poster in Fig. 3(b)
transformed into a woman’s face. When the desired image (a) is sim-

ply projected on the poster, the image (b) is both dark and modulated
by the colorful flowers. By instead projecting the compensation im-
age (c), we obtain an image (d) which is very close to the desired
image.
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Our method works equally well when changing the appearance
of 3D objects. For example, the cube in Fig. 8(a) has the ap-
pearance of a cardboard computer box. We applied our radio-
metric calibration and correction to make it appear as a shaded
neutral gray box, as shown in Fig. 8(b). We see in Fig. 8(c)
that the original appearance cannot be changed by simply pro-
jecting the desired appearance. The result of projecting the
compensation image in Fig. 8(d) gives the box the appearance
that is shown Fig. 8(e), which is close to the desired appear-
ance. Since we used a matte object, the box has the desired
appearance from other viewing directions, as can be seen in
Fig. 8(f). In Fig. 9(a)-(d), we changed the apparent pattern on
the computer box to make it appear like that of a completely
different brand.

The image in Fig. 10(a) shows a brightly colored globe. In
Fig. 10(b)-(f), we see the results of changing the appearance
of the globe to that of a shaded gray sphere. This demonstrates
that our method is effective at handling curved objects.

We also used our method to control the appearance of the en-
tire scene shown in Fig. 10(a) including the brick background
and the globe. In Fig. 11(a), the desired appearance is of a
soccer ball with soccer players in the background. As seen in
Fig. 11(b), despite the strong pattern of the ball, the intrinsic
appearance of the object is clearly visible in the uncompen-
sated image while the background is too dark. Upon com-
pensation, the scene takes on the desired appearance. As we
change the view, the appearance is maintained although the
shadow cast by the sphere shows the limitations of using only
one projector.

In [16], a video was used to give specially prepared white
painted objects apparent motion. Using our method, we can
transform an ordinary scene of colored and textured objects
into a dynamically changing scene. For example, we give the
globe in Fig. 10 the appearance of Jupiter rotating in space.
Fig. 12(a) shows one frame of the desired video. Fig. 12(b)
shows one frame of the uncompensated video. Both the incor-
rect shading as well as the globe’s strong color can be clearly
seen. After compensation, the same video frames have the
correct new appearance for all views as shown in Fig 12(c,d).
Real-time video correction is practical since the efficiency of
our model enables correction at frame-rate.

6 Conclusion

We have demonstrated the ability to control the appearance of
3D objects using a projector-camera system. This is done by
compensating for the intrinsic colors and textures of the ob-
jects. Our compensation technique is based on a novel radio-
metric model and an efficient off-line algorithm that computes
the parameters of the model. We have applied our compensa-
tion method to a variety of colored and textured 3D objects.
The method works for scenes with both planar and curved sur-
faces. Since it is very efficient, it can also be used to tem-
porally vary the appearance of an object to emulate novel dy-
namic scenes. The ability to control the appearance of every-
day objects makes the projector a more versatile device that
can be used to create experiences that are more realistic, com-
pelling and communicative.

(a) Object (b) Desired Appeance

(c) Uncompensated(d) Compensation Image

(e) New Appearance (f) Side view

Figure 8: Experimental results on controlling the appearance of a
computer box with symbols and lettering. The algorithm automati-
cally compensates for both the albedo and shading of the 3D object.

(a) Desired Appearance (b) Uncompensated

(d) Side View(c) New Appearance

Figure 9: We change the apparent brand and design of the computer
box from Fig.8(a). This allows the preview a new box design.
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