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Abstract

Many vision applications require precise measurement of
scene radiance. The function relating scene radiance to
image brightness is called the camera response. We ana-
lyze the properties that all camera responses share. This
allows us to find the constraints that any response func-
tion must satisfy. These constraints determine the the-
oretical space of all possible camera responses.

We have collected a diverse database of real-world cam-
era response functions (DoRF). Using this database we
show that real-world responses occupy a small part of the
theoretical space of all possible responses. We combine
the constraints from our theoretical space with the data
from DoRF to create a low-parameter Empirical Model
of Response (EMoR).

This response model allows us to accurately interpo-
late the complete response function of a camera from
a small number of measurements obtained using a stan-
dard chart. We also show that the model can be used to
accurately estimate the camera response from images of
an arbitrary scene taken using different exposures. The
DoRF database and the EMoR model can be downloaded
at http://www.cs.columbia.edu/CAVE.

1 Scene Radiance to Image Brightness

Researchers in computer vision develop algorithms to
determine scene properties like shape, reflectance, and
illumination from images. Many of these algorithms
require precise measurements of scene radiance to re-
cover the scene properties. Examples of algorithms that
explicitly use scene radiance measurements are color
constancy [7, 13], construction of linear high dynamic
range images [17, 4, 16], photometric stereo [2, 18,
20], shape from shading [12], estimation of reflectance
and illumination from shape and brightness [14], recov-
ery of BRDF from images [5], and surface reconstruction
using Helmholtz stereopsis [21].

What connects scene radiance with image brightness?
The optics of the imaging system gather light rays from
scene points and focus the rays on the image plane [11].
An electronic or chemical photo-detector converts image
irradiance to image brightness1.

∗This work was completed with support from a National Sci-
ence Foundation ITR Award (IIS-00-85864) and a grant from the
Human ID Program: Flexible Imaging Over a Wide Range of Dis-
tances Award No. N000-14-00-1-0929

1To simplify our exposition, we include integration time in ir-

The goal of this work is to provide an accurate and con-
venient model of the mapping from scene radiance to
image brightness. In general, this mapping comprises
several complex factors, such as vignetting, lens fall-off,
the sensitivity of the detector, and the electronics of the
camera [1, 10]. Regardless of the individual factors in-
volved, we can assume the mapping is a composite of
just two functions, s and f , as shown in Fig. 1. The
function s models the effect of transmission through the
optics of the system. It may vary spatially over the im-
age but is generally linear with scene radiance [1]. The
function f models the process by which the irradiance
E of an image point is converted to an image brightness
B. This f is generally a non-linear function of image
irradiance and is called the camera response function.

In many imaging devices, the non-linearity of f is inten-
tional. A non-linear mapping is a simple means to com-
press a wide range of irradiance values within a fixed
range of measurable image brightness values. Manu-
facturers produce photographic films with specific non-
linear characteristics. The responses of digital cam-
eras are often designed to mimic the non-linearities of
film. Though non-linear, a camera’s response function
is generally uniform across the spatial dimensions of the
image. Hence, it is described by a one-variable func-
tion of irradiance, B = f(E). Inversion of the camera
response function allows the transformation of image
brightness to image irradiance. Going from image ir-
radiance to scene radiance can then be accomplished
by finding s, which is easy to do once f is known [1,
10]. Therefore, we will focus our attention on the re-
sponse function f .

A number of algorithms have been introduced in com-
puter vision and computer graphics to estimate the
camera response f from multiple images of a scene
taken with different exposures [4, 15, 16, 17, 19]. All
these methods make a priori assumptions about the
form of the response function2. For example, by as-
suming the response has the form of a gamma curve,
f(E) = α + βEγ , Mann and Picard [16] find the pa-
rameters γ, α, and β from multiple registered images
of a static scene taken using different exposures. Mann
also proposed other analytic forms for the response [15].

radiance E. Thus, E = tẼ, where t is the integration time and Ẽ
is the irradiance per unit time.

2It was recently shown in [8] that, to avoid ambiguities, a priori
constraints on the response function are imperative when finding
the response from multiple images.
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Figure 1: Flow diagram showing the two basic transformations, s and f, that map scene radiance L to
image brightness B. The function s models the optics of the imaging system. It may vary spatially but
is generally linear. The mapping f of image irradiance to image brightness is called the camera response
function. It is usually non-linear but can be assumed to be spatially uniform.

One difficulty with such assumptions is that a camera’s
response function can vary significantly from an ana-
lytic form like a gamma curve. In [4] and [19], no par-
ticular form is assumed. Instead they impose smooth-
ness constraints. In a compromise between these two
extremes, Mitsunaga and Nayar [17] assume that a low-
degree polynomial is a sufficiently general parameterized
model of response functions.

It is important to note that, while a lot of recent work
acknowledges the importance of camera response, a care-
ful analysis and modeling of the response has yet to be
done. We wish to address this void. In doing so, we seek
answers to the following fundamental questions:

• What is the space of possible camera re-
sponse functions? We show that all response
functions must lie within a convex set that results
from the intersection of a plane and a positive cone
in function space. This gives us both guidance on
the form of our model as well as constraints.

• Which camera response functions within this
space arise in practice? We created a Database
of Response Functions (DoRF) of a variety of films
and solid-state cameras that are available in the
market. The database currently includes a total
of 201 real-world response functions.

• What is a good model for response func-
tions? We combine the constraints from our anal-
ysis, and the data from DoRF to formulate a new
Empirical Model of Response (EMoR) which can
model a wide gamut of response functions with a
very small number of parameters. We show that
EMoR outperforms alternative models, including
previously used ones, in terms of accuracy.

We show that EMoR works well by using a number
of different evaluation metrics. We demonstrate that
EMoR can be used to recover complete response func-
tions from an image of a chart with a few known re-
flectances. It can also be used to accurately deter-
mine a camera’s response from a set of images of a
scene taken at different exposures. We have made
the DoRF database and the EMoR model available at
http://www.cs.columbia.edu/CAVE.

2 What is the Theoretical Space of
Camera Response Functions?

Before we explore the theoretical space of response func-
tions, we state our assumptions:

• Our first assumption is that the response function
f is the same for all pixels on the detector. Linear
spatial variations in the response, such as fixed pat-
tern noise [10], can be folded into the function s (see
Fig. 1) which includes effects such as lens fall-off
[1]. By removing such variations, the response be-
comes a one-variable function of image irradiance,
f(E) = B, where B is image brightness.

• Our second assumption is that the range of our cam-
era’s response goes from BMIN to BMAX. These val-
ues are easily computed.3 The units of response
are arbitrary, so we normalize the response so that
BMIN = 0 and BMAX = 1.

• Our third assumption is that the response function
is monotonic. If the response is not monotonic, it
is many to one and thus cannot be linearized. This
limits its usefulness in computer vision. Without
loss of generality, we assume f monotonically in-
creases.4 This implies that corresponding to BMIN

and BMAX are minimum and maximum detectible
irradiances, EMIN and EMAX. These parameters
also can be incorporated into the function s in
Fig. 1, since they represent a linear scaling and shift
along the irradiance axis. Therefore, we normalize
irradiance so that EMIN = 0 and EMAX = 1.

With these assumptions, we define the theoretical space
of camera response functions as:

WRF := {f |f(0) = 0, f(1) = 1,
and f monotonically increasing }.

The exact form of the space WRF is easier to understand
in terms of vectors. Any function f of irradiance (not
necessarily a response) may be thought of as a vector by
sampling it at a set of fixed increasing irradiance levels.
That is, the function f becomes the finite-dimensional

3For example, in digital cameras BMIN is the mean of the ther-
mal noise. This may be estimated from an image taken with the
lens cap on.

4If it decreases we use 1 − f as our response.
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Figure 2: To visualize the theoretical space of cam-
era response functions we represent the response
functions as vectors. Vectors that satisfy f(1) = 1 lie
on the plane W1. Vectors satisfying the monotonic
condition lie in the shaded solid polygonal cone Λ.
The theoretical space WRF of camera response func-
tions is the darkly shaded intersection Λ ∩ W1.

vector5 (B1, . . . , BP ) = (f(E1), . . . , f(EP )). We set the
brightest sampled irradiance to be EP = 1.

If f is a response function, it is normalized such that at
irradiance 1 it has maximum brightness BP = f(1) = 1.
Therefore, all response vectors must lie in the plane W1

shown in Fig. 2, where the last component BP is 1. If f
and f0 are any two response vectors in the plane W1, the
difference h = f − f0 lies in a parallel plane W0 going
through the origin (see Fig. 2). Therefore, any response
function can be expressed as f = f0+h where f0 is some
base response function and h ∈ W0.

Now, we have the additional constraint that a response
function is monotonic, which means that its first deriva-
tives must be positive. Any positive linear combination
of two functions with positive derivatives must also have
positive derivatives. We know that a set is a cone when it
has the property that positive linear combinations of its
elements lie within it. Therefore, monotonic functions
can be represented by a cone, shown as Λ in Fig. 2.

Combining both of the above constraints, we see that
the theoretical space of all response functions WRF is
the intersection (the darkly shaded region in Fig. 2) of
the cone Λ with the plane W1:

WRF = W1 ∩ Λ. (1)

Note that the convexities of the plane and the cone imply
that the intersection WRF is also convex. As a conse-
quence the mean of any set of camera response functions
is also a valid camera response function.

5We will treat f interchangeably as a vector and a function. We
assume the function f is smooth enough so that we can recover it
from a vector of dense samples by interpolation.

3 Approximation Models for the Re-
sponse Function

Even though the theoretical space of response functions
WRF is restricted to an intersection of a plane and a
cone, it is still infinite-dimensional. However, there are
a limited number of processes that are used in films
and in solid state detectors to collect light. As a re-
sult, many functions within the theoretical space never
arise in practice. It therefore makes sense to look for
a finitely parameterized subset of WRF which approxi-
mates the set of real-world response functions.

To find a parametrization of WRF we use the description
we obtained in Eq. 1, and note that W1 = f0 + W0. We
observe that any choice of basis h1, h2, . . . for the vector
space W0 gives an approximation model.6 The first M
basis elements give the Mth order approximation:

f0(E) +
M∑

n=1

cnhn(E) , (2)

where c1, . . . , cM are the coefficients or parameters of
the model.7

This approach generalizes that of Mitsunaga and Nayar
[17] which uses a polynomial basis to approximate WRF.
In our notation in Eq. (2), the polynomial model is ob-
tained using f0(E) := E and hn(E) := En+1 − E. One
can also obtain a trigonometric approximation model
by using f0(E) := E and the half-sine basis hn(E) :=
sin(nπE). Clearly, there are many more choices. Thus,
while the description of WRF in Sec. 2 in terms of W0

and f0 has suggested the general form of an approxima-
tion model, it has not given us criteria to decide which
basis of W0 to use. The efficiency of any basis depends
on how close the responses of actual imaging systems
are to the space spanned by the first few basis elements.
Hence, a natural approach is to use the response curves
of real-world imaging systems to determine the appro-
priate basis for the approximation model.

4 Real-World Response functions

We gathered response curves for a wide variety of pho-
tographic films, CCD sensors, and digital cameras (de-
tector + electronics). Companies such as Kodak, Agfa,
and Fuji have published response curves for some of their
films on their web sites. The curves we gathered in-
clude representatives from positive and negative films,
consumer and professional films, still and motion pic-
ture films, in both color as well as black and white. We
treated the three response curves for color films as three
different responses. We also included curves of the same
film type but different ASA speeds. Examples of film
brands we included are Agfacolor Futura, Agfachrome

6We have also considered a log-space version, for details see [9].
7Note that due to normalization of f in Sec. 2 the model im-

plicitly has the scale and offset parameters BMIN, BMAX, EMIN,
and EMAX.
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Figure 3: Examples from our database of 201 real-world response functions (DoRF). The database includes
photographic films, digital cameras, CCDs, and synthetic gamma curves. Note that even within a single
brand of film, for example Agfa, there is considerable variation between response curves.

RSX-II, Fuji F125, Fuji FCICD, Kodak Advantix, Ko-
dak Gold, and Kodachrome.

We also obtained response curves for several CCD sen-
sors, in particular Kodak’s KAI and KAF series. In the
case of digital cameras, the manufacturers we contacted
were unwilling to provide the responses of their cam-
eras. However, Mitsunaga and Nayar have measured
the responses of a variety of digital and video cameras,
including the Sony DXC 950 and the Canon Optura us-
ing their algorithm RASCAL [17]. These curves were
included. Many camera manufacturers design the re-
sponse to be a gamma curve. Therefore, we included a
few gamma curves, chosen from the range 0.2 ≤ γ ≤ 2.8,
in our database. Currently, the database contains a total
of 201 curves, a few of which are shown in Fig. 3.

As we discussed in Sec. 2, we assume that response
curves are monotonic. For this reason, the 201 response
curves we chose were all monotonic. The few non-
monotonic ones we came across were disregarded. In
the case of negative film, we transformed the curves to
make them monotonically increasing rather than mono-
tonically decreasing. All curves were converted to linear-
linear scale in response and irradiance.

5 An Empirical Model of Response

In this section, we present a new model for the camera
response which combines the general form of the approx-
imation model of Eq. (2) with the empirical data in the
DoRF database described in Sec. 4. To create as well
as test such a model, we segregated the DoRF database
into a training set of 175 response curves and a testing
set with 26 curves. We denote the training curves as
{g1, . . . , gN} ⊂ WRF, where N = 175 and WRF is the
theoretical space of responses defined in Sec. 2.

We would like to find a low dimensional approximation
of WRF, based on our linear model from Eq. (2), that is

close8 to the empirical data from DoRF. We can achieve
this by applying Principal Component Analysis (PCA)
to the training curves to find a basis {h1, h2, . . . , hM}
for Eq. (2). We will refer to this basis as the Empirical
Model of Response (EMoR).

Recall from Sec. 2 that WRF is a convex set. This implies
that the mean curve (1/N)

∑N
n=1 gn is also a response

function. We choose f0 in Eq. (2) to be the mean curve,
which is shown in Fig. 4(a). It represents the 0th order
approximation to WRF.

To find the basis of Eq. (2) using PCA, we work with a
finite-dimensional approximation. By densely sampling
each response curve f at points {E1, . . . , EP }, we ap-
proximate f by the vector (f(E1), . . . , f(EP )). Using all
the response vectors in our training set, the elements of
its symmetric covariance matrix C are found as:

Cm,n =
N∑

p=1

(gp(En) − f0(En))(gp(Em) − f0(Em)).

We write VM for the span of the eigenspaces associated
with the largest M eigenvalues of the matrix C. The
space VM is the best M -dimensional approximation to
the space W0 [6]. The curves in Fig. 4(b) are the eigen-
vectors for the 4 largest eigenvalues of the covariance
matrix C.

The cumulative energies associated with the eigenvalues
increase rapidly, as seen in Fig. 4(c). This shows that
EMoR represents the space of response functions well.
In fact, 3 eigenvalues explain more than 99.5% of the
energy. This suggests that even a 3-parameter model
should work reasonably well for most response functions
found in practice.

To approximate a new response function f in WRF with
an M -parameter EMoR, we project f − f0 ∈ W0 into

8For simplicity, we use the root mean square distance.
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Figure 4: (a) The mean of 175 camera responses in DoRF used as the base curve f0 in the EMoR model.
(b) Four eigenvectors (functions) corresponding to the largest four eigenvalues of the covariance matrix for
the 175 curves. (c) A plot showing the percentages of the energies captured by VM , the span of the M
principal components. The subspace corresponding to the three largest eigenvalues (an EMoR model with
3 parameters) captures more than 99.5% of the energy.

VM . Let H := [h1 · · ·hM ] be the matrix whose columns
are the first M unit eigenvectors. Then, the EMoR ap-
proximation f̃ to the response curve f is

f̃ = f0 + Hc (3)

where c = HT (f − f0) are the model coefficients.

6 Imposing Monotonicity

The EMoR approximation f̃ satisfies the constraint f̃ ∈
W1. Nevertheless, as discussed in Sec. 2, functions in
the theoretical space WRF must also be monotonic. To
impose this constraint on the EMoR approximation, we
need to find the best monotonic approximation f̃mon to
the true response curve f . In other words, we find the
closest point in LM := (f0 + VM ) ∩ WRF to f where
we measure distance in terms of the norm in L2. The
space LM is convex since it is an intersection of convex
sets. Hence, there must be a unique closest point in LM

to f. A function f̃mon is monotonic if its derivative is
positive. If D is the discrete derivative matrix then we
wish to ensure that Df̃mon ≥ 0.

Again, let H be the matrix with the first M PCA eigen-
vectors as columns. Then, f̃mon will be of the form
f̃mon = f0 + Hĉ, where the coefficient vector ĉ is deter-
mined as ĉ = arg minc ||Hc − f − f0||2, subject to the
constraint

DHĉ ≥ −f0. (4)

Thus, finding ĉ turns into a standard problem of
quadratic programming (see [9] for details.) Solving this
problem gives us the best monotonic EMoR approxima-
tion for any response curve.

7 Evaluating the EMoR Model

The various approximation models described in Sec. 3
can fit arbitrarily complex response functions at the cost
of using many parameters (model coefficients). What
distinguishes these models from each other is the rate
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Figure 5: A qualitative illustration of how the fit
of the EMoR model improves with the numbers of
model parameters. Here, we show two of the most
difficult responses in the DoRF database. For each
of these responses, approximation curves with 1, 3,
5, 7, and 9 parameters are shown. Even with 5 pa-
rameters the approximation is quite good. With 11
parameters there is little difference between the ap-
proximate and actual curves.

and manner with which the quality of the approxima-
tion varies with the number of parameters. To see this in
the case of EMoR, we chose two curves from the DoRF
database which were difficult to fit. Fig. 5 shows ap-
proximations of these two curves with the number of pa-
rameters M = 1, 3, 5, 7, and 9. Even the low-parameter
approximations follow the curves grossly. With 5 param-
eters, it is hard to distinguish the response curves from
the approximations. The approximations for M = 11
are almost identical to the original curves. These worst-
case curves show qualitatively how fitting improves with
the number of parameters.
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Dim 10 11

Mean Error

Worst Curve

Mean Error

Worst Curve

Mean Error

Worst Curve

Mean Error

Worst Curve

Training 

data

Testing 

data

RMSE

 Case

Disparity 

Case

RMSE 

Case

Disparity

 Case

1 2 3 4 5 6 7 8 9

4.12E-02

2.34E-01

1.94E-02

1.37E-01

8.87E-03

6.49E-02

4.15E-03

2.48E-02

2.82E-03

1.76E-02

1.91E-03

1.29E-02

1.58E-03

1.08E-02

1.15E-03

8.08E-03

9.10E-04

6.39E-03

7.60E-04

4.53E-03

6.02E-04

2.94E-03

4.00E-02

2.04E-01

1.73E-02

1.06E-01

6.27E-03

3.79E-02

2.54E-03

9.47E-03

1.77E-03

9.38E-03

1.07E-03

3.56E-03

9.55E-04

2.78E-03

6.37E-04

1.90E-03

5.23E-04

1.75E-03

4.74E-04

1.62E-03

4.00E-04

1.60E-03

3.43E-01 2.41E-01 2.06E-01 1.64E-01 1.31E-01 1.02E-01 9.81E-02 5.37E-02 4.05E-02 3.93E-02 2.56E-02

9.07E-02 4.77E-02 2.60E-02 1.51E-02 1.05E-02 8.09E-03 7.46E-03 4.96E-03 4.30E-03 3.95E-03 3.12E-03

2.88E-01 1.56E-01 6.75E-02 3.19E-02 2.23E-02 2.16E-02 2.15E-02 1.61E-02 1.37E-02 1.36E-02 8.21E-03

8.28E-02 3.62E-02 1.74E-02 1.02E-02 7.58E-03 5.65E-03 5.49E-03 3.14E-03 2.75E-03 2.62E-03 2.04E-03

Table 1: An evaluation of the performance of the EMoR model as the number of parameters increase. The
model was used to approximate curves in our training set of 175 curves and testing set of 26 curves from
DoRF. In the RMSE Case, the Mean Error is the RMSE averaged over all the curves in each set. The
largest RMSE for the set is listed in the row labeled Worst Curve. The Disparity Case uses the maximum
disparity between approximated and actual curves. In this case, the Mean Error and the Worst Curve
values are the mean disparity and maximum disparity computed over all the curves in the set. Most curves
are well approximated using only 3 parameters.

1 2 3 4 5 6 7

gamma N. A. N. A. N. A. N. A. N. A. N. A. 

polynomial

trigonometric

EMOR

RMSE case

model
dim

1.73E-02 6.27E-03 2.54E-03 1.77E-03 1.07E-03 9.55E-04

3.91E-02 2.58E-02 1.89E-02 1.44E-02 1.16E-02 9.46E-03

3.46E-02

7.37E-02

4.00E-02

6.83E-02

3.65E-033.29E-02 1.71E-02 1.06E-02 6.93E-03 4.95E-03

Table 2: Table showing RMSE of various approximation models averaged over the testing curves. To
compute accuracy in bits, take −log2 of the average RMSE. EMoR clearly outperforms all the other models.

We conducted an extensive quantitative evaluation of
the EMoR model. Table 1 shows how accuracy increases
with dimensionality. We used EMoR to approximate the
175 training curves as well as the 26 testing curves de-
scribed in Sec. 4. We used four metrics with each set
to evaluate the results. The results are shown in Ta-
ble 1. The error values based on root-mean-square error
(RMSE) appear in rows labeled RMSE Case. We com-
pute the Mean Error by averaging the RMSE over all
curves in each set (training and testing). The largest
RMSE over all curves in the set gives the value called
Worst Curve. The errors in rows labeled Dispar-
ity Case are computed from the maximum disparity
of the fit and the original curve. The columns of Ta-
ble 1 correspond to the dimensions (parameters) used
for the EMoR model. Note that most curves are well
approximated using an EMoR model with just three pa-
rameters.

Taking −log2 of the entries in Table 1 gives the accuracy
in bits. The number of parameters needed for accept-
able accuracy depends on the application. For example,
suppose we wish to construct a mosaic by blending a set
of images taken with an 8-bit camera, and an error of 4
gray-levels is acceptable. Choosing 3 parameters gives
an RMSE Case/Mean Error accuracy of 6.8. In an ap-
plication that is more sensitive to errors, such as stereo,
choosing 6 parameters exceeds 9.0 bits of accuracy using
the same measure. Some algorithms may require very
accurate scene radiance measurements. The Disparity
Case/Mean Error metric gives the average of the worst
errors. This measure indicates that using 11 parameters
ensures 8.3 bits of accuracy.

We also evaluated EMoR by comparing its performance
to other approximation models, when monotonicity is
imposed in all cases. These include the gamma func-
tion, Eγ , as well as the polynomial and trigonometric ap-
proximation models described at the end of Sec. 3. The
gamma curve has only one parameter, given our normal-
izations. Table 2 summarizes our results for the DoRF
testing curves. The accuracy of the gamma curve model,
using the RMSE averaged across the testing curves, is
4.86 bits. For one-parameter models, the gamma curves
are superior to other models. All models, except the
gamma curve, may be made more accurate by using
more parameters. As the number of parameters in-
creases, the EMoR based monotonic fit significantly out-
performs the other models.

8 Camera Response from Sparse Sam-
ples

The most popular way to estimate a camera’s response
function is by imaging a color chart of known re-
flectances, such as the Macbeth chart [3]. The Macbeth
chart includes 6 patches with known reflectances going
from white through gray to black. Typically, one ap-
plied standard interpolation to these points to obtain
a continuous response function. There is no guarantee
that the interpolated values correspond to the actual
response function of the camera.

The EMoR model enables us to obtain accurate inter-
polations from chart measurements. Fig. 6 shows in-
terpolation results obtained by fitting four different 3-
parameter models (including EMoR) to the sparse re-
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Figure 6: The response curve of a Nikon 990 camera
interpolated from sparse samples, obtained using a
Macbeth chart, using 3-parameter EMoR and poly-
nomial models both with and without monotonic-
ity imposed. Images of the chart taken with the
same camera at different exposures provide the addi-
tional measurements (ground truth) used to estimate
the accuracies of the interpolations. The monotonic
EMoR has the smallest RMS error.

sponse samples obtained from an image of a Macbeth
chart taken using a Nikon 990 digital camera9.

From the chart and its image, we have six normalized
irradiance values E1, . . . , E6 and corresponding bright-
ness values B1, . . . , B6. The 3 coefficients for the EMoR
model are computed using Eq. 3, where the matrix
H comes from the EMoR basis functions h1, h2, and
h3 evaluated at E1, . . . E6. Similarly, we take the first
3 basis vectors for the polynomial model evaluated at
E1, . . . E6 to obtain H and compute the 3 coefficients of
that model. We also computed the first 3 coefficients of
the EMoR and the polynomial model with monotonicity
imposed, using the method described in Sec. 6.

The interpolations obtained from the different models
were evaluated (using RMSE) against many more chart
measurements obtained by simply changing the camera’s
exposure. For the 3-parameter EMoR, the RMSE was
0.11, while for the polynomial model, it was 0.12. More-
over, the polynomial fit is already beginning to exhibit
the kind of oscillations one expects from over-fitting.
These oscillations worsen as the number of parameters
increases. This is because we only fit using 6 data points.
When we constrain the fits to be monotonic, the RMSE
for the EMoR model is 0.11 and RMSE for the polyno-
mial model is 0.57. In summary, the EMoR model en-
ables accurate reconstructions of response curves from

9The Nikon 990 camera was not part of the training or testing
curves in DoRF.

very few samples.

9 Response from Multiple Images

A number algorithms recover a camera’s response from
multiple images of an arbitrary static scene taken using
different exposures [4, 15, 16, 17, 19]. These algorithms
recover the inverse response function f−1 = g, where
g(B) = E. Since an inverse response function has all the
properties of a response function, we can apply PCA
to the inverses of the curves in DoRF to get an EMoR
representation of the inverse camera response. We write
g(B) = g0(B) +

∑M
n cnhinv

n (B) in terms of the mean
g0 and the eigenvectors hinv

n of the covariance matrix of
the inverse curves.

Now, suppose two images of the same scene are captured
with exposures e and k · e, where k is the ratio of expo-
sures. Suppose the images are registered. If a response
Ba at a point in one image corresponds to a response Bb

in the second image, then their irradiances must satisfy
g(Ba) = kg(Bb). Since the equations g(Ba)−kg(Bb) = 0
are linear in the coefficients cn, the coefficients can be
found using least-squares techniques, when k is known.

Using this approach, we recovered the response of the
Nikon 990 Coolpix camera from the three images of a
scene shown in Fig. 7, taken using exposures e, 2e, and
4e (i.e. k = 2). The monotonic EMoR fit (using just
3 parameters) is shown as a solid curve in Fig. 8. For
comparison the polynomial method of Mitsunaga and
Nayar [17], and the log method of Debevec and Malik
[4] is also shown. Measurements from the Macbeth chart
(black dots) are included as ground truth. All the recov-
ered curves are reasonable fits although only the EMoR
fit is monotonic. The EMoR fit was found to be closest
to the ground truth (chart data).

10 Conclusion

Radiometric response curves represent the critical link
between image measurements and scene radiances. In
this paper, we have conducted a detailed analysis of the
properties of response curves. From these properties,
we derived the theoretical space of all camera response
functions. We have shown that all responses must lie
within a convex set that results from the intersection of
a plane and the positive cone of monotonic functions.
We used this space to formulate a general approxima-
tion model for camera responses. This model subsumes
previously used ones such as the polynomial model, as
well as others such as the trigonometric model.

To fully exploit our theoretical insights, we created a
database, DoRF, of 201 real-world response functions.
We used the empirical data from DoRF and the general
approximation model from our theoretical analysis to
develop a powerful approximation model for responses
called EMoR. We used several measures to show that
the EMoR model performs far better than other models
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Figure 7: Three images of a static scene taken with a
Nikon 990 Coolpix camera using exposures e, 2e, and
4e (left to right). These images were used to recover
the inverse response of the camera (see Fig. 8).
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Figure 8: Inverse response curves recovered from
the images in Fig. 7 using the monotonic EMoR
model (with three parameters), the Mitsunaga-
Nayar polynomial model, and the Debevec-Malik
log model (with three smoothing parameters, λ =
8, 32, 128). The dots correspond to ground truth ob-
tained by calibration using a Macbeth reflectance
chart.

used in the literature.
We showed two example applications of the EMoR
model. The first used a few patches on a reflectance
chart to fully recover the response curve of the camera.
The second used EMoR to recover the camera response
from three images of an arbitrary scene taken with dif-
ferent exposures. Our experimental results show that
the EMoR model provides an accurate and efficient low-
parameter model of real-world camera responses. The
DoRF database and the EMoR model can be down-
loaded at http://www.cs.columbia.edu/CAVE.
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