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Abstract

Many computer vision algorithms rely on precise es-
timates of scene radiances obtained from an image.
A simple way to acquire a larger dynamic range of
scene radiances is by combining several exposures of
the scene. The number of exposures and their values
have a dramatic impact on the quality of the combined
image. At this point, there exists no principled method
to determine these values. Given a camera with known
response function and dynamic range, we wish to find
the exposures that would result in a set of images that
when combined would emulate an effective camera with
a desired dynamic range and a desired response func-
tion.

We first prove that simple summation combines all the
information in the individual exposures without loss.
We select the exposures by minimizing an objective
function that is based on the derivative of the response
function. Using our algorithm, we demonstrate the
emulation of cameras with a variety of response func-
tions, ranging from linear to logarithmic. We verify our
method on several real scenes. Our method makes it
possible to construct a table of optimal exposure val-
ues. This table can be easily incorporated into a digital
camera so that a photographer can emulate a wide va-
riety of high dynamic range cameras by selecting from
a menu.

1 Capturing a Flexible Dynamic Range

Many computer vision algorithms require accurate es-
timates of scene radiance such as color constancy [9],
inverse rendering [13, 1] and shape recovery [17, 8,
18]. It is difficult to capture both the wide range of
radiance values real scenes produce and the subtle vari-
ations within them using a low cost digital camera. This
is because any camera must assign a limited number
of brightness values to the entire range of scene radi-
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(a) Small and large exposures combine to capture a high dynamic range

(b) Similar exposures combine to capture suble variations

Figure 1: Illustration showing the impact of the choice of
exposure values on which scene radiances are captured. (a)
When large and small exposures are combined the resulting
image has a high dynamic range, but does not capture some
scene variations. (b) When similar exposure values are com-
bined, the result includes subtle variations, but within a lim-
ited dynamic range. In both cases, a set of exposures taken
with a camera results in an “effective camera.” Which ex-
posures must we use to emulate a desired effective
camera?

ances. The response function of the camera determines
the assignment of brightness to radiance. The response
therefore determines both the camera’s sensitivity to
changes in scene radiance and its dynamic range.

A simple method for extending the dynamic range of
a camera is to combine multiple images of a scene
taken with different exposures [6, 2, 3, 10, 11, 12, 15,
16]. For example, the left of Fig. 1(a) shows a small
and a large exposure, each capturing a different range
of scene radiances. The illustration on the right of
Fig. 1(a) shows that the result of combining the ex-
posures includes the entire dynamic range of the scene.



Note that by using these exposures values we fail to cap-
ture subtle variations in the scene, such as the shading
of the ball. Once these variations are lost they can not
be restored by methods that change the brightness of
an image, such as the recent work on tone mapping [4,
5, 14].

In Fig. 1(b), two similar exposures combine to produce
an image that captures subtle variations, but within a
limited dynamic range. As a result, in both Fig. 1(a)
and (b), the images on the right can be considered as the
outputs of two different “effective cameras.” The num-
ber and choice of exposures determines the dynamic
range and the response of each effective camera. This
relationship has been ignored in the past. In this pa-
per we explore this relationship to address the general
problem of determining which exposure values to use
in order to emulate an effective camera with a desired
response and a desired dynamic range. Solving this
problem requires us to answer the following questions:

• How can we create a combined image that
preserves the information from all the ex-
posures? Previous work suggested heuristics for
combining the exposures [3, 11, 12]. We prove that
even without linearizing the camera, simple sum-
mation preserves all the information contained in
the set of individual exposures.

• What are the best exposure values to
achieve a desired effective response function
for the combined image? It is customary to ar-
bitrarily choose the number of exposures and the
ratio (say, 2) between consecutive exposure values
[3, 10, 11, 12]. For example, when this is done
with a linear real camera, the resulting combined
image is relatively insensitive to changes in large
radiances. This can bias vision algorithms that
use derivatives of radiance. Such biases are elimi-
nated using our algorithm, which selects the expo-
sure values to best achieve a desired response.

• How can we best achieve a desired dynamic
range and effective response function from
a limited number of images?

It is common to combine images with consecutive
exposure ratios of 2 (see [3, 11, 12]). to create
a high dynamic range image. With that choice
of exposure ratio, is often necessary to use 5 or
more exposures to capture the full dynamic range
of a scene. This is impractical when the number of
exposures that can be captured is limited by the
time to acquire the images, changes in the scene,
or resources needed to process the images. Our al-
gorithm determines the exposure values needed to

best emulate a desired camera with a fixed number
of images.

Our method allows us to emulate cameras with a wide
variety of response functions. For the class of linear real
cameras, we present a table of optimal exposure values
for emulating high dynamic range cameras with, for
example, linear and logarithmic (constant contrast) re-
sponses. Such a table can be easily incorporated into a
digital camera so that a photographer can select his/her
desired dynamic range and camera response from a
menu. In other words, a camera with fixed response
and dynamic range can be turned into one that has a
“flexible” dynamic range. We show several experimen-
tal results using images of real scenes that demonstrate
the power of this notion of flexible dynamic range.

2 The Effective Camera

When we take multiple exposures of the same scene,
each exposure adds new information about the radi-
ance values in the scene. In this section, we create an
effective camera by constructing a single image which
retains all the information from the individual expo-
sures.1 By information we mean image brightness val-
ues which represent measurements of scene radiance.

Scene radiance is proportional to image irradiance E
[7]. In a digital camera, the camera response function
f jumps from one image brightness value B to the next
at a list of positive irradiance values (shown below the
graph in Fig. 2) which we call the measured irradiance
levels. An image brightness value indicates that the
corresponding measured irradiance lies in the interval
between two of these levels. Hence, without loss of gen-
erality, we define B as the index of the first of these two
levels, EB , so that f(EB) = B. Hence, the response
function is equivalent to the list of measured irradiance
levels.2

Now, consider the measured irradiance levels using unit
exposure e1 = 1 with a real non-linear camera having 4
brightness levels.3 These levels are shown on the bar at
the bottom of Fig. 3(a). The irradiance levels for a sec-
ond exposure scale by 1/e2, as shown in Fig. 3(b). We
combine the measured irradiance levels from the first
and the second exposures by taking the union of all the

1The value we call exposure accounts for all the attenuations
of light by the optics. One can change the exposure by changing
a filter on the lens, the aperture size, the integration time, or the
gain.

2Note that the slope of the response function determines the
density of the levels, as shown by the short line segment in Fig. 2.

3Note that the number of exposures and brightness levels are
for illustration only. Our arguments hold in general.

2



Br
ig

ht
ne

ss
  B

∆B
=1

dense 
spacing

sparse 
spacing

f

∆B
∆E

1
∆E==f

Measured Irradiance Levels

Irradiance  E

Figure 2: The camera response function f relates irradiance
E to image brightness B. In a digital camera, the disconti-
nuities of this function define a list of measured irradiance
levels shown on the bar beneath the graph. The slope of
the camera response function (short line segment) gives the
density of these levels.

levels, shown under the graph in Fig. 3(c). This com-
bined list of levels uniquely determines the response h
shown in Fig. 3(c). It is important to note that the re-
sponse h may also be obtained by summing the response
functions4 f(E) in Fig. 3(a) and f(e2 E) in Fig. 3(b).
Therefore, for n exposures, the combined camera re-
sponse is

h(E) =
n∑

j=1

f(ej E). (1)

In terms of images, let IE be a vector of image irradi-
ance values. Then the jth captured image of brightness
values is f(ej IE) where the real non-linear response is
applied to each pixel. Hence, Eq. 1 implies that sum-
ming the images results in an image h(IE). Since the
response h is the same as obtained by taking the union
of the measured irradiance levels from all the exposures,
we have therefore proven the following:5

Theorem 1 The sum of a set of images of a scene
taken at different exposures includes all the information
in the individual exposures.

4Here we assume that none of the irradiance levels in different
exposuresexactly coincide. In practice this is not a problem.

5We emphasize that we do not assume the camera is linear
nor do we assume that the camera is linearized. We assume only
that the non-linear response f is monotonic.
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Figure 3: (a) The response function using unit exposure is
equivalent to a list of irradiance levels where the brightness
changes. These levels are shown on the bar beneath the
graph. (b) In a second exposure, the levels in (a) scale by
(1/e2). (c) The irradiance levels for the effective camera are
obtained from the union of the levels in (a) and (b) which
determines the response function h. Note that this response
can also be obtained by summing the individual response
functions in (a) and (b). As a result, simple summation
of the acquired images results in an effective camera image
that preserves all the information in the individual images.

3 Finding the Best Exposures

We now determine the best exposures for an effective
camera, given the response of the real camera and a
desired response function.6 To do this, we first propose
an objective function which measures how well an effec-
tive camera emulates a desired camera. We then find
the exposures that minimize the objective function.

3.1 The Objective Function

A näıve measurement of similarity between a desired re-
sponse and the response achieved by an effective camera
is the norm of their difference. This difference, however,
is a poor measure of similarity. For example, adding a
constant brightness to one response function will change
this measure. Nevertheless, it does not change the func-

6The desired response determines the desired dynamic range.
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tion’s discontinuities and thus does not change its mea-
sured irradiance levels. The distances between the irra-
diance levels determine the accuracy in measuring the
irradiances. We determine these distances using the fol-
lowing observation (illustrated in Fig. 2) which forms
the basis of our objective function.

Observation 1 The derivative of the camera response
determines the inverse of the distances between irradi-
ance levels.

Recall that the response h of an effective camera de-
pends on the response f of the real camera, the num-
ber n of exposures, and a vector of exposure values e =
(e1, e2, . . . , en) (see Eq. 1). Let h′ be the derivative of
the effective response, let g′ be the derivative of the de-
sired response, and let p be a positive number indicating
the norm we use. Typically, p is 1 or 2. We define the
objective function as:

ξ(n, e) =

Emax∫
Emin

|g′ − h′|p w dE, (2)

where Emin, Emax is the interval where g′ is non-zero
and w is a weighting function defined as

w(E) =
{

0 when g′(E) < h′(E)
1 otherwise. (3)

This weighting function prevents penalizing the re-
sponse h of the effective camera for levels spaced more
densely than required7 by the desired response g.

We change the objective function ξ in two ways to ac-
count for camera noise. We modify the response of the
effective camera by removing levels most affected by
noise and we add a term V (n, e) to ξ that penalizes
exposures which increase the noise variance. As an ex-
ample, if we model irradiance E with Gaussian noise
having variance σ2 added and assume a linear camera,
then V (n, e) = σ2

∑n
i=1 1/ei.8 With the inclusion of

this noise term, the objective function becomes:

ξ̃(n, e) = ξ(n, e) + cV (n, e), (4)

7The density of the levels can always be decreased by dropping
levels. Dropping levels from the response of the effective camera
decreases its derivative h′, thus changing its shape. For example,
the response of an effective camera constructed from a linear real
camera is always convex down. By decreasing h′, we can make
the response convex up.

8The total variance of the noise depends on the kind of expo-
sure change (gain, integration time, or aperture) as well as the
response of the camera.

where the constant c weights the noise term. This ob-
jective function provides a simple means to evaluate
how well the effective camera resulting from a set of
exposures emulates the desired camera.

3.2 Optimal Exposures

For a fixed number of exposures, we find the exposure
values that minimize the objective function of Eq. 4.
We constrain the exposure values to be positive and
assume them to be in increasing order. It is easy to im-
pose these constraints. One difficulty, however, is that
the objective function is not continuous since w in Eq. 3
is not continuous. This discontinuity makes the objec-
tive function difficult to minimize. We have yet to find
the best means to minimize the objective function. For
now, we have implemented a simple exhaustive search.
To find the minimum number of exposures, we iterate
the search starting with 2 exposures and increasing the
number of exposures by one in each iteration. We con-
tinue until the minimum of the objective function falls
below a given tolerance.

The search efficiency is not critical since we can generate
a table for a large number of desired effective cameras
off-line. As an example, the table shown in Figure 4(a)
was generated using our method assuming a real 8-bit
linear camera. This table gives the exposures for em-
ulation of a linear, a gamma = 1/2, and a logarithmic
(constant contrast) response. Such a table can be in-
tegrated into a digital camera. The interface of the
camera would allow a user to choose a desired response
and desired dynamic range from a menu, as shown in
Figure 4(b). The camera would automatically capture
the appropriate sequence of images by obtaining the
exposure values from the table.

We see from the table in Figure 4(a) that the algorithm
creates a linear effective response by selecting exposures
which are similar. As levels from different exposures in-
terleave, the density of the levels increases within a lim-
ited dynamic range. The dynamic range of the constant
contrast case is extended with successively larger expo-
sures, as seen in the table. To compute these exposures
we ignored noise, set p to 1 in Eq. 2, and normalized
the exposures so that the first exposure is 1.

Some of the computed exposures are close together,
requiring 4 significant digits to show the differences.
When this is not possible, a rough approximation to
the best exposures will often provide significant bene-
fit. Even with a low cost consumer camera it is possi-
ble to achieve a large number of possible exposures by
varying the settings of integration time, aperture, and
gain.9 Note that we can search directly over the pos-

9The illumination is assumed to be constant. Small uniform

4



Linear

Gamma = 
1/2

Constant 
Contrast 
(log)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1.003

1.003

1.015

1.003

1.003

3.094

1.003

1.003

1.003

1.003

20.24

9.91

4.689

4.831

3.979

3

2.985

1.019

1.007

1.007

5.146

3.019

1.006

1.006

88.38

37.23

29.18

16.01

4

3.672

1.166

1.031

11.23

5.049

2.866

280

144.9

64.22

5

4.975

1.078

18.56

8.564

763.5

305.4

6

5.636

33.7

1130

Effective Number of 
Camera Exposures

Exposures

2

3

4

5

6

2

3

4

5

6

2

3

4
5

6

Desired Response

Constant Contrast

Linear

Gamma 1/2 High      1:16,000

Medium 1:1,000

Low       1:256

Dynamic Range

(a)

(b)

Figure 4: (a) A table showing exposure values for emu-
lating a few effective cameras. The exposures have been
normalized so that the smallest exposure is 1. (b) A menu
interface which could be included in a digital camera. The
digital camera would lookup the sequence of exposure values
corresponding to the selection, capture a sequence of images
with these exposures, combine them, and output the result-
ing high dynamic range image.

sible settings available for a particular camera to best
achieve a desired effective camera for a fixed number of
exposures.10

4 Experiments

We created four effective cameras with our method, us-
ing both linear and non-linear real cameras. Like any
real camera, we can adjust the exposure of our effective
camera. We do this by varying the shortest exposure.
For each effective camera we combined 3 exposures. As
a baseline, we evaluated our results against those ob-
tained with the commonly used exposures 1, 2, and 4,
[3, 11, 12]. We show our method decreases or eliminates
the posterization11 that occurs when brightness levels
are too widely spaced to capture differences in the scene
radiance.

changes in illumination change the effective exposure. Since the
response of the real camera is known such changes may be esti-
mated from the images.

10Instead of fixing the number of exposures, we may fix the
total time required to take all the exposures.

11Many image processing programs, such as Adobe Photoshop,
have a “posterize” function. By reducing the number of bright-
ness levels, an image takes on the appearance of an art poster.
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Figure 5: Emulation of a linear camera with high dynamic
range. (a) A graph showing the response functions for two
effective cameras obtained from a 4-bit linear real camera.
The exposures computed by our algorithm (1, 1.05, 1.11)
produce an effective camera closer to the desired linear re-
sponse, than produced with the 3 baseline exposures (1, 2,
4). (b) The effective response obtained from an 8-bit real
camera by our algorithm is more complex than in (a) but
it results in smaller errors than obtained with the baseline
exposures.

4.1 Adding Bits to a Linear Camera

The dynamic range of a linear real camera can be ex-
tended by combining exposures whose values are pow-
ers of 2. This results in a non-linear effective response,
similar to a gamma curve [10]. Yet, a linear effective re-
sponse is often desirable for vision applications because
it provides a uniform assignment of image brightness to
scene radiance. We start with the simple example of
combining 3 exposures from a linear real camera with
4 bits. Our algorithm specifies exposures close together
(1, 1.05, 1.11). The response from the resulting effec-
tive camera is shown with the response resulting from
the baseline exposures (1, 2, 4) in Fig. 5(a). Using
the exposures computed with our algorithm allows us
to achieve a more uniform response. This is especially
true for the higher irradiance values as compared to
what is achieved with the baseline exposures.

For an 8-bit linear camera, the algorithm determines
two exposures close together, 1 and 1.003, and a third
exposure which is larger than the other two, 2.985.
Fig. 5(b) shows the improved uniformity of the irra-
diance levels. Our method decreases the error when
compared with using the baseline exposures.

Fig. 6(a) shows the wide spacing of irradiance levels in
an image of a synthetic linear ramp obtained from a 4-
bit camera by combining images with exposures (1,2,4).
Fig. 6(b) shows that our method reduces the spacing of
irradiance levels. Fig. 6(c) shows the same exposure
values used in Fig. 6(a) but with Gaussian noise with
a standard deviation of 1.95 brightness levels added to

5



the input images. The wide spacing of the irradiance
levels remains. In Fig. 6(d), the narrower spacing of
levels from Fig. 6(b) results in a smoother gradient with
the same noise as used in Fig. 6(c). Fig. 6(e) shows the
result obtained from a 12-bit camera image of the linear
ramp for comparison.

The baseline exposures (1,2,4) provide relatively few
irradiance levels for large irradiance values. This is
clearly demonstrated by our experimental result shown
in Fig. 7. The acquired images come from a real 4-
bit/channel camera simulated by dropping bits from a
12-bit/channel camera. The image in Fig. 7(a) was ob-
tained by summing three images taken with the base-
line exposures. Due to the wide spacing of irradiance
levels the resulting image has posterization artifacts.
The image in Fig. 7(b) was obtained directly from a
12-bit/channel linear camera. Fig. 7(c) shows the im-
age obtained by combining exposures chosen using our
algorithm. We see that our image is quite close to the
ground truth.

4.2 Constant Contrast Effective Camera

The human visual system is more sensitive to con-
trast than to absolute differences in irradiance. For
differences in contrast to be independent of absolute
irradiance, the measured irradiance levels must have
constant contrast spacing. This amounts to a desired
response that has the form of a log curve g(E) =
α log2(E) + β. The response function of the effective
camera created from the baseline exposures (1, 2, 4)
does not provide enough irradiance levels at low irra-

(b) From computed exposures(a) From baseline exposures

(c) As above with noise (d) As above with noise

(e) Ground Truth

Figure 6: Validation using synthetic images. (a) An image
of a linear synthetic ramp obtained by combining 4-bit im-
ages with baseline exposures showing wide spacing of irradi-
ance levels. (b) An image obtained from combining images
with exposures determined by our algorithm (1, 1.05, 1.11)
with narrower spacing of irradiance levels. (c) When noise
is added to the input images used in (a), the wide spacing is
still apparent. (d) When noise is added to the same expo-
sures as in (b) the ramp appears almost continuous. (e) An
image from a 12-bit linear camera for comparison.

diances to achieve constant contrast spacing, as is ap-
parent from Fig. 8 (a). The exposures determined by
our algorithm (1, 9.91, 88.38) give an effective camera
whose response is much closer to the desired response.
In Fig. 8 (b) we see that as we increase the number of
exposures from 3 to 5, our response rapidly approaches
the desired response.

Fig. 9 shows a tile floor with a strong illumination gra-
dient. We dropped bits from a linear camera (12-bit)
to make the comparison more apparent in the images,
simulating a 6-bit camera. The image in Fig. 9(a) was
obtained from adding the baseline exposures. It does
not properly capture the variations in the scene radi-
ance. Summing the exposures given by our algorithm
results in the image shown in Fig. 9(b) which does not
have the noise and posterization in Fig. 9(a).

4.3 Using Non-linear Real Cameras

Many consumer 8-bit cameras extend their dynamic
range by unevenly spacing the irradiance levels with a
non-linear response. For vision applications requiring a

(a) Baseline Exposures

(b) Ground Truth

(c) Computed Exposures

Figure 7: Validation of the emulation of a linear camera
with high dynamic range. (a) A real image of white cloth
obtained by adding three 4-bit images taken with the base-
line exposures (1,2,4). The wide spacing of irradiance levels
results in posterization artifacts. (b) A single 12-bit linear
image, shown for comparison. (c) Using three 4-bit images
with the exposures determined by our algorithm we closely
approximate the linear 12-bit camera. All the images in the
figures were contrast enhanced for display.
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Figure 8: Emulation of a constant contrast camera. (a) The
response obtained by a linear real camera using the baseline
exposures clearly has too few levels for low irradiance values
as compared with the constant-contrast response. Our algo-
rithm determines three exposures (1,9.91,88.38) so that the
response of the effective camera matches the desired curve
more closely. (b) The same as (a) but with 5 exposures
used.

(b) Computed Exposures

(a) Baseline Exposures

Figure 9: Validation of the emulation of a constant contrast
camera. (a) Image resulting from adding three 6-bit images
taken with the baseline exposures. The posterization due to
the wide spacing of irradiance levels is clearly visible. (b)
Images taken using exposures determined by our algorithm
provide a much denser spacing of irradiance levels eliminat-
ing the posterization.

linear response, simply changing image brightness val-
ues (e.g. linearizing) cannot help when the spacing of
irradiance levels is too wide to capture scene radiance
variations, as shown in Fig. 1(a). By taking several

(a)

(b)

Iso-brightness

Iso-brightness

Baseline Input Exposures

Computed Input Exposures

Combined

Combined

Figure 10: (a) Three 8-bit images of a limited dynamic
range scene using the baseline exposures (1, 2, 4) are com-
bined. The resulting image has widely spaced irradiance
levels in the highlights as shown by the iso-brightness con-
tours of the detail. (b) By combining three similar exposures
(1, 1.0073, 1.0493) chosen by our algorithm we decrease the
distance between irradiance levels as seen in the denser iso-
brightness contours.

images with exposures chosen by our algorithm we can
narrow the spacing of irradiance levels to better approx-
imate the uniform irradiance levels of a linear response,
as illustrated in Fig. 1(b).

We verified this application with an 8-bit Nikon 990
Coolpix camera, whose response we calibrated with a
Macbeth chart. The widely spaced irradiance levels
from the baseline exposures result in widely spaced iso-
brightness curves around the highlights in the image
shown in Fig. 10(a). By combining our computed ex-
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posures we obtain greater sensitivity resulting in much
more closely spaced iso-brightness curves Fig. 10(b).

5 Conclusion

We proved that when multiple exposures are combined
by simple summation we preserve the information from
each of the exposures. We also provided a simple for-
mula for the response function of the effective camera
that results from this summation. We presented an
objective function for the error between the response
function of the effective camera and a desired response
function based on their derivatives. We used a sim-
ple search to obtain exposures that, when combined,
best achieve a desired response function. This search
is performed off-line to produce a list of exposures to
combine.

Using our method, we generated a table which lists
the exposures needed to emulate cameras with linear,
gamma = 1/2, and log (constant contrast) response
functions. Hence, is possible to emulate a wide selec-
tion of commonly used response functions. Moreover,
the same framework could also be used to emulate im-
age dependent response functions, for example based on
the histogram equalization of an initial image.

We verified our method using images of real scenes.
We have shown that our algorithm provides a means
to construct an effective camera with a flexible camera
response function and selectable dynamic range. With
our method, photographers and scientists can emulate
the high dynamic range camera that meets their needs
with a low cost consumer camera.
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