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Abstract
By using mirror reflections of a scene, stereo images
can be captured with a single camera. Single camera
stereo provides both geometric and radiometric advan-
tages over traditional two camera stereo. In this paper,
we discuss these advantages and show that the epipolar
geometry is restricted to the class of planar motions. In
addition we have implemented a real-time system which
demonstrates the viability of stereo with mirrors as an
alternative to traditional two camera stereo.

1 Introduction
Optical systems consisting of a combination of refracting
(lens) and reflecting (mirror) elements are called cata-
dioptric systems [Hecht and Zajac, 1974]. By using two
or more mirrored surfaces, multiple views of a scene can
be captured by a single camera (catadioptric stereo). Sin-
gle camera stereo provides several advantages over tradi-
tional two camera stereo.

• Identical System Parameters: Lens, CCD and
digitizer parameters such as blurring, lens distor-
tions, focal length, spectral responses, gain, offset,
pixel size, etc. are identical for the stereo pair (as-
suming ideal mirrors). Having identical system pa-
rameters minimizes the differences between the two
views, thus facilitating robust stereo matching.

• Ease of Calibration: Because only a single camera
and digitizer is used, there is only one set of intrinsic
calibration parameters. As we will show, the extrin-
sic calibration parameters are constrained by planar
motion. Together these constraints reduce the total
number of calibration parameters from 16 to 10.

• Data Acquisition: Camera synchronization is not
an issue because only a single camera is used.
Stereo data can easily be acquired and conveniently
stored with a standard video recorder without the
need to synchronize multiple cameras.
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With these advantages in mind, we present the design and
implementation of a real-time stereo system which uses
only a single camera and two planar mirrors. In addition,
we analyze the geometry and calibration of stereo with
planar mirrors in an arbitrary configuration and show
that the epipolar geometry is restricted to planar motion.
The planar motion constraint implies that the fundamen-
tal matrix for stereo with planar mirrors depends upon 6
parameters instead of 7 for traditional stereo.

Previously, several researchers have demonstrated the
use of both curved and planar mirrors to acquire stereo
data. For a discussion of panoramic stereo with curved
mirrors see [Gluckman et al., 1998] (in these proceed-
ings). Goshtasby and Gruver [1993] designed a single
camera stereo system using a pair of planar mirrors con-
nected by a hinge. Mathieu and Devernay [1993] and
Inaba et al. [1993] used four planar mirrors to create two
virtual cameras with vergence controlled by the angle be-
tween two of the mirrors. In contrast to these, our system
does not require the mirrors to be in a specific config-
uration. In addition we have implemented a real-time
system which demonstrates robustness stereo matching
when only a single camera is used.

Previous real-time stereo systems have used two or
more cameras [Faugeras et al., 1993] [Matthies, 1993]
[Kanade et al., 1996] [Konolige, 1997]. Because more
than one camera is used, the images must be processed
in order to compensate for the differences in camera re-
sponse either by applying the Laplacian of the Gaussian
or by using normalized correlation. These steps, which
can be ignored in single camera stereo, are both computa-
tionaly intensive and result in loss of information. In the
following section we derive the geometry of a catadiop-
tric system with a single camera and two planar mirrors
in an arbitrary configuration.

2 Geometry and Calibration

Previously, researchers have looked at the geometry of
catadioptric systems in calibrated settings, where the
mirrors are placed in specific configurations [Goshtasby
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Figure 1: Stereo image formation with a single camera
and two planar mirrors. A scene point P reflected off
mirrors M and M ′ is imaged as if seen from two differ-
ent viewpoints v and v′.

and Gruver, 1993], [Inaba et al., 1993] and [Mathieu and
Devernay, 1993]. Here, we analyze the geometry of two
mirrors and a single camera with the mirrors placed in an
arbitrary configuration.

Figure 1 depicts the geometry of a catadioptric system
with two planar mirrors. A scene point P is imaged as if
seen from two different viewpoints v and v′. The loca-
tion of the two virtual pinholes is found by reflecting the
camera pinhole about each mirror. Reflecting the optical
axis of the camera about the mirrors determines the opti-
cal axes and thus the orientations of the two virtual cam-
eras. The virtual image planes exist at a distance f , the
focal length of the camera, along the optical axes of the
two virtual cameras. Therefore, the locations and orien-
tations of the two virtual cameras are determined by the
orientations and distances of the two mirrors with respect
to the pinhole and optical axis of the camera.

2.1 Relative Orientation

In traditional stereo with two cameras there are no quan-
titative restrictions on the relative orientation between the
two cameras. However, constraints do exist for the two
virtual cameras created when two planar mirrors are im-
aged by a single camera. It turns out that the relative
orientation is restricted to planar motion (the direction of
translation must lie in the plane normal to the axis of ro-
tation). This constraint reduces the number of degrees of
freedom of relative orientation from 6 to 5 (3 for rotation
and 2 for translation in a plane).

To derive this result we consider the relative orientation

between the two reflected viewpoints v and v′. Each
virtual viewpoint is related to the camera center by the
following equations:

v = D1c (1)

and

v′ = D2c, (2)

where D1 and D2 are reflection transformations. Then
the relative orientation D becomes,

D = D2D
−1
1 . (3)

Representing the two mirrors as planes with normals n1

and n2 and distances d1 and d2 measured from c the
camera center, the reflection transformations for the two
mirrors are given by

D1 =

[
I− 2n1n

T
1 2d1n1

0 1

]
(4)

and

D2 =

[
I− 2n2n

T
2 2d2n2

0 1

]
. (5)

Because the inverse of a reflection transformation is it-
self, the relative orientation of the two virtual cameras is
simply,

D = D2D1 =

[
R t
0 1

]
(6)

where

R = I + 4(n1 · n2)n1nT2 − 2n1n
T
1 − 2n2n

T
2 , (7)

and

t = 2d1n1 − (2d1(n1 · n2) + 2d2)n2. (8)

The rotation matrix R has a rotational axis of n1 × n2

and from (8) the direction of translation lies in the plane
defined by n1 and n2. Therefore, the rotational axis is
normal to the plane containing the direction of translation
(planar motion).

Planar motion has been studied in the context of mobile
robotics [Beardsley and Zisserman, 1995], where motion
over a ground plane is modeled by planar motion. For
such scenarios Vievill and Lingrand [1995] and Arm-
strong et al. [1996] have used planar motion to help con-
strain the self-calibration problem.

As we have seen, single camera stereo with two planar
mirrors constrains the external calibration parameters to
planar motion. Because only a single camera is used,
the intrinsic parameters (focal length, pixel size, image
center, skew) are exactly the same for the two stereo
views. Together, these constraints place restrictions on
the epipolar geometry.



e

p

m

p′

e′

Figure 2: The epipolar geometry of planar motion. When
motion is constrained to lie in a plane, all corresponding
epipolar lines must intersect at m the image of the axis
of rotation. Therefore, the two epipoles e and e′ and the
line m completely determine the epipolar geometry.

2.2 Epipolar Geometry

One way to describe planar motion between a pair of
cameras is by a rotation about one of the camera cen-
ters and a translation in a direction normal to the axis
of rotation. Alternatively, planar motion can be repre-
sented by a pure rotation of one of the cameras about
an axis not necessarily passing through the camera cen-
ter (called the screw axis). When the internal calibration
of the two cameras is identical, the image projection of
the screw axis is the same for both cameras. Therefore,
corresponding epipolar lines must intersect on the line
which is the image projection of the screw axis.

As shown in figure 2, the epipolar line of a point p is
the line containing epipole e′ and the intersection of the
image of the screw axis m with the line through epipole
e and point p. If p and p′ are corresponding points then

p′ · (e′ × (m× (e× p))) = 0, (9)

which implies that the fundamental matrix has the form

F = [e′]× [m]× [e]×. (10)

A different parameterization of the fundamental matrix
for planar motion is given by Vieville and Lingrand in
[1995].

2.3 Calibration Constraints

The fundamental matrix F describes the epipolar geom-
etry between a stereo pair. It is also known as the un-
calibrated version of the essential matrix E described by
Longuet-Higgins [Longuet-Higgins, 1981]. Both F and
E are rank 2 matrices. For an arbitrary stereo pair the
rank 2 constraint is the only constraint on the fundamen-
tal matrix.

When the intrinsic parameters remain constant and the
relative orientation is described by planar motion, an ad-
ditional constraint is imposed on the fundamental ma-
trix. From a result due to Maybank [Maybank, 1993],
the symmetric part of the essential matrix, E + ET, is

Figure 3: Catadioptric stereo system. By imaging two
planar mirrors with a single camera, this compact unit
outputs stereo images embedded in a single signal.

rank 2 for planar motion. It is simple to show that when
the intrinsic parameters remain constant this can be ex-
tended to the uncalibrated case, providing the following
additional constraint on the fundamental matrix,

det(F + FT) = 0. (11)

This constraint reduces the number of free parameters in
the fundamental matrix from 7 to 6. Note that the param-
eterization given by (10) enforces the above constraint
and also depends upon 6 parameters, 2 for each of e, e′

and m. The fewer degrees of freedom in the fundamen-
tal matrix for catadioptric stereo will lead to more robust
estimates.

Once the epipolar geometry is found constraints can also
be placed on the affine calibration. Affine calibration is
achieved by identifying the homography of the plane at
infinity H∞ (uncalibrated rotation) [Luong and Vieville,
1996]. Given the Fundamental matrix there are still three
unknown parameters needed to recover H∞. To esti-
mate these parameters it is necessary to find correspon-
dences of points or lines at infinity. For planar motion,
the horizon line of the plane of motion is the same for
both images, and can be computed from the image as
the line containing the two epipoles [Armstrong et al.,
1996]. This provides one line correspondence and thus
reduces the unknown affine parameters by one. In addi-
tion, the modulus constraint described in [Pollefeys and
Gool, 1997] provides a polynomial constraint on the re-
maining affine parameters. This constraint is derived
from the observation that when the intrinsic calibration
parameters are constant, H∞ is conjugated with a rota-
tion matrix. In summary, catadioptric stereo with planar
mirrors introduces constraints which reduce the number
of degrees of freedom in both the epipolar and the affine
geometry of the stereo pair, thus leading to more stable
numerical results.

3 Real-Time Implementation
Real-time stereo systems have been implemented by sev-
eral researchers [Faugeras et al., 1993] [Matthies, 1993]



Figure 4: Estimated epipolar geometry. The epipolar ge-
ometry was computed using the 8-point linear algorithm
and then enforcing the planar motion constraint by non-
linear minimization. The two bright lines indicate the
estimated horizon line of the planar motion and the es-
timated image of the screw axis (intersection of the mir-
rors).

[Kanade et al., 1996] [Konolige, 1997]. All of these sys-
tems use two or more cameras to acquire stereo data.
Here, we describe a real-time catadioptric stereo system
which uses a single camera. Figure 3 shows a picture
of the catadioptric stereo system we have designed. A
single Sony XC-75 b/w camera is used with two high
quality Melles Griot 2′′ mirrors.

3.1 Calibration and Rectification

To achieve real-time performance it is necessary to have
scanline correspondence between the stereo pair. This
allows stereo matching algorithms to be implemented ef-
ficiently as described by Faugeras et al. [1993]. Be-
cause catadioptric stereo requires rotated mirrors (if only
two mirrors are used), we must rectify the stereo pair at
run-time. To compute the rectification transform we first
need to estimate the fundamental matrix.

An initial estimate F̂ of the fundamental matrix is found
using manual correspondences and the 8-point algorithm
of [Hartley, 1995]. We then enforce the planar motion
constraint (11) by performing non-linear optimization
using the parameterization defined in (10). Initialization
of e, e′ and m is found by extracting the epipoles and
the image of the screw axis from F̂ using the method
described in [Armstrong, 1996]. The error criteria min-
imized is the sum of squared distances to epipolar lines
and the Levenberg-Marquardt algorithm is used to per-
form the minimization. Figure 4 shows an example of
the estimated epipolar geometry. Note that it is not nec-
essary to enforce the planar motion constraint, however
the epipolar geometry for planar motion depends upon
fewer degrees of freedom and thus is more resistant to
noise in the correspondences.

After computing the fundamental matrix, we find a recti-
fication transform using the method of Hartley and Gupta

[Hartley and Gupta, 1993]. Once computed, this trans-
form is used to warp each incoming image at run-time.
The brightness value of each pixel in the warped im-
age is determined by back projecting to the input image
through the rectification transform and bilinearly inter-
polating among adjacent pixels.

3.2 Stereo Matching

The underlying assumption of all stereo matching algo-
rithms is that the two image projections of a scene patch
are similar. The degree of similarity is computed using
a variety of measures such as brightness, texture, color,
edge orientation, etc. Due to computational demands,
most real-time systems use a measure of similarity based
on image brightness. However, differences in focal set-
tings, lens blur and gain control between the two cam-
eras results in the two patches having different intensi-
ties. For this reason many methods such as normalized
cross-correlation, Laplacian of Gaussian, and normalized
sum of squared differences have been developed which
attempt to compensate for camera differences. By us-
ing a single camera, catadioptric stereo avoids both the
computational cost and loss of information which results
from using these methods.

One of the simplest measures of similarity between two
image patches is the sum of absolute differences (SAD).
Because we use only a single camera, SAD is a suit-
able choice. SAD keeps the data size small and is easily
implemented on SIMD (single instruction multiple data)
processors such as those with MMX technology. Fur-
thermore, SAD lends itself to efficient scanline corre-
spondence algorithms.

Stereo matches are found by using a standard window
based search. The search is limited to an interval of
32 pixels along the epipolar line (scanline) of a 320 ×
240 image. By using a simple measure of similarity
(SAD), scanline correspondence, and SIMD instructions
we were able to achieve a throughput of approximately
20 fps on a 300Mhz Pentium II machine. An exam-
ple catadioptric stereo image and computed depth map
is shown in figure 5.

4 Future Directions

We have examined the geometry of stereo with two pla-
nar mirrors and shown that the epipolar geometry is re-
stricted to the class of planar motions. In addition we
have implemented a real-time stereo system using a sin-
gle camera and two planar mirrors. By using methods
from “uncalibrated stereo” [Hartley and Gupta, 1993]
[Hartley, 1995] we have shown that catadioptric stereo
can be performed with two mirrors in an arbitrary con-
figuration.

Although single camera stereo eliminates inter-camera
differences intra-camera differences still remain. In the
future we intend to investigate intra-camera effects such



Figure 5: Stereo image and depth map. On the left is an image taken by a catadioptric stereo system and on the right
is the depth map computed with a 7× 7 correlation window.

differences across the CCD and the cos4(α) decay in
image irradiance. Both of these may result in differ-
ent intensities at corresponding image points. However,
through calibration these effects can be measured and re-
moved.

Other future directions include the incorporation of color
and control of the aperture to improve the stereo data.
Catadioptric stereo may benefit from color because only
a single color camera needs to be used and therefore
differences in color response curves are not a factor.
Aperture control may provide additional information for
stereo matching. By obtaining multiple images with
different aperture settings we can increase the dynamic
range of the stereo camera. Again, we need not worry
about differences in aperture settings between the two
virtual cameras.

In conclusion, we feel that the sensor used to acquire
the stereo data is just as important as the algorithm used
for matching. In this respect, catadioptric stereo offers a
significant benefit by improving the quality of the stereo
data at no additional computational cost.

References
[Armstrong et al., 1996] M. Armstrong, A.Zisserman, and R. Hartley.

Self-calibration from image triplets. In ECCV ‘96, 1996.

[Armstrong, 1996] M. Armstrong. Self-calibration from image se-
quences. PhD thesis, University of Oxford, 1996.

[Beardsley and Zisserman, 1995] P.A. Beardsley and A. Zisserman.
Affine calibration of mobile vehicles. In R. Mohr and W. Chengke,
editors, Europe-China Workshop on Geometrical Modelling and In-
variants for Computer Vision, Xi’an, China, 1995.

[Faugeras et al., 1993] O. Faugeras, B. Hotz, H. Mathieu, T. Vieville,
Z. Zhang, P. Fau, E. Theron, L. Moll, G. Berry, J. Vuillemin,
P. Bertin, and C. Proy. Real-time correalation-based stereo: al-
gorithm, implementation and application. Technical Report 2013,
INRIA Sophia Antipolis, 1993.

[Gluckman et al., 1998] J. Gluckman, S.K. Nayar, and K.J. Thoresz.
Real-time omnidirectional and panoramic stereo. In Proceedings of
the 1998 DARPA Image Understanding Workshop, 1998.

[Goshtasby and Gruver, 1993] A. Goshtasby and W.A. Gruver. De-
sign of a single-lens stereo camera system. Pattern Recognition,
26(6):923–937, 1993.

[Hartley and Gupta, 1993] R.I. Hartley and R. Gupta. Computing
matched-epipolar projections. In Proceedings of the 1993 Confer-
ence on Computer Vision and Pattern Recognition, 1993.

[Hartley, 1995] R.I. Hartley. In defense of the 8-point algorithm. In
Proceedings of the 5th Internation Conference on Computer Vision,
pages 1064–1070, 1995.

[Hecht and Zajac, 1974] E. Hecht and A. Zajac. Optics. Addison-
Wesley, 1974.

[Inaba et al., 1993] M. Inaba, T. Hara, and H. Inoue. A stereo viewer
based on a single camera with view-control mechanism. In Pro-
ceedings of the International Conference on Robots and Systems,
July 1993.

[Kanade et al., 1996] T. Kanade, A. Yoshida, K. Oda, H. Kano, and
M. Tanaka. Proceedings of the 1996 conference on computer vision
and pattern recognition. In A stereo machine for video-rate dense
depth mapping and its new applications, 1996.

[Konolige, 1997] K. Konolige. Small vision systems: hardware and
implementation. In 8th Int’l Symposium of Robotics Research,
Hayama, Japan, Oct. 1997.

[Longuet-Higgins, 1981] H.C. Longuet-Higgins. A computer algo-
rithm for recunstructing a scene from two projections. Nature,
293:133–135, 1981.

[Luong and Vieville, 1996] Q.T. Luong and T. Vieville. Canoncial
representations for the geometries of multiple projective views.
Computer vision and image understanding, 64(2):193–229, Sept.
1996.

[Mathieu and Devernay, 1993] H. Mathieu and F. Devernay. Systeme
de miroirs pour la stereoscopie. Technical Report 0172, INRIA
Sophia-Antipolis, 1993. in French.

[Matthies, 1993] L. Matthies. Stereo vision for planetary rovers:
stochastic modeling to near realtime implementation. International
Journal of Computer Vision, 8(1):71–91, 1993.

[Maybank, 1993] S.J. Maybank. Theory of reconstruction from image
motion. Spinger-Verlag, Berlin, 1993.

[Pollefeys and Gool, 1997] M. Pollefeys and L.V. Gool. A stratified
approach to metric self-calibration. In Proceedings of the 1997 Con-
ference on Computer Vision and Pattern Recognition, 1997.

[Vieville and Lingrand, 1995] T. Vieville and D. Lingrand. Using sin-
gular displacements for uncalibrated monocular visual systemts.
Technical Report 2678, INRIA Sophia-Antipolis, 1995.


