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Abstract. By using mirror reflections of a scene, stereo images can be captured with a single camera (catadioptric
stereo). In addition to simplifying data acquisition single camera stereo provides both geometric and radiometric
advantages over traditional two camera stereo. In this paper, we discuss the geometry and calibration of catadioptric
stereo with two planar mirrors. In particular, we will show that the relative orientation of a catadioptric stereo rig
is restricted to the class of planar motions thus reducing the number of external calibration parameters from 6 to 5.
Next we derive the epipolar geometry for catadioptric stereo and show that it has 6 degrees of freedom rather than
7 for traditional stereo. Furthermore, we show how focal length can be recovered from a single catadioptric image
solely from a set of stereo correspondences. To test the accuracy of the calibration we present a comparison to Tsai
camera calibration and we measure the quality of Euclidean reconstruction. In addition, we will describe a real-time
system which demonstrates the viability of stereo with mirrors as an alternative to traditional two camera stereo.
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1. Introduction

Optical systems consisting of a combination of refract-
ing (lens) and reflecting (mirror) elements are called
catadioptric systems (Hecht and Zajac, 1974). Stereo
is one area of computer vision which can benefit from
such systems. By using two or more mirrored surfaces,
a stereo view can be captured by a single camera (cata-
dioptric stereo). This has the following advantages over
traditional two camera stereo.

• Identical System Parameters: Lens, CCD and dig-
itizer parameters such as blurring, lens distortions,
focal length, spectral response, gain, offset, pixel
size, etc. are identical for the stereo pair. Having
identical system parameters facilitates stereo match-
ing.

• Ease of Calibration: Because only a single camera
and digitizer are used, there is only one set of intrinsic
calibration parameters. Furthermore, we will show
that the extrinsic calibration parameters are con-
strained by planar motion. Together these constraints

reduce the total number of calibration parameters
from 16 in traditional stereo to 10 in our case.

• Data Acquisition: Camera synchronization is not an
issue because only a single camera is used. Stereo
data can easily be acquired and conveniently stored
with a standard video recorder without the need to
synchronize multiple cameras.

With these advantages in mind, we have designed and
implemented a real-time catadioptric stereo system
which uses only a single camera and two planar mir-
rors. In addition, we have analyzed the geometry and
calibration of stereo with planar mirrors placed in an
arbitrary configuration.

2. Previous Work

Previously, several researchers have demonstrated the
use of both curved and planar mirrors to acquire stereo
data. Curved mirrors have been primarily used to cap-
ture a wide field of view. One of the first uses of
curved mirrors for stereo was in Nayar (1988), where
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Nayar suggested a wide field of view stereo system
consisting of a conventional camera pointed at two
specular spheres. A similar system using two convex
mirrors, one placed on top of the other, was proposed
by Southwell et al. (1996). However, in both these sys-
tems the projection of the scene produced by the curved
mirrors is not from a single viewpoint. Violation of the
“single viewpoint assumption” implies that the pinhole
camera model can not be used, thus making calibration
and correspondence a more difficult task.

Nayar and Baker (1997) derived the class of mir-
rors which produce a single view point when imaged
by a camera. Later, Nene and Nayar (1998) presented
several different catadioptric stereo configurations us-
ing a single camera with planar, parabolic, elliptic, and
hyperbolic mirrors. A catadioptric stereo system using
hyperbolic mirrors was implemented by Chaen et al.
(1997). Gluckman et al. (1998) demonstrated a real-
time panoramic stereo system using two coaxial cata-
dioptric cameras (with parabolic mirrors).

The use of planar mirrors to acquire multi-view data
has also been investigated. As pointed out by several
researchers (Teoh and Zhang, 1984; Nishimoto and
Shirai, 1987; Murray, 1995), it is possible to reconstruct
a scene by imaging the scene reflection in a rotating pla-
nar mirror. However, these systems require more than
one image and therefore a static scene. Mitsumoto et al.
(1992) previously described a stereo method which im-
ages an object and its reflections in a set of planar mir-
rors. Here, the mirrors were used to obtain occlusion
free images of the object. A similar method was also
proposed in Zhang and Tsui (1998). Planar mirrors ar-
ranged in a pyramid can also be used to obtain omnirec-
tional stereo data as shown by Kawanishi et al. (1998).
Recently, Shashua suggested using catadioptric stereo
for non-rigid stereo platforms (Shashua, 1998).

Most similar to our work, are systems which cap-
ture stereo data with planar mirrors and one camera.
Goshtasby and Gruver (1993) designed a single camera
stereo system using a pair of planar mirrors connected
by a hinge, leaving one degree of freedom between the
mirrors. Their system required the hinge to be vertically
aligned and centered in the image.

In the context of active vision, Inaba et al. (1993)
built a single camera stereo system using four planar
mirrors. They pointed out that for active vision appli-
cations, such as high speed 3-d tracking, perfect stereo
synchronization is needed. Four mirrors were used so
that the vergence angle could be controlled by changing
the angle between two of the mirrors and gaze could be

directed in front of the camera. A similar four mirror
catadioptric system was was described by Mathieu and
Devernay (1995).

Although several catadioptric stereo designs have
been proposed in the literature, there has been no sys-
tematic analysis of the properties (geometric and radio-
metric), benefits and applications of such systems. In
this paper, we will discuss several calibration issues in
regard to single camera stereo with planar mirrors, in-
cluding the determination of relative orientation, epipo-
lar geometry, and focal length. These results together
provide a theoretical foundation for planar catadioptric
stereo. In addition, we will describe a real-time cata-
dioptric stereo system which demonstrates the viability
of stereo with mirrors as an alternative to traditional two
camera stereo.

3. Geometry and Calibration

The results in this section pertain to the geometry and
calibration of catadioptric stereo systems that use a sin-
gle perspective camera and two planar mirrors placed
in an arbitrary configuration. Figure 1 depicts the image
formation of such a system. A scene point P is imaged
as if seen from two different viewpoints v and v′. The
location of the two virtual pinholes is found by reflect-
ing the camera pinhole c about each mirror. Reflecting
the optical axis of the camera about the mirrors deter-
mines the optical axes and thus the orientations of the
two virtual cameras. The focal length of each virtual
camera is equal to f , the focal length of the real cam-
era. Therefore, the locations and orientations of the two
virtual cameras are determined by the orientations and
distances of the two mirrors with respect to the pinhole
and optical axis of the camera.

We will derive both the relative orientation and the
epipolar geometry of catadioptric stereo with two mir-
rors. Then, we will discuss self-calibration constraints
which can be used to recover the focal length solely
from a set of image correspondences. Finally, we ex-
amine the field of view of two mirror stereo.

3.1. Relative Orientation

In traditional stereo, the two cameras can be placed in
any configuration, and therefore the relative orienta-
tion between the cameras is described by 6 parameters
(3 for rotation and 3 for translation). For catadioptric
stereo, the relative orientation between the two virtual
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Figure 1. Stereo image formation with a single camera and two
planar mirrors. A scene point P reflected by two mirrors is imaged
as if seen from two different viewpoints v and v′. With knowledge
of the relative orientation between v and v′ and the image pair p and
p′, we can triangulate and recover P.

cameras, regardless of the configuration of the mirrors,
is restricted to planar motion (the direction of transla-
tion must lie in the plane normal to the axis of rotation).
This constraint reduces the number of degrees of free-
dom of relative orientation from 6 to 5 (3 for rotation
and 2 for translation in a plane).

To derive this result we consider the rigid transfor-
mation D between the two reflected viewpoints v and
v′. Each virtual viewpoint is related to the camera cen-
ter c as,

v = D1c

and

v′ = D2c,

where D1 and D2 are reflection transformations defined
in (??). Then, the relative orientation D is simply,

D = D2D−1
1 .

Representing the two mirrors as planes with normals
n1 and n2 and distances d1 and d2 measured from the

camera center c, the reflection transformations for the
two mirrors are given by

D1 =
(

I − 2n1nT
1 2d1n1

0 1

)

and

D2 =
(

I − 2n2nT
2 2d2n2

0 1

)
.

Since the inverse of a reflection transformation is itself,
the relative orientation of the two virtual cameras is
simply,

D = D2D1 =
(

R t

0 1

)

where

R = I + 4(n1 · n2)n1nT
2 − 2n1nT

1 − 2n2nT
2 , (1)

and

t = 2d1n1 − (4d1(n1 · n2) + 2d2)n2. (2)

It can be shown that (n1 × n2) = R(n1 × n2), therefore
the rotation matrix R has a rotational axis of n1 × n2.
From (2) the direction of translation lies in the plane
defined by n1 and n2. Therefore, the rotational axis is
normal to the plane containing the direction of trans-
lation. This type of motion is termed planar motion
(Armstrong et al., 1996).

Figure 2 shows how the relative orientation between
the two virtual cameras is constrained by planar mo-
tion. This constraint arises from the fact that the vir-
tual cameras are related by a pure rotation about the
axis S (called a screw axis) which is the intersection
of the planes containing the two mirrors. A pure rota-
tion about S constrains the motion between the virtual
cameras to lie in a plane perpendicular to S. We will be
referring to the plane which contains the camera cen-
ters (both real and virtual) as the plane of motion. This
plane is orthogonal to the screw axis and its intersec-
tion with the image plane is termed the horizon line of
the plane of motion.

As we have seen, single camera stereo with two pla-
nar mirrors constrains the external calibration param-
eters to planar motion, reducing the number of param-
eters from 6 for conventional two camera stereo to 5
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Figure 2. The relative orientation R between the two virtual camera
coordinate systems is described by a pure rotation θ about the axis S
(called a screw axis) which is the intersection of the planes contain-
ing the two mirrors. A pure rotation about this axis constrains the
translation between the virtual cameras to lie in a plane perpendicu-
lar to the screw axis, and is called planar motion. This planar motion
constraint holds true for any configurations of the two mirrors.

for catadioptric stereo. Because only a single camera is
used, the internal parameters (focal length, pixel size,
image center, skew) are exactly the same for the two
stereo views, reducing the number parameters from 10
to 5. Together, these constraints on both the external
and internal parameters place restrictions on the epipo-
lar geometry.

3.2. Epipolar Geometry

Epipolar geometry is a description of the geometric re-
lationship between a pair of stereo images. It is repre-
sented by the fundamental matrix F and is the minimal
information necessary to determine the epipolar lines
(Faugeras, 1992). For a pair of image correspondences
p and p′, F introduces the following well-known epipo-
lar constraint:

p′T Fp = 0. (3)

In general, F is dependent on the 16 extrinsic (rela-
tive orientation) and intrinsic calibration parameters.
However, for an arbitrary stereo pair F only has 7 free
parameters (Xu and Zhang, 1996). By constraining the
extrinsic and intrinsic parameters, we will show cata-
dioptric stereo reduces the number of free parameters
in F to 6.

F is also known as the uncalibrated version of the es-
sential matrix E described by Longuet-Higgins (1981),
because

F = A′−T
EA−1, (4)

where A′ and A are matrices representing the internal
calibration parameters of the stereo cameras. Both F
and E are rank 2 matrices. For an arbitrary stereo pair
the rank 2 constraint is the only constraint on the fun-
damental matrix.

From a result due to Maybank (1993), it is known
that one of the eigenvalues of the symmetric part of the
essential matrix, E + ET is

t · r sin(θ) (5)

where t is the direction of translation, r is the axis of
rotation and θ is the angle between them. When t is
orthogonal to r, as in planar motion, the eigenvalue
is zero and thus the matrix E + ET is rank deficient.
When the intrinsic parameters for the two views are
identical (A′ = A), which is true for catadioptric stereo,
it is simple to extend this to the symmetric part of the
fundamental matrix, providing the following additional
constraint on the fundamental matrix,

det(F + FT ) = 0. (6)

This constraint reduces the number of free parameters
in the fundamental matrix from 7 to 6 and has been used
by Armstrong et al. (1996) and Vieville and Lingrand
(1995) to help constrain the self-calibration of a camera
mounted on a mobile robot, where ground motion can
be modeled by planar motion.

When estimating the fundamental matrix from im-
age correspondences it is useful to have a parameteriza-
tion of F which implicitly enforces (6). We can derive
such a parameterization by considering the image pro-
jection of the screw axis.

The location of the screw axis (see Fig. 2) is the same
with respect to the coordinate systems of the two virtual
cameras, therefore m its location in the image is identi-
cal for both the left and right stereo views. This implies
that corresponding epipolar lines must intersect on m.
The resulting epipolar geometry is depicted in Fig. 3.
As shown in this figure, the epipolar line of a point p
is the line containing epipole e′ and the intersection of
m with the line through epipole e and point p.

Using homogenous coordinates, a line containing
two points is represented by the cross product of the two
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Figure 3. The epipolar geometry due to planar motion. When mo-
tion is constrained to lie in a plane, all corresponding epipolar lines
must intersect at m the image projection of the screw axis. Therefore,
the two epipoles e and e′ and the line m completely determine the
epipolar geometry.

points, and the intersection of two lines is represented
by the cross product of the two vectors which represent
the lines. We can therefore represent the line through e
and p as

(e × p)

and the intersection of this line with the line m as

(m × (e × p)).

The epipolar line containing this point and e′ is

(e′ × (m × (e × p))).

We can express the epipolar constraint between this
line and the point p′ as

p′ · (e′ × (m × (e × p))) = 0.

Using the relation [v]×x = v × x for all vectors x this
equation is rewritten as

p′T [ e′ ]×[ m ]×[ e ]×p = 0.

From the above equation and (3), the fundamental ma-
trix F has the form

F = [ e′ ]×[ m ]×[ e ]×. (7)

Each of e, e′ and m is only defined up to a scale factor
and therefore described by two parameters, giving a
total of 6 parameters for F.

With the help of a symbolic algebra package, we have
confirmed that the parameterization given in (7) does
indeed enforce the planar motion constraint (6). Other
parameterizations of the fundamental matrix for planar
motion are also possible, see for instance Vieville and
Lingrand (1995).

Using (7) and a set of image correspondences, F can
be determined by searching the parameter space of e, e′

and m while minimizing a suitable cost function such
as the sum of distances of corresponding points from
their epipolar lines. This process requires non-linear
minimization and thus initial estimates of e, e′ and m
are needed.

Initial estimates of e, e′ and m can be extracted from
an estimate of F obtained by the linear 8-point algo-
rithm (Hartley, 1995). e and e′ can be extracted from
the left and right null space of F. Using the following
method, m can be obtained from the eigenvectors of the
symmetric part of fundamental matrix Fs = F + FT

(Armstrong, 1996). Letting λ1, λ2 and n1, n2 be the
positive and negative eigenvalues and eigenvectors of
Fs , we have either

m =
√

λ1n1 +
√

−λ2n2 (8)

or

m =
√

λ1n1 −
√

−λ2n2. (9)

The above ambiguity in m can be resolved by noting
that one of these expressions is equivalent to e × e′ and
m is the other one.

As we have shown, catadioptric stereo with planar
mirrors introduces an additional constraint on the fun-
damental matrix which reduces the number of param-
eters to estimate from 7 to 6. Next, we will discuss
recovering the focal length from a single catadioptric
stereo image.

3.3. Recovering the Focal Length

With knowledge of the fundamental matrix, the scene
geometry can be reconstructed up to an unknown pro-
jective transform (Faugeras, 1992). To obtain a Eu-
clidean reconstruction from a stereo pair, it is neces-
sary to determine the internal camera parameters. With
video cameras, it is often the case that the aspect ratio is
known, the skew is zero, and the image center is roughly
the center of the image; therefore, Euclidean recon-
struction amounts to determining the focal lengths of
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the cameras. Through the Kruppa equations (Zeller and
Faugeras, 1996), the fundamental matrix places two
quadratic constraints on the internal calibration param-
eters. As demonstrated by Hartley (1992), these two
constraints are sufficient to solve for the focal lengths
when the other internal parameters are known.

For catadioptric stereo, we have only one unknown
focal length f and we can solve for f from the Kruppa
equations

FωFT = x[ e′ ]×ω[ e′ ]×, (10)

where

ω =




f 2 0 0

0 f 2 0

0 0 1




and x is an unknown scale factor (F and e′ are projective
quantities and thus only known up to a scale factor).

Though f can be determined in this manner it has
been shown that the Kruppa equations are very unstable
in practice (Zeller and Faugeras, 1996), thus we would
like to explore additional constraints on the focal length
that arise from the planar motion. It turns out there are
two such constraints. The first results from the fact that
the plane of motion is always perpendicular to the plane
that contains the screw axis and the camera center. The
plane of motion projects to the horizon line (e × e′)
and the plane containing the screw axis and the camera
center projects to m (the image of the screw axis). The
3-D angle between the visual planes of two image lines
x and y is given by Triggs (1997),

(xT ωy)√
(xT ωx)(yT ωy)

= cos θ. (11)

Letting l = (e × e′) we have the following constraint

(lT ωm) = 0, (12)

because the plane defined by l and the plane defined by
m must be perpendicular.

A second constraint can be derived from the image
points e, e′, and the point m′ = l × m, which is the in-
tersection of the image of the screw axis m and the
horizon line l. From Fig. 4, we can see that the angle
formed between the image rays through e and m′ is
equal to the angle formed by e′ and m′. Using a re-
lationship similar to (11) but for image rays (Triggs,

Figure 4. In the plane of motion (the plane defined by c, v, v′) the
two virtual camera centers will be the same distance from s the screw
axis. As a result, the angles formed by v and v′ and s are equivalent.
The image projection of v and v′ are the epipoles and s projects to
m′, therefore the angles formed by e, e′ and m′ are also equivalent.
This constraint can be used to recover f the focal length provided
m′ is not the image center.

1997), we can express this as

(eT ω−1m′)√
(eT ω−1e)(m′T ω−1m′)

= (e′T ω−1m′)√
(e′T ω−1e′)(m′T ω−1m′)

(13)

When using these equations to recover the focal
length, care must be taken to avoid degenerate con-
figurations. In particular, when m passes through the
image center, (13) will not lead to a solution for f
(see Fig. 5). We can ensure m does not pass through
the image center by displacing the mirrors as in Fig. 4.
Equation (12) can not be used when m and l are perpen-
dicular. Avoiding this configuration is more difficult, it
requires displacing the mirrors and tilting the camera
upward or downward with respect to the mirrors.

3.4. Field of View

Because the two virtual cameras must share the field of
view the stereo system is limited to half of the field of
view of the camera. Depending on the angle between
the mirrors the shared field of view of the stereo system
may be further limited. As shown in Fig. 6 the overlap-
ping field of view of the stereo system is 2α where α
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Figure 5. A degenerate configuration for which the focal length can
not be recovered. When the intersection of the two mirrors projects
to the image center, any focal length f satisfies the constraint that
the angles α and α′ are equal.

Figure 6. When two mirrors are used the common field of view
of the virtual cameras is 2α where α is the angle between the two
mirrors.

is the angle between the two mirrors. In order for the
shared field of view to be unbounded the camera must
have a field of view of at least 2α.

4. Experiments: Recovering the Focal Length

As shown in Section 3.3, the focal length and rela-
tive orientation of a catadioptric stereo system can be
estimated from a set of correspondences taken from

a single image. To test the accuracy of the proposed
method we performed both real and simulated experi-
ments.

In the first experiment we compare the estimated fo-
cal length obtained from the angle constraint (13) to
the focal length obtained from Tsai calibration (Tsai,
1986).1 Note that Tsai calibration uses a set of known
3-D points and their image correspondences while the
angle constraint only requires a set of image corre-
spondences. For the second experiment, we reconstruct
rectangles in 3-D and measure the angles of the four
corners. Any errors in the calibration will manifest
themselves as deviations from 90 degrees. Although
the constraint (12) can also be used to recover the focal
length, we found this constraint not as practical be-
cause the camera must be pointed up or down at an
oblique angle in order to avoid degenerate configura-
tions. In the simulations we used randomly generated
image correspondences to examine the behavior of self
calibration in response to varying amounts of noise,
rotation, field of view and location of the screw axis.
We also performed two sets of real experiments.

4.1. Comparison to Tsai Calibration

We took a series of 10 catadioptric images using a Sony
XC-75 camera with a Computar 4mm Pinhole lens (no
radial distortions are present). For each image the mir-
rors were placed in a configuration similar to Fig. 4
in order to avoid m′ passing through the image center.
Throughout the sequence we varied the angle between
the mirrors and used several different scenes.

For each catadioptric image we find an initial esti-
mate F̂ of the fundamental matrix and a set of corre-
spondences {(pi , p′

i )} using the robust method of [36],
which is publicly available.2 From F̂ initial estimates
of e and e′ are obtained from the left and right null
space and m is found using Eqs. (8) and (9). We then
enforce the planar motion constraint (6) by perform-
ing non-linear optimization on the parameters e, e′

and m using the parameterization defined in (7). The
error criteria minimized is the sum of squared dis-
tances of the corresponding points to their epipolar
lines. Defining d(p′

i , Fpi ) to be the distance of point
p′

i to the epipolar line Fpi , we seek the e, e′ and m that
minimize

ξ =
∑

i

d2(p′
i , Fpi ) + d2(pi , FT p′

i ), (14)
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Figure 7. (a) A set of image correspondences used to compute the epipolar geometry. (b) The recovered epipolar geometry. The vertical thick
line is m the estimated image of the screw axis, where the corresponding epipolar lines meet. The horizontal thick line is the line connecting the
two epipoles, the horizon line of the planar motion. The intersection of the two lines is m′ and is used to estimate the focal length.

where

F = [ e′ ]×[ m ]×[ e ]×.

We solve this non-linear minimization problem by
using the Levenberg-Marquardt algorithm (Press et
al., 1992). Note that each of e, e′ and m are only
defined up to a scale factor and therefore need to
be parameterized by two values. This can either be
done with spherical coordinates or by setting a com-
ponent to one for each vector. After minimization,
Eq. (13) and the estimates of e, e′ and m′ = e ×
e′ × m are used to obtain an estimate of the fo-
cal length. Figure 7 shows a typical scene with a
set of correspondences and the recovered epipolar
geometry.

As a comparison we use the following well known
method to compute the focal length of a camera. An
image is taken of a calibration box with known 3-D
points (see Fig. 8). The image locations of these points
are computed to sub-pixel accuracy by finding the cen-
troid of the projected circles. Using the image loca-
tions and the corresponding known 3-D points the fo-
cal length can be recovered using Tsai’s method (Tsai,
1986).

The following table shows the estimated focal
lengths (in pixels) for each of the 10 catadioptric im-
ages as compared to the focal length obtained from Tsai
calibration.

Figure 8. Tsai calibration. By imaging a set of known 3-D points we
recovered the focal length through Tsai calibration and compared this
to calibration using the geometric constraints of catadioptric stereo.

Catadioptric images Tsai

440 437 439 440 437 407

433 439 420 428 423

The discrepancy of the focal lengths for the cata-
dioptric images as compared to Tsai is possibly due to
several factors: inaccurate localization of the epipoles,
bias from assuming the location of the center of pro-
jection is the image center, and/or inaccuracies in Tsai
calibration.
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Figure 9. From corresponding points we reconstruct these squares and measure how close the angles of the four corners are to 90 degrees. (a)
In this image the two squares are at an angle. (b) The second image is of a frontal square.

4.2. Euclidean Reconstruction

In the second set of experiments, we determine the
quality of calibration by measuring the angles of re-
constructed squares. If the estimated focal length is
inaccurate then the 3-D reconstruction will have pro-
jective distortion causing angles to deviate from 90
degrees.

First we estimate the fundamental matrix and the
focal length of the catadioptric stereo system using the
methods just described in the previous section. Using
the focal length, the fundamental matrix and the method
of Longuet-Higgins (1981) we are able to determine the
rotation and translation up to a scale factor between the
two virtual cameras.

Then, as shown in Fig. 9 we took images of squares
in several different positions. Using 4 manually se-
lected stereo correspondences for each square we re-
constructed the square in 3-D and measured the angles
at each corner (which should be 90 degrees). The re-
construction was performed by triangulation, using the
estimated focal length and extrinsic parameters. The es-
timated 3-D point was taken to be the midpoint of the
shortest distance between the two back projected rays.
Although the direction of translation is only known
up to a scale factor this does not affect the measured
angles.

For the first image a total of 8 angles were measured
from the two squares and 4 angles were measured from
the third square in the second image (see Fig. 9). The
following table contains the computed angles. For each
square the angles are measured clockwise from the up-
per left corner.

Square 1 89.8 89.2 89.3 91.7

Square 2 91.1 91.4 87.8 89.7

Square 3 90.2 90.4 90.6 88.9

For the 12 angles measured the mean was 90◦ with
standard deviation 1.08◦. Given that we only have pixel
resolution for the correspondences this is about as good
as we can expect. Although the first experiment re-
vealed that self calibrating the focal length from the
catadioptric geometry is not as accurate as Tsai calibra-
tion, it is suitable for quality Euclidean reconstructions.

4.3. Simulations

When self calibrating, there are many factors that may
effect the estimation of the focal length. In this section
we examine the effect of noise, rotation between the
virtual cameras, field of view and location of the image
of the screw axis via simulations. For each simulation
we use an image of size 640×480 pixels and 100 image
correspondences. The epipolar geometry is determined
from the location of the epipoles and the image of the
screw axis. In this simulation, the optical axis of the
camera is restricted to lie in the same plane as the mir-
ror normals. Therefore, the image of the screw axis is
vertical and the epipoles lie on a horizontal line through
the center of the image. The location of the screw axis
in the image is described by the parameter c, which is
the distance from the center of the image. The location
of one epipole is determined from the angle of rota-
tion θ which is twice the angle between the mirrors.



74 Gluckman and Nayar

The other epipole is determined from the focal length
f . Once the epipolar geometry is determined, image
correspondences are generated by randomly selecting
a pixel in the left half of the image and then randomly
selecting a corresponding pixel along the epipolar line
in the right half of the image. If the pair of image corre-
spondences projects to a scene point that does not lie in
front of the cameras, the pair is discarded and another
pair is generated. Once the image correspondences are
generated, Gaussian noise with standard deviation η is
added to their locations in the image.

For each simulation an estimate f̂ of the focal length
is obtained from the randomly generated image corre-
spondences using the method described in Section 12.
Each simulation is performed 100 times and the mean
square error (MSE) (

∑
( f̂ − f )2

100 ) is computed. Table 1
shows the results of the simulations while varying the
location of the screw axis c, the amount of noise η,
the amount of rotation θ and the field of view as given
by the focal length f . As expected, Table 1(a) shows
how the MSE increases as the image of the screw axis
approaches the center of the image c = 0. Table 1(b)
shows the response of the MSE to increasing amounts
of noise. As shown in (c) the MSE appears to not be

Table 1. The table shows the results from simulations of estimating
the focal length from a set of randomly generated image correspon-
dences. The effect of the following four parameters is examined: the
location of the screw axis c, the amount of noise η, rotation between
the virtual cameras θ , and field of view as determined by the focal
length f . For each simulation one parameter is varied while the other
three remain constant and the mean square error of the estimated fo-
cal length is shown. The value for c is the distance in pixels from the
center of the image. η is the standard deviation of the noise in pixels.
θ is the angle of rotation between the virtual cameras and is twice
the angle between the two mirrors.

(a) Constant parameter values: f = 457, η = 0.4, θ = 10◦

Screw Axis (c) 300 270 240 210 180 150 120 90 60 30

MSE of f̂ 1.5 1.8 0.9 1.4 2.0 2.3 3.2 5.7 15.5 130.6

(b) Constant parameter values: f = 457, c = 270, θ = 10◦

Noise (η) 0.0 0.4 0.8 1.2 1.6

MSE of f̂ 0.0 1.8 5.3 13.4 22.0

(c) Constant parameter values: f = 457, c = 270, η = 0.4

Rotation (θ ) 2◦ 6◦ 10◦ 14◦ 18◦

MSE of f̂ 1.5 1.6 1.4 1.1 1.3

(d) Constant parameter values: c = 270, η = 0.4, θ = 10◦

Focal length ( f ) 300 500 700 900 1100

MSE of f̂ 1.8 1.6 8.8 35.1 99.2

effected by the angle between the mirrors. For large
focal lengths and thus small fields of view the MSE
increases as shown in (d).

5. Real-Time Implementation

Real-time stereo systems have been implemented by
several researchers (Faugeras et al., 1993; Matthies,
1993; Kanade et al., 1996; Konolige, 1997). All of
these systems use two or more cameras to acquire stereo
data. Here, we describe a real-time catadioptric stereo
system which uses a single camera and only a PC to
compute depth-maps in real-time. Catadioptric stereo
is well suited for real-time implementation on a PC be-
cause only a single camera and digitizer is needed. Use
of a single camera obviates the need for synchroniza-
tion hardware and software.

5.1. Sensor Design

Figure 10 shows a picture of two catadioptric stereo
sensors we have designed. Both designs provide
adjustments which allow the rotation and baseline be-
tween the two virtual cameras to be controlled. The
schematic in Fig. 11 depicts the catadioptric stereo sen-
sor adjustments. When the physical camera is moved
away from the mirrors the two virtual cameras move
along lines normal to the two mirrors, effectively in-
creasing the stereo baseline while holding the rotation
between the cameras constant. In addition, the angle
between the mirrors can be adjusted. Increasing this
angle results in a larger rotation and baseline between
the virtual cameras.

5.2. Calibration and Rectification

To achieve real-time performance it is necessary to have
scanline correspondence between stereo views. This
allows stereo matching algorithms to be implemented
efficiently as described by Faugeras et al. (1993). Be-
cause catadioptric stereo requires rotated mirrors (if
only two mirrors are used) and hence rotated views,
we must rectify the stereo pair at run-time.

To compute the rectification transform we first need
to estimate the fundamental matrix. An estimate of the
fundamental matrix is found using the method previ-
ously described. After computing the fundamental ma-
trix, we find rectification transforms for the left and
right images, using a method based on that of Hartley
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Figure 10. Catadioptric stereo sensors. (left) A single Sony XC-77 b/w camera and a 12.5 mm Computar lens is used with two high quality
front silvered Melles Griot 5′′ mirrors. The distance between the camera and mirrors can be altered, which changes the baseline of the stereo
system. The angle between the mirrors can also be adjusted to control vergence and rotation between the stereo views. (right) This compact unit
uses a single Sony XC-75 b/w camera and a 4 mm Computar pinhole lens with 2′′ Melles Griot mirrors.

and Gupta (1993). Once computed, the rectification
transforms are used to warp each incoming image at
run-time. The brightness value of each pixel in the
warped image is determined by back projecting to the
input image through the rectification transform and
bilinearly interpolating among adjacent pixels.

5.3. Stereo Matching

The underlying assumption of all stereo matching al-
gorithms is that the two image projections of a small
scene patch are similar. The degree of similarity is
computed using a variety of measures such as bright-

Figure 11. Schematic of catadioptric stereo sensor adjustments.
By adjusting the angle of the two mirrors the rotation and baseline
between the virtual cameras can be controlled. The baseline can also
be altered by adjusting the distance of the physical camera to the
mirrors.

ness, texture, color, edge orientation, etc. To minimize
computations, most real-time systems use a measure
of similarity based on image brightness. However, dif-
ferences in focal settings, lens blur and gain control
between the two cameras results in the two patches
having different intensities. For this reason many meth-
ods, such as normalized cross-correlation, Laplacian of
Gaussian, and normalized sum of squared differences,
have been employed to compensate for camera differ-
ences (Faugeras et al., 1993; Matthies, 1993; Kanade
et al., 1996; Konolige, 1997). By using a single camera,
catadioptric stereo avoids both the computational cost
and loss of information which results from using these
methods.

As Fig. 12 shows, normalized cross-correlation and
the Laplacian of Gaussian can degrade the performance
of stereo matching due to loss of information and
finite arithmetic. By removing differences in offset and
gain, normalized cross-correlation and the Laplacian
of Gaussian also remove absolute intensity informa-
tion which is useful for matching when only a single
camera is used.

Each depth map in Fig. 12 was computed using a
different measure of similarity. The first measure was
sum of absolute difference (SAD), the second mea-
sure was normalized cross-correlation (NCORR) and
the third was SAD after application of a Laplacian of
Gaussian (LOG) operator.3 Due to the loss of infor-
mation from the LOG operator, the third measure per-
formed the worst. NCORR and SAD performed similar
for large window sizes, greater than 8 × 8. However,
for small windows the results from SAD were better
than NCORR. This is in contrast to two camera stereo



76 Gluckman and Nayar

Figure 12. Comparison of three commonly used measures of similarity on an image taken by a catadioptric stereo sensor. (a) Depth map
computed using sum of absolute differences. (b) Depth map computed using normalized cross-correlation. (c) Depth map computed using sum
of absolute differences after a Laplacian of Gaussian operator was applied. For all three measures a 5 × 5 window was used and no thresholds
were applied.

where NCORR tends to out perform SAD (Faugeras
et al., 1993). From a computational standpoint, SAD
is far more desirable than NCORR, in fact an approx-
imation to NCORR was needed to achieve real-time
performance in Faugeras et al. (1993).

In our implementation, we chose to use SAD as a
measure of similarity for stereo matching. As we have

Figure 13. Stereo image and depth map. On the left is an image taken by a catadioptric stereo system and on the right is the depth map computed
with the SAD measure and a 7 × 7 window.

seen, for single camera stereo SAD has several ad-
vantages over other measures: no loss of information,
small window sizes can be used and a fast implemen-
tation is possible. In addition, SAD keeps the data size
small, as opposed to SSD, and is easily implemented
on SIMD (single instruction multiple data) processors
such as those with MMX technology. Furthermore,
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Figure 14. The series of depth maps were generated in real-time from these four catadioptric stereo images.

SAD lends itself to efficient scanline correspondence
algorithms.

Stereo matches are found using a standard window
based search along scanlines. MMX instructions are
used to both compute the SAD and determine the best
match. The SAD is computed using MMX parallel

vector instructions. We findthe best match through a
parallel “tournament” algorithm. The search is lim-
ited to an interval of 32 pixels along the epipolar line
(scanline) of a 320 × 240 image. In addition we have
implemented a left-right checking scheme to prune
bad matches. Left-right checking computes a depth
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measurement for both a patch in the left image and
the patch in the right image it matches. If the two
depths are different then no depth is output at that
point.

By using the SAD measure, scanline correspon-
dence, and SIMD instructions we are able to achieve a
throughput of approximately 20 frames per second on
a 300 Mhz Pentium II machine. An example catadiop-
tric stereo image and computed depth map are shown
in Fig. 13. Figure 14 shows a sequence of depth maps
generated in real-time by our system.

We have examined the geometry of stereo with two
planar mirrors in an arbitrary configuration and shown
that both the relative orientation and the epipolar ge-
ometry are constrained by planar motion. In addition,
we have shown how the focal length can be extracted
from a single catadioptric image and demonstrated this
through a set of experiments. We have also imple-
mented a real-time stereo system which demonstrates
that high quality depth maps can be obtained when a
single camera is used.

In conclusion, we feel that the sensor used to acquire
the stereo data is just as important as the algorithm used
for matching. In this respect, catadioptric stereo offers
a significant benefit by improving the quality of the
stereo data at no additional computational cost.

Acknowledgments

This work was supported in part by DARPA’s VSAM
Image Understanding Program, under ONR contract
N00014-97-1-0553. This paper is an extended version
of a paper presented at CVPR ’99 (Gluckman and
Nayar, 1999).

Notes

1. Comparison to the Kruppa equations was attempted. However,
they gave nonsensical results.

2. www.inria.fr/robotvis/personnel/zzhang/zzhang-end.html
3. A sum of squared differences measure (SSD) was also used, how-

ever there was no apparent difference.
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