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Abstract 
By using mirror reflections of a scene, stereo images 

can be captured with a single camera (catadioptric stereo). 
Single camera stereo provides both geometric and radio- 
metric advantages over traditional two camera stereo. In 
this paper; we discuss the geometry and calibration of cata- 
dioptric stereo with two planar mirrors and show how the 
relative orientation, the epipolar geometry and the estima- 
tion of the focal length are constrained by planar motion. 
In addition, we have implemented a real-time system which 
demonstrates the viability of stereo with mirrors as an al- 
ternative to traditional two camera stereo. 

1 Introduction 
Optical systems consisting of a combination of refract- 

ing (lens) and reflecting (mirror) elements are called cata- 
dioptric systems [91. Stereo is one area of computer vi- 
sion which can benefit from such systems. By using two or 
more mirrored surfaces, a stereo view can be captured by a 
single camera (catadioptric stereo). This has the following 
advantages over traditional two camera stereo. 

0 Identical System Parameters: Lens, CCD and digi- 
tizer parameters such as blurring, lens distortions, fo- 
cal length, spectral response, gain, offset, pixel size, 
etc. are identical for the stereo pair. Having identical 
system parameters facilitates stereo matching. 

0 Ease of Calibration: Because only a single camera 
and digitizer are used, there is only one set of in- 
trinsic calibration parameters. Furthermore, we will 
show that the extrinsic calibration parameters are con- 
strained by planar motion. Together these constraints 
reduce the total number of calibration parameters 
from 16 in traditional stereo to 10 in our case. 

0 Data Acquisition: Camera synchronization is not an 
issue because only a single camera is used. Stereo 
data can easily be acquired and conveniently stored 
with a standard video recorder without the need to 
synchronize multiple cameras. 
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Previously, several researchers have demonstrated the 
use of both curved and planar mirrors to acquire stereo 
data with a single camera. Curved mirrors have been pri- 
marily used to capture a wide field of view. Systems using 
spherical and convex mirrors have been suggested by [191 
and [241. Nene and Nayar [201 enumerated the class of 
catadioptric stereo configurations which preserve a single 
viewpoint. The epipolar geometry of curved mirrors was 
studied in [251. 

As pointed out by several researchers [261 [211 [181, it 
is possible to reconstruct a scene by imaging the scene re- 
flection in a rotating planar mirror. However, these systems 
require more than one image and therefore a static scene. 
Mitsumoto et al. [171 previously described a stereo method 
which images an object and its reflections in a set of planar 
mirrors. Here, the mirrors were used to obtain occlusion 
free images of the object. Recently, Shashua suggested us- 
ing catadioptric stereo for non-rigid stereo platforms [23]. 

A few researchers have demonstrated the use of a single 
camera and two or more planar mirrors to acquire stereo 
data in a single image [51 [ 141 [ 101. However, the geometry 
and calibration of these systems has yet to be explored. In 
this paper, we will discuss several calibration issues in re- 
gard to single camera stereo with planar mirrors, including 
relative orientation, epipolar geometry, and determi::,,ion 
of the focal length. These results will provide a theoretical 
foundation for catadioptric stereo. In addition, we will de- 
scribe a real-time catadioptric stereo system which demon- 
strates the viability of stereo with mirrors as an alternative 
to traditional two camera stereo. 

2 Geometry and Calibration 
Figure 1 depicts the geometry of a catadioptric system 

with two planar mirrors. A scene point P is imaged as if 
seen from two different viewpoints v and v'. The location 
of the two virtual pinholes is found by reflecting the cam- 
era pinhole e about each mirror. Reflecting the optical axis 
of the camera about the mirrors determines the optical axes 
and thus the orientations of the two virtual cameras. The 
focal length of each virtual camera is equal to f, the focal 
length of the real camera. Therefore, the locations and ori- 
entations of the two virtual cameras are determined by the 
orientations and distances of the two mirrors with respect 
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Figure 1 : Stereo image formation with a single camera and 
two planar mirrors. A scene point P reflected by mirrors 
M and M' is imaged as if seen from two different view- 
points v and VI. 

to the pinhole and optical axis of the camera. 
2.1 Relative Orientation 

In traditional stereo, the two cameras can be placed in 
any configuration, and therefore the relative orientation be- 
tween the cameras is described by 6 parameters (3 for ro- 
tation and 3 for translation). For catadioptric stereo, the 
relative orientation between the two virtual cameras, re- 
gardless of the configuration of the mirrors, is restricted 
to planar motion (the direction of translation must lie in 
the plane normal to the axis of rotation). This constraint 
reduces the number of degrees of freedom of relative ori- 
entation from 6 to 5 (3 for rotation and 2 for translation in 
a plane). 

To derive this result we consider the rigid transforma- 
tion D between the two reflected viewpoints v and v'. 
Each virtual viewpoint is related to the camera center c 
as, 

and 

where D1 and D2 are reflection transformations. Then, the 
relative orientation D is simply, 

v = Dlc 

V' = D ~ c ,  

D = D2DT1 

Representing the two mirrors as planes with normals nl 
and n2 and distances d l  and d2 measured from the camera 
center c, the reflection transformations for the two mirrors 
are given by 

"k 7, virtual camera 2 

Figure 2: The relative orientation between the two virtual 
cameras is described by a pure rotation about the axis S 
(called a screw axis) which is the intersection of the planes 
containing the two mirrors. A pure rotation about this axis 
constrains the translation between the virtual cameras to 
lie in a plane perpendicular to the screw axis, and is thus 
called planar motion. This planar motion constraint holds 
true for any locations and orientations of the two mirrors. 

Since the inverse of a reflection transformation is itself, the 
relative orientation of the two virtual cameras is simply, 

D = D 2 D 1 = [  R t  

where 

R = I + 4(nl.  nz)n,nT - 2nlnT - 2n2nr, 

t = 2dln1 - (2dl(nl . n2) + 2d2)nz. 
and 

Note that (nl x n2) = R(n1 x n2) and therefore, the 
rotation matrix R has a rotational axis of nl x n2. From 
( 1 )  the direction of translation lies in the plane defined by 
nl and n2. Therefore, the rotational axis is normal to the 
plane containing the direction of translation. This type of 
motion is termed planar motion. 

Figure 2 shows how the relative orientation between the 
two virtual cameras is constrained by planar motion. This 
constraint arises fro$ the fact that the virtual cameras are 
related by a pure rotation about the axis S (called a screw 
axis) which is the intersection of the planes containing the 
two mirrors. A pure rotation about S constrains the motion 
between the virtual cameras to lie in a plane perpendicu- 
lar to S .  We will be referring to the plane which contains 

( 1 )  
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the camera centers (both real and virtual) as the plane of 
motion. This plane is orthogonal to the screw axis and its 
intersection with the image plane is termed the horizon line 
of the plane of motion. 

As we have seen, single camera stereo with two pla- 
nar mirrors constrains the external calibration parameters 
to planar motion, reducing the number of extrinsic param- 
eters from 6 for two camera stereo to 5 for catadioptric 
stereo. Because only a single camera is used, the intrinsic 
parameters (focal length, pixel size, image center, skew) 
are exactly the same for the two stereo views, reducing 
the number of intrinsic parameters from 10 to 5. Together, 
these constraints place restrictions on the epipolar geome- 
try. 
2.2 Epipolar Geometry 

Epipolar geometry is a description of the geometric re- 
lationship between a pair of stereo images. It is represented 
by the fundamental matrix F and is the minimal informa- 
tion necessary to determine the epipolar lines [31. For a 
pair of image correspondences p and p’, F introduces the 
following well-known epipolar constraint: 

F is also known as the uncalibrated version of the essential 
matrix E described by Longuet-Higgins [131, because . 

(3) 

where A’ and A are matrices representing the internal cal- 
ibration parameters of the stereo cameras. Both F and E 
are rank 2 matrices. For an arbitrary stereo pair the rank 2 
constraint is the only constraint on the fundamental matrix. 

When the intrinsic parameters are identical for both 
views and the relative orientation is limited to planar mo- 
tion, an additional constraint is imposed on the fundamen- 
tal matrix. From a result due to Maybank [161, it is known 
that the symmetric part of the essential matrix, E + ET, 
is rank 2 for planar motion. When the intrinsic parameters 
remain constant (A’ = A), it is simple to show that the 
symmetric part of the fundamental matrix is also rank 2, 
providing the following additional constraint on the funda- 
mental matrix, 

(4) 

This constraint reduces the number of free parameters in 
the fundamental matrix from 7 to 6 and has been used by 
I21 and [291 to help constrain the self-calibration problem. 

det(F + FT) = 0. 

When estimating the fundamental matrix from image 
correspondences it is useful to have a parameterization of 
F which implicitly enforces (4). We can derive such a pa- 
rameterization by considering the image projection of the 
screw axis. 

m 

Figure 3: The epipolar geometry due to planar motion. 
When motion is constrained to lie in a plane, all corre- 
sponding epipolar lines must intersect at m the image pro- 
jection of the screw axis. Therefore, the two epipoles e and 
e’ and the line m completely determine the epipolar geom- 
etry. Because the plane of motion contains the two virtual 
camera centers, the horizon line of the plane of motion is 
the line containing the two epipoles. 

The screw axis (see figure 2) remains fixed with re- 
spect to the coordinate systems of the two virtual cam- 
eras, therefore its image m is identical for both the left 
and right stereo views. This implies that corresponding 
epipolar lines must intersect on m. The resulting epipolar 
geometry is depicted in figure 3. As shown in this figure, 
the epipolar line of a point p is the line containing epipole 
e’ and the intersection of m with the line through epipole 
e and point p. If p and p’ are corresponding points then 

p’ . (e’ x (m x (e  x p))) = 0,  ( 5 )  

and from (2) the fundamental matrix has the form ’ 

With the help of a symbolic algebra package, we have con- 
firmed that the parameterization given in (6) does indeed 
enforce the planar motion constraint (4). Other parameter- 
izations of the fundamental matrix for planar motion are 
also possible, see for instance [291. 

Using (6) and a set of image correspondences, F can be 
determined by searching the parameter space of e,  e‘ and 
m while minimizing a suitable cost function such as the 
sum of distances of corresponding points from their epipo- 
lar lines. This process requires non-linear minimization 
and thus initial estimates of e, e’ and m are needed. 

Initial estimates of e,  e’ and m can be extracted from an 
estimate of F obtained by the linear 8-point algorithm [71. 
e and e’ can be extracted from the left and right null space 
of F. Using the following equations, m can be obtained 
from the eigenvectors of the symmetric part of fundamental 

’ [ . ] is the matrix form of the cross product operator such that for 
any vectors P and q, (P x 4) = [PI q. 
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Figure 4: In the plane of motion the two virtual camera 
centers will be the same distance from the screw axis. As 
a result, the angles formed by the virtual camera centers v 
and v’ and the screw axis s are equivalent. This constraint 
can be used to recover the focal length provided that m’ is 
not the image center. 

matrix F, = F + FT [l]. Letting XI, X p  and nl, n2 be the 
positive and negative eigenvalues and eigenvectors of F,, 
we have either 

m = f i n ,  -t G n 2  

m = f i n 1  - &n,. 

(7) 

or 
(8) 

The ambiguity can be resolved by noting that one of these 
expressions is equivalent to e x e’ and m is the other one. 

As we have shown, catadioptric stereo with planar mir- 
rors introduces an additional constraint on the fundamental 
matrix which reduces the number of parameters to estimate 
from 7 to 6. Next, we will discuss recovering the focal 
length from a single catadioptric stereo image. 
2.3 Recovering the Focal Length 

With knowledge of the fundamental matrix, the scene 
geometry can be reconstructed up to an unknown projec- 
tive transform [31. To obtain a Euclidean reconstruction 
from a stereo pair, it is necessary to determine the inter- 
nal camera parameters. With video cameras, it is often the 
case that the aspect ratio is known, the skew is zero, and the 
image center is roughly the center of the image; therefore, 
Euclidean reconstruction amounts to determining the fo- 
cal lengths of the cameras. Through the Kruppa equations 
[301, the fundamental matrix places two quadratic con- 
straints on the internal calibration parameters. As demon- 
strated by Hartley 161, these two constraints are sufficient 
to solve for the focal lengths when the other internal pa- 
rameters are known. 

For catadioptric stereo, we have only one unknown fo- 
cal length f and we can solve for f from the Kruppa equa- 
tions 

F ~ F ~  = 5 [e’] w [e’] , (9) 
where 

0 0  
w =  [ f fd’ ;] 

and x is an unknown scale factor (F and e‘ are projective 
quantities and thus only known up to a scale factor). 

Though f can be determined in this manner, we would 
like to explore additional constraints on the focal length 
which arise from the planar motion. It turns out there are 
two such constraints. The first results from the fact that 
the plane of motion is perpendicular to the plane which 
contains the screw axis and the camera center. The plane 
of motion projects to the horizon line (e x e’) and the plane 
containing the screw axis and the camera center projects to 
m (the image of the screw axis). The 3D angle between 
the visual planes of two image lines x and y is given by 
[271, 

From this, we can define the following constraint between 
f and the lines 1 = (e x e’) and m, 

(lTwm) 
O =  

J(1Twl) (m*wm). 
(1  1 )  

A second constraint can be derived from the image 
points e, e’, and the point m’ = 1 x m, which is the inter- 
section of the image of the screw axis m and the horizon 
line 1. From figure 4, we can see that the angle formed 
between the image rays through e and m’ is equal to the 
angle formed by e’ and m’. Using a relationship similar to 
(10) but for image rays 1271, we can express this as 

( eT w - m’ ) - - (erTu-lmr) 

d(eTu-1e)(m’Tu-1m/) J(e’Tu-le’)(m’Tw-lm’) 
(12) 

When using these equations to recover the focal length, 
care must be taken to avoid degenerate configurations. In 
particular, when m passes through the image center, (12) 
will not lead to a solution for f. We can ensure m does not 
pass through the image center by displacing the mirrors as 
in figure 4. Equation (1 1) can not be used when m and 
1 are perpendicular. Avoiding this configuration is more 
difficult, it requires displacing the mirrors and tilting the 
camera upward or downward with respect to the mirrors. 
2.4 Experiments: Recovering the Focal Length 

To test the accuracy of recovering the focal length from 
a single catadioptric image, we performed a series of ex- 
periments comparing the focal length obtained from the 
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Figure 5: The recovered epipolh geometry of a catdioptric 
image. The vertical thick line is m the estimated image 
of the screw axis, where the corresponding epipolar lines 
meet. The horizontal thick line is the line connecting the 
two epipoles, the horizon line of the planar motion. 

angle constraint (12) to the focal length obtained from Tsai 
calibration [28]. 

We took a series of 10 catadioptric images using a Sony 
XC-75 camera with a Computar 4mm pinhole lens (no ra- 
dial distortions are present). For each image the mirrors 
were placed in a configuration similar to figure 4 in order 
to avoid m passing through the image center. Throughout 
the sequence we varied the angIe between the mirrors and 
used several different scenes. 

For_each catadioptric image we found an initial esti- 
mate F of the fundamental matrix and a set of correspon- 
dences using the robust method of 1311 and publicly avail- 
able at www.inria.fr/robotvis/personneYzzhang/zzhang- 
end.htm1. We then enforced the planar motion constraint 
(4) by performing non-linear optimization using the pa- 
rameterization defined in (6).  The error criteria minimized 
was the sum of squared distances to epipolar lines and the 
Levenberg-Marquardt algorithm [221 was used to perform 
the minimization. After minimization equation (12) and 
the estimates of e,  e' and m were used to obtain an esti- 
mate of the focal length. 

Figure 5 shows a typical scene and the recovered epipo- 
lar geometry and the following table shows the estimated 
focal lengths (in pixels) for each image as compared to the 
focal length obtained from Tsai calibration. 

The discrepancy of the focal lengths for the catadioptric 
images as compared to Tsai is possibly due to several fac- 
tors: inaccurate localization of the epipoles, bias from as- 
suming the location of the center of projection is the image 

Figure 6:  Catadioptric stereo sensors. (top) A single Sony 
XC-77 b/w camera and a 12.5mm Computar lens is used 
with two high quality front silvered Melles Griot 5" mir- 
rors. The distance between the camera and mirrors can 
be altered, which changes the baseline of the stereo sys- 
tem. The angle between the mirrors can also be adjusted 
to control vergence and rotation between the stereo views. 
(bottom) This compact unit uses a single Sony XC-75 b/w 
camera and a 4mm Computar pinhole lens with 2" Melles 
Griot mirrors. 

center, and/or inaccuracies in Tsai calibration. 

3 Real-Time Implementation 
Real-time stereo systems have been implemented by 

several researchers [41 [I51 [ I l l  [I21. AI1 of these sys- 
tems use two or more cameras to acquire stereo data. Here, 
we describe a real-time catadioptric stereo system which 
uses a single camera and only a PC to compute depth-maps 
in real-time. Figure 6 shows a picture of two catadioptric 
stereo sensors we have designed. 
3.1 Calibration and Rectification 

To achieve real-time performance it is necessary to have 
scanline correspondence between the stereo pair. This al- 
lows stereo matching algorithms to be implemented effi- 
ciently as described by Faugeras et al. 141. Because cata- 
dioptric stereo requires rotated mirrors (if only two mir- 
rors are used) and hence rotated views, we must rectify the 
stereo pair at run-time. To compute the rectification trans- 
form we first need to estimate the fundamental matrix. 
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Figure 7: Comparison of three commonly used measures 
of similarity on an image taken by a catadioptric stereo 
sensor. (a) Depth map computed using sum of absolute 
differences. (b) Depth map computed using normalized 
cross-correlation. (c) Depth map computed using sum of 
absolute differences after a Laplacian of Gaussian operator 
was applied. For all three measures a 5 x 5 window was 
used and no thresholds were applied. 

An estimate of the fundamental matrix is found us- 
ing the method described in the previous sections. After 
computing the fundamental matrix, we find a rectification 
transform using the method of Hartley and Gupta 181. Once 
computed, this transform is used to warp each incoming 
image at run-time. The brightness value of each pixel in 
the warped image is determined by back projecting to the 
input image through the rectification transform and bilin- 
early interpolating among adjacent pixels. 

3.2 Stereo Matching 
The underlying assumption of all stereo matching algo- 

rithms is that the two image projections of a scene patch 
are similar. The degree of similarity is computed using 
a variety of measures such as brightness, texture, color, 
edge orientation, etc. To minimize computations, most 
real-time systems use a measure of similarity based on im- 
age brightness. However, differences in focal settings, lens 
blur and gain control between the two cameras results in 
the two patches having different intensities. For this rea- 
son many methods, such as normalized cross-correlation, 
Laplacian of Gaussian, and normalized sum of squared dif- 
ferences, have been employed to compensate for camera 
differences [4] 1151 [ I  I ]  [12]. By using a single camera, 
catadioptric stereo avoids both the computational cost and 
loss of information which results from using these meth- 
ods. As figure 7 shows, normalized cross-correlation and 
the Laplacian of Gaussian can degrade the performance of 
stereo matching due to loss of information and finite arith- 
metic. By removing differences in offset and gain, normal- 
ized cross-correlation and the Laplacian of Gaussian also 
remove shading information which is useful for matching. 

One of the simplest measures of similarity between two 
image patches is the sum of absolute differences (SAD). 
Because we use only a single camera, SAD is a suitable 

choice. SAD keeps the data size small and is easily imple- 
mented on SIMD (single instruction multiple data) proces- 
sors such as those with MMX technology. Furthermore, 
SAD lends itself to efficient scanline correspondence algo- 
rithms. 

In our implementation, stereo matches are found by us- 
ing a standard window based search. The search is limited 
to an interval of 32 pixels along the epipolar line (scan- 
line) of a 320 x 240 image. By using the SAD measure, 
scanline correspondence, and SIMD instructions we were 
able to achieve a throughput of approximately 20 frames 
per second on a 300Mhz Pentium I1 machine. An exam- 
ple catadioptric stereo image and computed depth map are 
shown in figure 8. 

4 Conclusion 
We have examined the geometry of stereo with two pla- 

nar mirrors in an arbitrary configuration and shown that 
both the relative orientation and the epipolar geometry are 
constrained by planar motion. In addition, we have shown 
how the focal length can be extracted from a single cata- 
dioptric image. We have also implemented a real-time 
stereo system which demonstrates that high quality depth 
maps can be obtained when a single camera is used. 

In this paper, we have investigated the geometric prop- 
erties of catadioptric stereo. In the future we intend to ex- 
amine the radiometric properties. Although single camera 
stereo eliminates inter-camera differences, intra-camera 
differences still remain. We intend to research pixel dif- 
ferences across the CCD and the cos4((.) decay in image 
irradiance. Both of these may result in different intensi- 
ties at corresponding image points. However, through cal- 
ibration these effects can be measured and removed, thus 
further improving the quality of the stereo matching. 

In conclusion, we feel that the sensor used to acquire 
the stereo data is just as important as the algorithm used 
for matching. In this respect, catadioptric stereo offers a 
significant benefit by improving the quality of the stereo 
data at no additional computational cost. 
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