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Abstract

Image rectification is the process of warping a pair of
stereo images in order to align the epipolar lines with the
scan-lines of the images. Once a pair of images is rectified,
stereo matching can be implemented in an efficient manner.
Given the epipolar geometry, it is straightforward to define
a rectifying transformation, however, many transformations
will lead to unwanted image distortions. In this paper, we
present a novel method for stereo rectification that deter-
mines the transformation that minimizes the effects of resam-
pling that can impede stereo matching. The effects we seek
to minimize are the loss of pixels due to under-sampling and
the creation of new pixels due to over-sampling. To min-
imize these effects we parameterize the family of rectifica-
tion transformations and solve for the one that minimizes the
change in local area integrated over the area of the images.

1 Introduction

Stereo matching is the process of finding corresponding
points in a pair of images. Given a point in one image its
matching point must lie on an epipolar line in the other im-
age. This is the well known epipolar constraint. The location
of the epipolar lines is determined by the epipolar geome-
try, thus knowledge of the epipolar geometry reduces stereo
matching from a 2-D to a 1-D search. When the images are
obtained from an identical pair of cameras pointing in the
same direction, known as a rectilinear stereo rig, the epipolar
lines coincide with the scan-lines of the images. For stereo
views in this configuration, stereo matching can be imple-
mented efficiently for several reasons:

¢ Because the epipolar line for a point is given by the
scan-line of that point, the computation of the locations
of the epipolar lines can be avoided.

e Since there is no relative rotation between the images,
the matching windows do not need to be rotated for ro-
bust matching.

e During matching, computational redundancies within
and between epipolar lines greatly reduce the number
of operations needed to compute correspondences be-
tween image points.

*This work in part was supported by a National Science Foundation ITR
Award No. IIS-00-85864.

0-7695-1272-0/01 $10.00 © 2001 IEEE

Shree K. Nayar

Dept. of Computer Science
Columbia Univerisity
New York, NY 10027
nayar @cs.columbia.edu

When the epipolar geometry is not in this form, the stereo
images need to be warped to make corresponding epipolar
lines coincident with the scan-lines, a process termed im-
age rectification. Most stereo algorithms assume images are
in this configuration, thus rectification is a pre-requisite for
stereo matching.

Rectification is achieved by applying a perspective trans-
formation to each image that projects the images onto a plane
parallel to the line connecting the centers of projection of the
two views. Because there are an infinite number of rectifying
planes of which many will lead to unwanted image distor-
tions, careful consideration must be given to the rectification
process.

1.1 Previous Work

Traditional methods for rectification require three dimen-
sional information such as the relative orientation of the
stereo rig or the camera projection matrices. These meth-
ods choose a plane “close” to the image planes of the two
cameras without regard to the effects of rectification on the
images. Examples include [2] and [3] that use the plane con-
taining the intersection of the two image planes, and [6] that
considers the special case of a verged stereo rig. When the
cameras are close to rectilinear these methods may suffice,
however, for more general camera positions there are more
“optimal” methods.

More recently, techniques have been proposed-that rec-
tify directly from knowledge of the epipolar geometry with-
out the need for camera calibration or projection matrices.
What distinguishes these methods from each other is the
metric that is used to find the “best” rectifying transforma-
tion. Robert et al. [8], the first to consider the effects of
rectification on images, attempt to reduce the amount of dis-
tortion by finding the rectification transform that is closest
to preserving orthogonality about the image centers. Hart-
ley [4] suggests using the transformation that minimizes the
range of disparity between the two images in order to min-
imize differences between the images. Most similar to our
work is that of Loop and Zhang [5] who consider the effects
of rectification throughout the image and find the rectifying
perspective warp that is “closest to affine” over the area of
the images. However, their approach does not consider the
effects of scale, aspect-ratio, and skew because these are in-

“variant to affine transformations. Furthermore, it is not clear

that the measure “closest to affine” is a good one.
In structure from motion, when the direction of heading
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Figure 1: Not all rectified images are the same. (a) On the
left is a pair of rectified stereo images. (b) The images on the
right are also rectified, however, due to a poor choice of the
rectifying transformation a large amount of under-sampling
and over-sampling exists which makes stereo matching diffi-
cult.

can be located within the image, it is necessary to apply a
non-perspective warp in order to rectify the entire image.
Rectification under these circumstances has been discussed
in [9] and [7].

1.2 Our Approach

In this paper, we pose the stereo rectification problem as
finding the transformation that best preserves the sampling
of the original stereo pair. Ideally, we would like each pixel
in the unrectified image to map to a single pixel in the rec-
tified image. However, when a perspective warp is applied
to an image some portions of the image can increase in scale
causing the creation of new pixels while other portions can
decrease in scale causing the loss of pixels. Both of these
effects, which we call over-sampling and under-sampling re-
spectively, can impede stereo matching. Over-sampling can
smooth out image texture that is needed for robust stereo
matching while under-sampling causes both aliasing and a
loss of information.

In our approach, we first model the loss and creation of
pixels by the change in local area. Next, we derive a param-
eterization of the family of perspective transformations that
rectify a given stereo pair. Then, we solve for the transforms
that minimize the change in local area integrated over the
area of the images.

2 Preserving Local Sampling

Figure 1 demonstrates the effect of a rectifying warp that
is chosen poorly, causing both the creation and loss of pixels.
In order to find the rectification transformation that best pre-
serves the sampling of the stereo images we need a metric for
measuring the amount of over-sampling and under-sampling
caused by an image transformation.

Both the creation and loss of pixels at a point in the im-
age is modeled by the change in local area of a small patch
around the point before and after the transformation is ap-
plied (see figure 2). The change in local area is given by
the determinant of the Jacobian of the transformation [1].
When the determinant of the Jacobian is one, the area re-
mains constant. As the determinant approaches zero the lo-
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Figure 2: When a perspective transformation is applied to an
image the effect on the sampling is modeled by the change in
local area. Depending on the location in the image the local
area may shrink causing a loss of pixels, grow causing the

- creation of pixels, or remain constant.

cal area vanishes and thus the pixel at that point is effectively
lost. For values greater than unity the local area increases and
the number of pixels created is proportional to the change.
Note that when the transformation is a transiation, a 2-D ro-
tation, a skew or a change of aspect ratio, the local area does
not change. For the case of translation and rotation there
is a one-to-one mapping between pixels before and after the
transformation, therefore no pixels are lost and no new pixels
are created. However, due to the finite size of pixels a change
of aspect ratio will effect the sampling by introducing new
pixels in the direction of increasing scale and destroying pix-
els in the direction of decreasing scale. Likewise, skew will
introduce resampling effects by causing aliasing. We will
address this problem later.

For the purposes of rectification, we are interested in per-
spective transformations. When a perspective transformation
is applied to an image, a point (z,y) is mapped to the point
(2,9) as

#= Pz +p2y + 3 and §
prT + psy + Po

_ PaT+Psy +pe

(D
DT + psy + Po

where the p; are the parameters of the transformation. The
Jacobian is obtained by taking partial derivatives of the above
equations with respect to z and y:

@ (% o). @
oz, y) e e

Then, the determinant of the Jacobian of a perspective trans-
formation is

Do(psp1 — pap2) + ps(Paps ~ P1Ps) + p7(p2ps — P5p3)
(P17 + psy + po)? )

3)
Since the change in local area of a perspective transforma-
tion is dependent on the location (z,y) in the image, the de-
terminant can be less than one in some places and greater
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Figure 3: In (a) we have the original unrectified images with epipoles e and e’ and one pair of corresponding epipolar lines
marked in bold. Rectification is composed of three steps. In the first step, shown in (b), the images are rotated and translated
so that the marked lines are horizontal and matched on the x-axis. (c) The epipolar lines are made horizontal by projecting
the epipoles to infinity. (d) Finally, a transformation is applied which matches the epipolar lines on the same scan-lines.

than one in others: In order to find the rectification transfor-
mation that best preserves the local area over the entire im-
age, an error metric is needed. We use the square of the dif-

ference between the determinant and one and integrate over -

the width w and the height h of the image to obtain

PrY (L 0@.9)
: det

—% -¥ a(m’y)

This metric penalizes the loss of a pixel the same as the cre-
ation of a pixel as long as the determinant is less than two.
Using the absolute value is an alternative and avoids bias-
ing the error when the determinant is greater than two, but at
the cost of integrability. Note that when the scene of interest

lies in a particular region of the image the integration can be
restricted to that region.

2
- 1) dz dy. @

3 Rectifying Perspective Transformations

In this section we derive the entire class of perspective
transformations that rectify a stereo image. Then, we will
show how to find the transform within that class that mini-
mizes the measure (4) for both stereo images. We assume the
epipolar geometry of the stereo images Z and Z’ is known
and given by the fundamental matrix F. There are many
methods for estimating F from a pair of images (see for ex-
ample [10]). If x and x’ in Z and 7’ are corresponding im-
age projections of the same scene point then Fx and FTx/
are corresponding epipolar lines. The epipolar lines for each
image intersect at the epipoles e and ¢’ which are the solu-
tions to Fe = 0 and FTe' = 0.

In general, the epipoles lie in the image plane and there-
fore epipolar lines do not run along the scan-lines. To rectify,
perspective transformations P and P’ are applied to the im-
ages respectively. These transformations must both project
the epipoles to infinity in the direction of the scan-lines and

ensure that corresponding lines are on the same scan-line
(see figure 3). First, we will derive the constraints on P
and P’ that bring the epipolar lines into a horizontal con-
figuration. Then, we will give the constraints between P and
P’ that ensure corresponding epipolar lines are on the same
scan-line.

‘We place the origin of the coordinate system at the center
of each image with the x-axis running along the scan-lines.
To simplify, we put the fundamental matrix into a canonical
form by applying a rotation and translation so that one pair
of corresponding epipolar lines coincides with the x-axis (see
figure 3(b)). Note that applying a pure 2-D rotation or trans-
lation to the images does not affect the sampling because
they are one-to-one mappings. We match the pair of epipolar
lines by applying rotation R to image Z so that the epipo-
lar line through the center of the image is aligned with the
x-axis. Next a rotation R’ is applied to image Z' to make the
corresponding epipolar line parallel. Then a translation T’
is used to make this epipolar line coincident with the x-axis.
Once rotated and translated, we obtain 2 new fundamental
matrix:

F=(T'R)TFRT. o)
Because the epipolar line of the origin is the x-axis for both
the left and right image, it is straightforward to show that the
new fundamental matrix must be of the form

0 f. O

F=| fi fs fo (6)
0 fs O

Now the epipoles are on the x-axis and are expressed in

T
projective coordinates as e = [1,0,-%:—] and €' =

T
[1,0, —%] . Next, we make all the epipolar lines paral-
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lel (see figure 3(c)) by imposing the following constraints on
Pand P';

e Fix the origins of Z and Z' such that (0,0) maps to
{0,0).

o Project the epipoles to infinity such that e and e’ map to
i=11,0,0]".
These conditions are satisfied if P and P’ are of the form

i pz O 1 sz 0
P= 0 ps 0 Jand P' = [02 P;s o).
‘}: ps 1 A s 1

Although these conditions ensure that the epipolar lines of
and Z’ are parallel, corresponding epipolar lines may lie on
different scan-lines. Thus, additional constraints are needed
(see figure 3(d)). When P and P’ map corresponding epipo-
lar lines to the same scan-line the fundamental matrix will be
of the form

00 O
il,=(00 -1}, (8)
01 0

and therefore the following must hold, ¥ = P'T [i], P.
These equations contain two independent constraints,

—fspl = feps and pifs + psfs = f5, that will be satis-
fied when

pnop 0 n p 0
P:(O »s O)andP'=<0 —ps 0).

Ji ps Je fa fs~ps fs

®

As can be seen from (9), there are 6 free parameters
(p1,D2, P5, P8, P, Py) in the family of perspective transfor-
mations that rectify a given stereo image. The parameter pg
varies with the perspective distortion along the y-axis while
ps controls scale along the y-axis. Once rectified, image
points can be freely moved along the scan-lines and there-
fore skew and scaling in the x-direction can be applied to
both images using p1, p2, pi and p}. The amount of over-
sampling and under-sampling will depend on the values of
these parameters. However, not all of these parameters need
to be considered. As discussed earlier, a change of aspect
ratio or skew does not alter the local area. But due to the
finite size of pixels, changing the aspect ratio or introducing
skew will cause resampling effects. Therefore, we impose
the following additional constraints:

o Restrict the skew of both images to zero by setting ps =
pa' =0.

o Ensure the aspect ratio of Z and Z' does not change by
requiring ps = p; and py = pi.

Now, we are left with only two free parameters p; and ps.
That is:

n 0 0 -p1 0 0

P=| 0 pp 0 Jand P'= 0 - 0 .
fa ps fe f2 fs—ps fs

(10)

Since rectification is achieved by projecting the images onto
a plane parallel to the line connecting the centers of projec-
tion of the two views, we can interpret pg as parameterizing
the angle of the plane about this line and p; as parameter-
izing the distance. In the image, pg controls the amount of
perspective distortion along the y-axis and p; alters the scale.

4 TFinding the Best Transform
From equation (4), the error metric when the transforma-
tions P and P’ are applied to the stereo images is

= [ (2D
/ J % GP'(w,y)

P (z,y)

where w and h are the width and height of the images, re-
spectively. Our goal is to find the values for the scale param-
eter p; and the perspective parameter pg that minimize this
objective function.

This integral can be solved in closed form, and we have
found that the resulting expression is a 16** degree rational
polynomial in pg. However, the expression is quadratic in the
scale parameter Therefore, given a value for pg the value
for 1 that minimizes the integral can be found by solving
ap = ( to get:

2
1) dzdy +

2
1) dzdy, (11)

ff dz dy + ff dz dy
pf - (faz+psy+fs)® (f2$+(fs—Ps)y+fs)
- dz dy
I gztitemr + 1 garecerr

Care must be taken if one of the epipoles falls within the
image, because the rectified image will be of infinite extent.
In this case, the solution to (12) is p; = 0, because an image
of size zero has a finite loss of pixels whereas an image of
infinite size creates an infinite number of pixels. A practi-
cal solution can be found by choosing a region of interest to
integrate over where the epipoles fall outside the region.

Before solving for the optimal scale parameter, we must
obtain a value for the perspective parameter ps. To find a
solution for pg we break up the objective function (11) and
look at each image separately. For image Z, the error metric
for re-sampling is

/h/% i 1 2az dy, (13)
€1 = - - T ay,
' &/ \ (faz + psy + fe)°

while the error metric for Z' is

h w 2
= [ P 1) dzdy.
” /-%/—& <(f2$+(fs—ps)y+fs)3 ) i

(14)
After eliminating p;, the error metric for each image can be
rewritten as a function of the location of the epipole for that
image and ps. These functions are symmetric about their

12)
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Figure 4: To find an approximate solution for the parameter pg we look at the re-sampling metrics €1 and €5. While these
functions are symmetric about their minima, pg = 0 for €1 and pg = f5 for €5, their exact shapes depend on the locations of
the epipoles. Plot (a) shows &, and 2 when the epipoles are both located at the same distance from the image centers. In this
case the functions are identical except for a shift and therefore the minimum of €1 + €2 is pg = J;i Plot (b) shows €, with an
epipole at a distance that is 10 times the width of the image and €5 with an epipole at a distance of 3 times. Note that, despite
the difference in the locations of the epipoles, the minimum of €, + €3 is still close to pg = f2—5

minima, ps = 0 for €3 and pg = f5 for €5, and their forms
vary with the locations of the epipoles. Figure 4 shows some
examples of these functions. When the epipoles are at equal
distance from the centers of the images, the shape of each
function is identical. Thus, pg = éi is the solution that min-
imizes €; +£5. In general, the solution for ps that minimizes
€1 + €9 lies somewhere between 0 and f;. We can see this by
considering what happens to pg as the epipoles move apart.
If ¢’ is fixed at the edge of the image then, in the limit, as e
approaches infinity, the solution is pg = 0. Likewise, when
e is fixed at the edge of the image then pg = f5 in the limit
as e’ approaches infinity.

Note that &3 + &5 is a convex function in the range 0 to -%*—

Therefore, an optimal solution can be found using pg = 42&

as an initial estimate and applying a simple iterative tech-
nique such as gradient descent. During minimization, the
scale parameter p; is removed from (11) by solving equation
(12) using the current estimate for pg. In practice, pg = f;— is
very close to the optimal solution for the following reasons:

e The magnitude of f5 is proportional to the amount of
tilt. For practical stereo configurations the tilt between
the cameras is small and thus f5 is closer to zero relative
to the other entries of the fundamental matrix.

e Even if there is some tilt, most stereo configurations are
also verged so that the epipoles are approximately at the
same distance, in which case, pg = % is optimal.

e The optimal value for ps deviates from % slowly un-
less one epipole is close to the image. Except when
wide field of view lenses are used, the epipoles are not
usually near the stereo images.

5 Results
In this section, we will show examples of rectification ap-
plied to a variety of camera geometries. For each stereo im-

age a 500 x 500 pixel checkerboard pattern is used to em-
phasize the sampling effects of rectification. To visualize the
different epipolar geometries a set of corresponding epipolar
lines is marked in each of the images.

Figure 5 demonstrates rectification for two geometries
typically found in stereo vision. The first stereo image (Fig-
ure 5(a)) is in a verged configuration. A more difficult geom-
etry to rectify due to the difference in scale is shown in Fig-
ure 5(b). The difference in scale could result from either a
change in focal length or forward motion between the stereo
cameras. For these two geometries f; = 0 and therefore the
optimal value for pg is zero. In 5(b) either the scale of the
right image must be increased or the scale of the left image
must be decreased in order to match the epipolar lines. This
is one instance where many traditional methods for rectifi-
cation fail by making an a-priori decision to either increase
the scale of one image or decrease the other. However, by
balancing the loss and creation of pixels, our rectification
method slightly increases the scale of the right image and
slightly decreases the scale of the left image.

In figure 6(a) a stereo pair that has both tilt between the
cameras and is not in a verged configuration is rectified. Note
how the epipolar lines in the right image get compressed to-
ward the top of the image as a result of the tilt. In order to
match these epipolar lines it is necessary to apply perspec-
tive distortion along the y-axis. The tilt and the location of
the epipoles are chosen such that the approximate solution to
ps will not be the optimal one. Even in the presence of tilt
the results of the optimal and approximate solution are quite
similar.

Figure 6(b) shows a geometry that is chosen to create a
large difference between the approximate solution and the
optimal one. In this geometry one epipole is close to infinity,
the other is close to the image boundary and a large amount
of tilt is introduced. For this camera configuration the opti-
mal solution considerably improves the result. Although it is
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Figure 5: We simulated two epipolar geometries typically found in stereo vision. In each stereo pair a set of epipolar lines is
marked, and to visualize the change in local area a checkerboard pattern is used. (a) This pair demonstrates rectification in
the presence of a large amount of vergence. (b) The second example shows the rectification results for a difficult geometry.
This geometry is difficult because the epipolar lines on the right side are compressed relative to those on the left side, causing
a difference in scale between the two views. ’
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Figure 6: In order to create a situation where the approximate solution pg = % differs from the optimal solution, we

simulated epipolar geometries that contain both tilt and asymmetric epipoles. (a) Note that even in the presence of tilt the
results are quite similar, demonstrating that for most situations the solution pg = LZ‘— will suffice. (b) In this example, we
chose an epipolar geometry that comes close to maximizing the deviation of the approximate solution from the optimal one.
One epipole is close to infinity while the other is located close to the image boundary. In addition a considerable amount of
tilt is added. In this situation the optimal solution considerably improves the resuit.
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Good Rectification

Bad Rectification

Figure 7: The effect of bad rectification on stereo matching. The first rectified image is the one that minimizes the amount of
resampling. The second image is also rectified but is clearly not optimal. On the bottom are the depth maps computed from
each of the rectified images. Note that the number of gross mismatches is less in the first case.

unlikely that such a geometry is used in stereo vision, cam-
era configurations like this may be encountered in structure
from motion.

Figure 7 shows the effect of a bad rectification on stereo
matching. Stereo matching is performed by searching along
the scan-lines for corresponding image points that minimize
the sum of squared distances between a window of size 7 x 7
pixels around the image points. Note that the number of
gross mismatches is greater in the sub-optimal rectified im-
age.

6 Conclusions

We have presented a method for rectification that deter-
mines the perspective transforms that rectify a stereo image
pair while preserving the sampling of the original images.
First, we proposed using the change in local area to model
the amount of pixels lost and created. Then, we derived a
parameterization of the class of perspective transforms that
rectify a given stereo pair from knowledge of the epipolar
geometry. We showed that only two parameters of this class,
scale p) and perspective distortion ps, need to be considered
when computing the transform that minimizes the change in
local area. Lastly, we discussed computation of the optimal
values for p; and pg. For most stereo configurations, the ap-
proximate solution for pg is sufficient. However, for some
camera geometries, such as those encountered when recov-
ering structure from motion, computing the optimal value is
preferable. '
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