Photorealistic Rendering of Rain Streaks

Kshitiz Garg

Shree K. Nayar
Columbia University *

view

110

Olight

50°

90°

130°

=
=
s
g

110°] 50°

176] 30°

Real Images
of Rain Streaks

Rendered
Rain Streaks

Figure 1: Appearance of actual rain streaks and rendered rain streaks. The top row shows actual images of streaks taken under many different
lighting directions (6y;gps; Piign:) and viewing directions 6y,,. The complex intensity pattern within each rain streak is due to the interaction
of light with the shape distortions (i.e. oscillations) of the drop as it falls. We have empirically determined the oscillation parameter values
that are dominant in raindrops and used them to develop a rain streak appearance model. The bottom row shows rain streaks rendered using
our appearance model. Each rendered streak has been cropped in order to align the phase of its intensity pattern with that of the actual image.
Based on our rain streak model, we have developed an image-based rendering algorithm that can add photorealistic rain to images as well as

videos with changing lighting and viewpoint.

Abstract

Photorealistic rendering of rain streaks with lighting and viewpoint
effects is a challenging problem. Raindrops undergo rapid shape dis-
tortions as they fall, a phenomenon referred to as oscillations. Due
to these oscillations, the reflection of light by, and the refraction of
light through, a falling raindrop produce complex brightness pat-
terns within a single motion-blurred rain streak captured by a cam-
era or observed by a human. The brightness pattern of a rain streak
typically includes speckles, multiple smeared highlights and curved
brightness contours. In this work, we propose a new model for rain
streak appearance that captures the complex interactions between the
lighting direction, the viewing direction and the oscillating shape of
the drop. Our model builds upon a raindrop oscillation model that
has been developed in atmospheric sciences. We have measured rain
streak appearances under a wide range of lighting and viewing con-
ditions and empirically determined the oscillation parameters that
are dominant in raindrops. Using these parameters, we have ren-
dered thousands of rain streaks to create a database that captures the
variations in streak appearance with respect to lighting and viewing
directions. We have developed an efficient image-based rendering
algorithm that uses our streak database to add rain to a single image
or a captured video with moving objects and sources. The rendering
algorithm is very simple to use as it only requires a coarse depth map
of the scene and the locations and properties of the light sources.
We have rendered rain in a wide range of scenarios and the results
show that our physically-based rain streak model greatly enhances
the visual realism of rendered rain.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

*e-mail: {kshitiz,nayar} @cs.columbia.edu

Keywords: raindrops, oscillations, rain streak appearance, rain
streak database, particle system, rain rendering.

1 Introduction

Rain is often used in movies and animations to express the mood
of a scene. For example, in the movies “Seven” and “The Matrix
Revolutions” rain was used to highlight a sense of unrest. Filming
rain scenes is, however, a laborious and expensive task that requires
setting up sprinklers and light sources over a large physical area.
The shooting of a single rain scene can take several days. Due to
the high costs involved, it is often impractical to include rain scenes
in small-budget movies. For these reasons, a simple algorithm for
photorealistic rendering of rain is highly desirable. It would provide
a convenient and inexpensive means to add rain effects in movies
and animations. In addition, it would allow a film-maker to control
the visual effects of rain during post-production. Photorealistic rain
rendering can also be used to add visual realism in other graphics
applications such as games.

Several methods for rendering rain have been developed in computer
graphics, some of which are available in commercial softwares such
as Maya, 3D Studio Max and Inferno. These methods use a parti-
cle system [Reeves 1983; Sims 1990] to simulate with a high de-
gree of realism the motions and spatio-temporal distribution of the
raindrops. Since each rendered image is assumed to have a finite
integration time, the falling raindrops produce motion-blurred rain
streaks in the image. However, the above rain rendering softwares
are limited as they use very simple photometric models to render the
appearances of individual rain streaks. Most often, the streaks are as-
sumed to have simple shapes, such as rectangles or ellipses, and the
brightness of each streak is assumed to be constant. Rain rendering
methods that do not use particle systems have been developed [Starik
and Werman 2003],[Langer et al. 2004],[Wang and Wade 2004] with
the aim of reducing the computational cost associated with simulat-
ing the motions and spatio-temporal distribution of raindrops. How-
ever, like the methods based on particle systems, these too use very
simple photometric models for rain streaks. Such simple photometric
models can only be used when the rendered rain is at a great distance
from the camera, in which case, all the streaks are thin enough to
make the details of their brightness patterns irrelevant.

In close-up shots of rain, however, each raindrop projects to a large
image streak, revealing the intensity pattern within it (see top row of
Figure 1). This pattern is highly complex because of shape distor-
tions that the raindrop undergoes as it falls. These shape distortions
are due to oscillations induced by aerodynamic forces and surface
tension. The interaction of the shape distortions with light result
in speckles, multiple smeared highlights and curved brightness con-
tours within the rain streak. Hence, for close-up shots, the previously
used constant-brightness streak model produces unrealistic rain ap-
pearance. To address this problem, researchers have used hand-
drawn textures of streaks for rendering rain close to the camera. A
recent example of the use of hand-drawn textures is the movie “The
Matrix Revolutions” [Lomas 2005]. This approach is clearly cum-
bersome, as the range of appearances of rain streaks is rather wide.
In addition, streak appearance also varies significantly with lighting
and viewpoint directions, making it harder to use hand-drawn tex-
tures for scenes that include lighting and viewpoint changes. We
have learned from experts in the special effects and animation indus-
try [Lomas 2005; Reed 2005] that automatic rendering of photoreal-
istic rain remains an open and important problem.

In this work, we provide a comprehensive framework for rendering
photorealistic rain streaks in images as well as videos with lighting
and viewpoint changes. The following are our key contributions:

Rain Streak Appearance Model: We have conducted what we be-
lieve to be the first detailed study of the visual appearance of rain
streaks. We have developed a model for rain streak appearance that
captures the complex interactions between the lighting direction, the
viewing direction and the raindrop oscillations. These interactions
produce a wide range of striking visual effects that simply cannot
be tabulated by hand. A few examples of rain streaks captured by a
camera, corresponding to different lighting and viewing directions,
are shown in the top row of Figure 1. Our work builds upon an os-
cillation model that was developed in atmospheric sciences [Tokay
and Beard 1996; Andsager et al. 1999; Kubesh and Beard 1993].
This model does not specify the values of the oscillation parame-
ters corresponding to real rain, which is essential for rendering rain
streaks. To this end, we have collected a total of 810 real images of
rain streaks under different lighting and viewing conditions. By vi-
sually comparing this set of measured streaks with streaks rendered
with a wide range of oscillation parameters, we have determined the
parameter values that are dominant in real rain. These parameter val-
ues enable us to render highly realistic appearances of rain streaks, a
few examples of which are shown in the bottom row of Figure 1.

Database of Precomputed Rain Streak Textures: Since the ap-
pearance of a streak is complex, it needs to be rendered using a
method such as ray-tracing. Therefore, the rendering of several thou-

Time

Oblate-Prolate Mode Transverse Mode Raindrop Oscillations
Figure 2: Oscillation model for rain. Raindrops undergo rapid
shape distortions (i.e oscillations) as they fall. These oscillations are
mainly due to combination of the two spherical harmonic modes —
the oblate-prolate mode and the transverse mode.

sands of streaks for each frame of a rain scene would be computa-
tionally prohibitive. Our approach is to render off-line and store a
database of rain streaks. This database is then used by an efficient
image-based algorithm to render rain scenes. The appearance of rain
streaks depends on many factors - the lighting and viewing direc-
tions; the distances from the source and the camera; the oscillation
parameters; the size of the drop and the camera’s exposure time. A
database that captures the effects of all of these parameters would be
too large to store and use. Fortunately, the distances from the source
and the camera, the size of the drop and the camera’s exposure time
produce simple transformations to the streak appearance, that can
be efficiently rendered on-line. Hence, we only need to capture the
effects of the lighting direction, the viewing direction and the oscil-
lation parameters in the database. Our database includes about 6300
rendered streaks and is publicly available!. This database is simi-
lar in spirit to the hand-drawn textures used in the previous work.
However, it captures a significantly wider range of streak appearance
variability and is derived from a physics-based oscillation model.

Image-Based Rain Rendering Algorithm: We have developed an
image-based rendering algorithm that applies simple transformations
to the streaks in our database, to render streaks for novel lighting
and camera parameters. Our algorithm can be used to add rain to a
single image of a scene or to a captured video with moving objects
and sources. The user specifies a rough depth map of the scene and
the properties of the light sources. Once this is done, the algorithm
can render rain with user-specified rain parameters, such as raindrop
distribution, raindrop sizes and rain direction. We show results of
adding rendered rain to several still images as well as videos with
changing illumination and viewing directions. Our results show that
our algorithm greatly enhances the realism of rendered rain.

2 Raindrop Oscillation Model

We begin by briefly describing the oscillation properties of falling
raindrops. The shape of a drop at time ¢ is denoted by |z, 0, ¢],
where r is the distance of a point on the drop’s surface from its cen-
ter, and 6 and ¢ are the elevation and azimuthal angles of the point
with respect to the y-axis and x-axis, respectively. The y-axis is op-
posite to the direction of the drop’s fall and the x-axis is an arbitrary
direction that is perpendicular to the y-axis. As a raindrop falls, it
undergoes rapid shape distortions over time, as shown in Figure 2.
These distortions are caused by the aerodynamic forces and the sur-
face tension acting on the drop [Tokay and Beard 1996; Kubesh and
Beard 1993]. The shape of oscillating raindrops can be expressed as
a combination [Frohn and Roth 2000] of spherical harmonic modes?:

r[t,0,9] =ro(1+ ZA,Lmsin(a),,l)P,,_m(9)cos(m¢)) , €))

where, r(is the undistone'(ﬁ’r;ladius (referred to as the drop size), A,
is the amplitude of the spherical harmonic mode (n,m) and P, ,,(6)

I'To request a copy, please send an e-mail to rainstreaks @cs.columbia.edu
2This is based on the assumption that the equilibrium shape (without os-
cillation) of raindrops is spherical.

is the Legendre function that describes the dependence of the shape
on the angle 6 for the mode (n,m). The frequencies of these modes
depend on the order n and drop size ry, and are given by

0, =27 ([n(n—1)(n+2)a]/(4x%prd))"/? . 2)
Here, o is the surface tension and p is the density of water, both of

which are known?.

Studies in atmospheric sciences [Kubesh and Beard 1993; And-
sager et al. 1999] have empirically determined that the oscilla-
tions in a raindrop are predominantly confined to two modes: A
rotationally-symmetric, oblate-prolate mode (n = 2,m = 0) and a
non rotationally-symmetric, transverse mode (n = 3,m = 1). Fig-
ure 2 shows the shape distortions induced by each of these modes.
Thus, the shape of a falling raindrop can be modeled as a combina-
tion of these two modes, as shown in Figure 2. This simplifies the
raindrop shape model of equation (1) to

rlt,8,0] = ro(14+A gsin(@at)Pro(8) +As 1 sin(wst)cos(¢)P3 1(0)).

Note that the shape is not rotationally symmetric due to the cos(¢)
factor in the second term of the above equation. It depends on the
drop size rg, the amplitudes A> and A3 ; and the frequencies @,
and w3 of the two modes. The frequencies w; and w3 depend on
the drop size (see equation (2)) and are higher for smaller drops.
Equation (2) also shows that the frequency of the transverse mode is
approximately twice that of the oblate-prolate mode, i.e., @3 ~ 2 m,.
Since the oscillation frequencies are determined by the drop size,
the shape of an oscillating drop depends only on three parameters,
namely, ro, A2 o, and A3 1. Previous studies* have not quantified the
amplitudes A g and A3 ; of the individual modes. In our context, we
need to know the values of these amplitudes in order to render the
appearances of rain streaks. In the next section, we describe how we
have empirically determined these values.

3 Rain Streak Appearance Model

In this section, we analyze how the oscillations affect the visual ap-
pearance of rain streaks. As mentioned before, to model the appear-
ance of the rain streaks we need to know the amplitudes A, o and
A3y of the raindrop oscillation modes. We empirically determine
these amplitudes, by capturing actual images of falling drops under
many different lighting and viewing directions and comparing these
images with a large number of rendered streak appearances.

Rendering Motion-Blurred Rain Streaks: Since we compare ac-
tual streak images with rendered ones, we first describe our method
for rendering the motion-blurred streak. The appearance of a rain
streak can be rendered by ray-tracing images of a transparent falling
drop® at different time instants within the camera’s exposure time
and adding these images. In general, to avoid artifacts, the number
of rendered images must equal the length M (in pixels) of the final
rendered streak. Since the shape of a drop changes smoothly, we are
able to render a smaller number N of images at a sparser set of time
samples that are uniformly spaced over the exposure time of the cam-
era. The appearance of a drop at any time ¢ can then be computed by
taking a time-weighted average of the neighboring rendered images.
Adding the images for all the M discrete locations of the drop gives
the appearance of the streak. In our implementation, we have used

3The following values are used: ¢ = 0.0728N/m? and p = 1000kg/m’.

“Previous studies have focused on measuring the average axis-ratio (ratio
of maximum to minimum radius) of raindrops that are caused by drop oscil-
lations. These average axis-ratios are used to correct for biases in rain-rate
measurements obtained from a dual-band polarization radar.

SWe have used the PBRT package [Pharr and Humphreys 2004] for ren-
dering the images of a falling raindrop. We use a matte disk (illuminated by
a point light) as a finite area light source. The direct lighting surface shader
(with maximum recursion depth of 5) is then used to simulate refraction and
reflections of the source (disk) through the drop. The drop shape is repre-
sented using a triangle mesh with 16200 vertices. To compute the brightness
at a pixel 64 samples (using low discrepancy sampling method) are taken.

Yy drop
A

=
2
3
2 Light
Camera = Source
4=
(6 7
a
Q‘W@‘
X< -

Figure 3: Coordinate system used for both the measurement and the
rendering of rain streaks. The coordinate frame is located at the
drop’s center with its y-axis opposite to the direction of the drop’s
fall. The x-axis is defined as the projection of the camera’s optical
axis onto a plane perpendicular to the y-axis. 6 and ¢ are the ele-
vation and azimuthal angles, respectively. The subscripts / and v are
used to denote lighting and viewing, respectively.

M = 1042 and found that artifact-free streaks can be obtained using
N =46.

Measurement of Real Streak Appearances: Consider a falling
drop viewed by a camera and illuminated by a source, as shown in
Figure 3. The appearance of the streak produced by the drop depends
on many factors - the source direction (6;, ¢;), the viewing direction
(6,) of the camera, the drop’s shape parameters (ro,A2,A3 1), the
drop’s distances from the source and the camera, and the camera’s
integration time. In addition, the streak appearance depends on ¢,,;,
the angle that the drop’s x-axis makes with the x-axis of the coordi-
nate system, as shown in Figure 3. Since raindrops are asymmetric
and have no preferred horizontal orientation, the drop’s x-axis varies
from one drop to the next. Unlike all the other parameters, the oscil-
lation parameters (Osc = A (,A3. 1, @ror) are inherently random, re-
sulting in many possible appearances of rain streaks even for a fixed
source, camera, and drop size.

To determine the amplitudes A o and Az |, we capture images of
real falling drops and compare their appearances with streaks ren-
dered under a wide range of values for Ay and A3 ;. This is done
for several source-camera configurations. From the visual compari-
son between the actual and rendered streaks, we determine the most
likely values for Ay o and A3 ;. To capture the real streak appear-
ances, we have used an experimental setup similar to the one used by
[Andsager et al. 1999] for studying the oscillations of drops. Water
drops are released from a large height (15m) to ensure that the oscil-
lations created in falling drops are similar to those in real rain®. A
large height also ensures that the drops attain a constant (terminal)
velocity before they are imaged.

The drops were illuminated by a point light source placed at a dis-
tance of 1m from the origin of the coordinate frame (see Figure 3).
We captured high dynamic range images of falling drops from a dis-
tance of 3m with a Canon EOS-20D camera. The average size of
the observed drops was determined to be ry = 2.0mm from the focal
length measurements of the camera lens. Images were captured for
many different source directions (6;,¢;), some of which are shown
in Figure 1. The source elevation angle 6; was set at (50°,90°,130°)
and the azimuthal angle ¢; was varied from 10° to 170° in steps of
20°. To measure the dependence on the viewing direction, we cap-
tured images for the viewing angle 6, at (70°,90°,110°). 10 images
were taken for each lighting-viewing configuration in order to cap-
ture the variation in streak appearance due to the oscillation parame-
ters. In total, we captured 810 streak images.

61t has been shown [Kubesh and Beard 1993] that the initial oscillations of
a drop (from a drop generator) decay within a few meters of fall. As the drop
continues to fall, new oscillations that are similar to those in real raindrops
arise due to aerodynamic forces and surface tension.

Determining the Oscillation Parameters: We use the captured
streak images to determine the oscillation amplitudes A3 o and A3 ;.
For this we render streaks with many different oscillation amplitudes
at o = (0°,90°,180°,270°) for each lighting and viewing direc-
tion. The rendered streaks are then visually compared with the actual
streak images to find the amplitudes that give the best match. Our re-
sults show that A o varies from 0.4 to 0.1 while A3 ; varies from
0.2 to 0.05. In particular, the following set of oscillation amplitudes
(A2,0,A3,1)=(0.2,0.1), and (A2 ,A3,1)=(0.1,0.1) produce rendered
streaks that match the appearance of actual streaks very well over the
different illumination and view directions. Figure 1 shows a com-
parison between the actual streaks and the streaks rendered using
the above amplitude values for different lighting and viewing angles.
Note that the rendered streaks look very similar to the actual images.
Since, in practice, the amplitude values may vary slightly from the
above two sets of values, an exact match between rendered and actual
streaks cannot be expected.

Our analysis of the effects of oscillations on the appearance of streaks
has led to a few important observations: (a) Raindrops do indeed
undergo strong oscillations. Therefore, a spherical drop model is
simply not adequate when rendering close-by rain streaks; (b) As
mentioned in Section 2, the oscillation frequencies are related as
@3 ~ 2m,. Thus, in any given drop, the same shape distortions re-
peat after a time period of 27 /@, i.e., under distant lighting and
viewing conditions, the streak appearance is periodic. Hence, streak
appearance is essentially captured within a single time period.

4 Database of Rendered Streak Textures

Using the determined oscillation parameter values, we render a
database of rain streak textures that captures the wide variation of
streak appearance with respect to lighting and viewing directions.
It would have been ideal to capture actual images of rain streaks to
build the database. However, this is very difficult to do for the fol-
lowing reasons. First, although we have determined the range of os-
cillation amplitudes, the parameter ¢,,; in Osc is a random variable
and cannot be controlled. Moreover, capturing high quality streak
images under a wide range of source and camera orientations is a
challenging problem due to the limited depth of field and dynamic
range of the camera. Hence, we use our streak appearance model to
render the images in our database — it provides us full control over
the sampling of our parameter space.

To capture the effects of lighting’, we varied 6; from 0° to 180° and
¢; from® 10° to 170° with steps of 20°. To capture the effects of the
viewing direction, we varied 6, also from 10° to 170° with steps9 of
20°. To include the effects of oscillations, we used both sets of esti-
mated amplitudes, (A2 0,A3,1)=(0.2,0.1) and (A5 0,A3,1)=(0.1,0.1).
The orientation of the drop with respect to the camera was sampled as
dror = (0°,90°,180°,270°) to account for the non-rotationally sym-
metric shape of the drop. For all of the above lighting and viewing
directions, we also rendered streaks for the following two cases -
spherical drops (no oscillations) and only oblate-prolate oscillation
with amplitude A3 o = 0.2 (no transverse oscillations).

The streaks are rendered using drop size rop = 1.6mm and exposure
time 7, = 1/60s, which corresponds to the time period 27/ @, of
the drop oscillation. In short, the database samples the parameter
space (6y,9y,6,,0sc). It also includes streaks rendered under am-
bient lighting for the (6,,0sc) values used above. The streaks are
rendered as 16-bit monochrome images with a resolution of 32 x

"The light source subtends a solid angle of approximately 14 steradian at
the center of the drop and is at a distance of 10m from the drop.

8Due to symmetry, the streak texture for ¢, 180° < ¢ < 360°, is obtained
by horizontally flipping the texture for (¢; — 180°).

9The data suggests that a coarse sampling of 20° is sufficient for render-
ing rain streaks. This may be because drops are only a few pixels wide and
severely motion-blurred. In applications where a finer sampling is needed,
our streak appearance model can be used to populate the database with any
desired sampling.

1042 pixels'”. In total, the database includes 6300 streak images at
this resolution. To avoid artifacts due to severe down-sampling when
rendering streaks far from the camera, the above streak images were
also stored at 3 additional (lower) resolutions with streak widths of
16,8 and 4. The complete database is about 400MB in size. The
database can be used by any image-based rendering system and is
publicly available.

5 Algorithm for Rain Rendering

We now present an efficient image-based algorithm that uses our
streak texture database for rendering photorealistic rain in images
and videos. The textures in the database were rendered by varying
the oscillation parameters and the lighting and viewing directions.
The variation of streak appearance due to other factors such as drop
size, distance from light sources and the camera, and properties of
the sources, can be computed from the textures in the database using
simple image processing operations. In this section, we show how
our rain rendering algorithm computes these textures. In addition,
we describe how the algorithm renders the effects of camera param-
eters, such as defocus and exposure time. Figure 4(A) shows all the
steps involved in the rendering process. We now describe each of
these steps (from left to right in Figure 4(A)).

User Inputs: Our rendering algorithm requires an image/video of
the scene, a coarse depth map of the scene, the locations and proper-
ties (size, isotropy/anisotropy, color, orientation) of the light sources
and the camera parameters. The user also specifies the rain proper-
ties, including the density of rain, the drop size distribution!!, and di-
rection of rainfall. For videos with moving light sources and objects,
the user provides coarse depth layers and locations and orientations
of the source for key frames in the video. Then, interpolation is used
to compute the locations of the depth layers and the locations and
orientations of the sources in the remaining frames of the video'2.

Rain Dynamics: We use the particle systems API [McAllister 2000]
to create the spatio-temporal distribution of raindrops in 3D space
and their trajectories. For efficiency, we only generate raindrops that
pass through the field of view of the camera. Drops are created with
uniform spatial distribution in a 3D volume that lies above the cam-
era’s field of view. At each time frame, we add new drops to this
volume and update the 3D positions of existing drops. This gives the
spatio-temporal distribution of drops. Each drop is also randomly
assigned oscillation parameters Osc from the set of parameters used
to create our streak database.

Rendering Novel Streak Textures: A scene can have multiple light
sources. To render rain in such a scene, we compute the streak tex-
tures due to each light source separately. Computing these textures
involves accounting for the effects of drop size, the properties of the
light sources and distances from light sources and the camera. To
render a rain streak we first find the appropriate texture resolution
level — it is the resolution level with textures of widths just larger
than the width of the projected rain streak.

Lighting and Viewing Dependence: As the drop falls during the ex-
posure time, the source angle (6, ¢;) and the camera angle 6, change
with respect to the drop. For a drop that is far from the light source
and the camera, these angles do not vary much over the length of
the streak and hence the streak texture for the angle (6;,¢;,6,) can
be used. If there is no streak texture in the database for these spe-
cific angles, then the texture is obtained by bilinear interpolation of
the 8 neighboring (two along each of the three angular dimensions)

10The lengths of the streaks for 6, # 90° are smaller since the viewing
direction of the camera is not orthogonal to the fall direction of the raindrops.

""Well known raindrop size distributions such as Marshal-Palmer or
Gamma distribution can be used. The size distribution can also be customized
to include larger drop sizes to create more dramatic rain effects. This is anal-
ogous to the technique used in movies to simulate a heavy downpour — using
sprinklers that produce large drops.

12 Alternatively, structure from motion algorithms [Faugeras 1993] may be
used to automate this process.

A User Rain Render Novel Render Streak
Input Dynamics Streak Textures Appearance
Perspective
Coarse St{gak rTexlture Effects
Depth Map Raindrop ou: ce 1) Scale
Distribution + Rotate
Light Source .and) Streak Texture Chmes
Properties > Trajqctorles P (Sourcen) M Effects
e :
Camera &Rain System St(rza;l:ﬁ;l;zlgre Crop/Blend
Parameters Defocus
Blur
A . !_J 7
Scene Image/Video Rain Streak Database Scene i{ﬁ’ﬁgﬁdw
W

Streak Texture
(Source n)

Streak Texture
(Lighting & Viewing)

\J

Streak Texture
(Different Drop Size)

v

Shading of Streaks
(Source Properties)

7
2 M I
II. Drops close to

1. Different drop sizes camera/source

Figure 4: (A) Rain rendering pipeline. We have developed a fully automated algorithm for inserting rain in images and videos. The user
provides an image or a video of the scene, a coarse depth map of the scene, the properties of the light sources, and the camera and rain
parameters. The algorithm uses a particle system for creating the rain distribution and the drop trajectories. Then, it uses textures from our
rain streak database to render novel rain streaks. Novel streaks are rendered for each light source. The box on the right shows details of the
steps involved for each source. These steps account for the effects of drop size, distances from the source and the camera, and the properties of
the source. The streak textures due to individual sources and the ambient light texture are added to obtain the final streak texture. These final
textures are then scaled and rotated to account for perspective effects and blurred and cropped to account for camera defocus and exposure
time. (B) Steps to compute the texture for (I) a drop whose size is different from drops in the database (II) a drop near a camera or source.

database textures. For a drop that is close to the light source or the
camera, (0, ¢;, 0,) will change over the streak. Hence, the database
textures cannot be directly used (even with interpolation) to obtain
the desired streak. In such cases, we compute two streak textures, /1
and I, using the angles corresponding to the top and the bottom of
the streak. These two textures are later blended (after accounting for
drop size) to obtain the texture for such a drop.

Different Drop Sizes: The appearance of a streak also depends on
the drop size. Equation (2) shows that the size of a drop only af-
fects the oscillation frequency, implying that drops of different sizes
are subjected to the same oscillations as in the rendered database
streaks. Therefore, a drop with a different size (from the database
drop size) will have its intensity pattern represented in the database,
but takes a different time period T,y = 27/, to complete its oscil-
lation. Due to this difference in the time period, within the exposure
time T,yp of the camera, only a Toyp /Thew portion of the database
streak texture is visible. Hence, the textures for new drop sizes
can be obtained from database textures using simple operations as
described below. Consider a database texture as shown in Figure
4(B)I(a)(also shown in Figure 4(B)I(d)). If Ty > Texp, the drop’s
streak is obtained by cropping a Ty, /Tew fraction of the database
streak as shown in Figure 4(B)I(b). If Ty, < Texp, the drop’s streak

is obtained by concatenating copies of the database streak'> and then
cropping at the appropriate length as shown in Figure 4(B)I(e). These
cropped/concatenated streaks are scaled depending on the drop size
and velocity. The streaks ends are then blurred to smooth out the
sharp edges produced by cropping. This gives us the streak texture
for the given drop size (see Figure 4(B)I(c),(f)).

As discussed before, when a drop is close to the source two textures
Iy and I, are computed. In such cases, we account for drop size
to obtain corresponding textures I{l and Ig. These are then blended
using a mask M that varies linearly from 1 at the top of the streak to 0
at the bottom as shown in Figure 4(B)II. The resulting texture / thus
incorporates the effect of changing camera or source angle within a
streak and is given by: I =I¢ M+ (1 —M)I{.

Light Source Properties: Rain produces important visual effects,
such as halos around isotropic light sources and light cones around
anisotropic sources. To render these lighting effects, we modify the
streak texture computed above by multiplying it with a mask. To cre-
ate a halo effect, we use a mask whose intensity at a pixel i is equal to

13For long exposure times, the streak texture repeats itself with the time
period of oscillation.

1/ diz, where d; is the distance in 3D of the falling drop (with its cen-

ter assumed to project to pixel i) from the light source!#. Similarly
for rendering the effects of anisotropic sources, such as spotlights,
we multiply the original texture with an anisotropic mask that repre-
sents the anisotropic brightness distribution of the source.

We repeat the above steps for each light source in the scene. Then,
we obtain the ambient streak texture by indexing the database using
(6,,0sc). If a database texture for 6, does not exist, we compute the
texture by interpolating the neighboring database textures in 6,. The
ambient streak texture is then modified to account for the drop size,
as explained before.

Once the monochromatic textures due to individual light sources and
the ambient light are obtained, we scale each of these textures in-
dividually with the corresponding source intensity and color. These
scaled textures are added to obtain the final colored streak texture.

Rendering Streak Appearance: Once the final streak is obtained,
we apply simple transformations to it to account for the perspective
and camera effects.

Perspective Effects: Based on the drop’s distance from the camera
and the angle that drop’s velocity vector makes with the camera’s
optical axis, we scale the final streak texture to its projected size in
the image. The projected streak is then rotated in the image plane to
account for its direction of fall.

Camera Effects: Next, we render the effects of the camera’s limited
depth of field (defocus). If the scaled and rotated rain streak lies
outside the depth of field of the camera, it is Gaussian-blurred with
a depth-dependent sigma. Finally, we account for the effects of the
camera’s exposure time T,p. The effect of the exposure time on the
length of the streak was already accounted for when we computed
the texture for the drop size. Here, we only consider the effect of
exposure time on the transparency of the rain streak. It has been
shown [Garg and Nayar 2005] that the intensity /, at a rain-affected
pixel is given by I, = (1 — @) I, + 0L reqr, Where I, and Iy eqy are the
intensities of the background and the streak at a rain-effected pixel.
The transparency factor @ depends on drop size rg and velocity v
and is given by o = 270 /v T,yp. Also, the rain streaks become more

4In order to minimize the database size we use this approximate method
to render the variation in streak appearance with source distance. While
this gives reasonable results, in applications where more accurate results are
needed one could include the appearance variation with source distance in the
database.

opaque with shorter exposure time. In the last step, we use the user-
specified depth map of the scene to find the pixels for which the rain
streak is not occluded by the scene. The streak is rendered only over
those pixels.

The above steps are repeated for each raindrop that lies in the cam-
era’s field of view. The run-time of the algorithm is linear with re-
spect to the total number of pixels affected by rain. That is, it depends
not only on the number of streaks, but also on the size of the pro-
jected streaks. For a typical rain scene, a single frame takes about 10
seconds to render on a 2GHz Pentium-4 machine with 1 GB RAM.

6 Results

We now show the results of our rain rendering in a wide range of
scenarios that include changing lighting and viewing conditions.

Scene 1 - Varying Illumination Direction: We begin by showing
rain rendered against a black background to highlight the variation
in rain appearance with illumination direction. Figure 5 I(a) shows
the appearance of rain when it is illuminated by a distant source that
makes an azimuthal angle of 60° with the camera. Figure 5 I(b)
shows the rain appearance when illuminated at 10°. 0° corresponds
to the camera’s viewing direction. Note the strong dependence of
streak appearance on the illumination direction. For comparison, we
show rain rendered using the constant brightness model in Figures 5
I(c) and (d), with identical scene settings and rain parameters. As can
be seen, the constant brightness model looks unrealistic since it fails
to produce the complex streak patterns and the effects of changing
illumination.

Scene 2 — Night Scene with an Isotropic Source: Next, we show
rain added to a simple night scene with an isotropic light source that
is immersed in rain. Our algorithm can realistically reproduce illu-
mination effects such as the halos around sources, as seen in Figure
5 II(a). Figure 5 II(b) shows a zoomed-in image of the scene that
reveals the complex patterns within the streaks. Our algorithm can
also simulate camera effects such as defocusing. Figures 5 II(c) and
(d) show the scene rendered with a large aperture size. In Figure 5
II(c) the camera is focused on the lamp and in II(d) it is focused in
front of the lamp.

Scene 3 — Colored and Anisotropic Sources: Figure 5 III
shows rain added to a scene with multiple light sources, including
anisotropic traffic lamps. Note the realistic shading of the rain due
to the traffic lights and how the appearance of the streaks changes
with illumination direction. Figure 5 III(b) shows a zoomed-in shot
of the same scene. Figure 5 III(c) shows rain rendered for the same
scene using the constant brightness streak model. Figures 5 III(b)
and III(c) clearly demonstrate the advantages of using our streak ap-
pearance model.

Scene 4 — Changing Sky Illumination: Figure 5 IV shows rain
added to a scene where the illumination changes from an overcast sky
to bright sunlight. The streaks have smooth intensity patterns when
illuminated by ambient lighting, such as the overcast sky, as seen
in Figure 5 IV(a). However, as the illumination changes to highly
directional sunlight in Figure 5 IV(c), we see that high frequency in-
tensity patterns appear within the streaks. Figure 5 IV(d) shows the
selected image regions at the original resolution used for rendering.
The differences in the streaks for the three lighting conditions are
clearly visible.

Scene 5 — Moving Light Sources: Figure 5 V shows rain rendered
for a scene with a moving car with headlights. Note how the ap-
pearance and brightness of the rain streaks vary as the headlights
illuminate the rain from (a) the front of the camera and (b) the side
of the camera. Figure 5 V(c) shows the selected image regions at the
original resolution used for rendering.

These results demonstrate the ability of our physically-based rain
rendering algorithm to add realistic looking rain to images and
videos.

7 Conclusion and Future Work

We have proposed a model for rain streak appearance that captures
the complex interactions between the lighting direction, the viewing
direction and the oscillating shape of a falling drop. We have used
this model to create a useful database of rain streaks that includes
the wide variability in streak appearance. This database stands on its
own as a contribution as it can be used by any image-based algorithm
for rain rendering. Finally, we have developed a rain rendering algo-
rithm that can be used to add realistic rain in images and videos. The
algorithm requires minimal human input, provides a high degree of
control, and is efficient. It provides an inexpensive way to add rain
in movies and animations. This method is also applicable to render-
ing streaks produced by drops falling from reasonable heights (such
as rooftops, terraces, trees, etc.) as they exhibit oscillations similar
to those in raindrops. In future work, we would like to incorporate
a more sophisticated dynamic model that can render the effects of
turbulence and wind and also extend the algorithm to render curved
streaks. Finally, we would like to achieve frame-rate performance
by using commodity graphics hardware. We are also interested in
the modeling and rendering of the splashing of raindrops against a
wide variety of materials, a visual effect that is important for making
scenes with rendered rain appear photorealistic.

Acknowledgements

This work was conducted at the Computer Vision Laboratory at
Columbia University. It was supported in part by a grant from the
Office of Naval Research (No. N00014-05-1-0188) and a grant from
the National Science Foundation (No. IIS-04-12759). The authors
are grateful to Andy Lomas of Dreamworks Animation and Michael
Reed of Blue Sky Studios for the valuable information they provided
on the methods used in the movie and animation industry for render-
ing realistic rain.

References

ANDSAGER, K., BEARD, K. V., AND LAIRD, N. F. 1999. Laboratory Mea-
surements of Axis Ratios for Large Raindrops. Journal of the Atmospheric
Sciences 56, 2673-2683.

FAUGERAS, O. 1993. Three Dimensional Computer Vision: A Geometric
Viewpoint. MIT press.

FROHN, A., AND ROTH, N. 2000. Dynamics of Droplets. Springer.

GARG, K., AND NAYAR, S. K. 2005. When Does a Camera See Rain?
ICCV, 1067-1074.

KUBESH, R. J., AND BEARD, K. V. 1993. Laboratory Measurements of
Spontaneous Oscillations of Moderate-Size Raindrops. J. Atmos. Sci. 50,
1089-1098.

LANGER, M. S., ZHANG, L., KLEIN, A. W., BHATIA, A., PEREIRA, J.,
AND REKHI, D. 2004. A Spectral-particle Hybrid Method for Rendering
Falling Snow. In Rendering Techniques, 217-226.

LoMAsS, A. 2005. The Matrix Revolutions. Personal Communication.

MCALLISTER, D. K. 2000. The Design of an API for Particle System.
UNC-CH TR 00-007.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Rendering.
Morgan Kaufmann.

REED, M. 2005. Blue Sky Studios. Personal Communication.

REEVES, W. T. 1983. Particle System- a Techinque for Modeling a Class of
Fuzzy Objects. ACM Trans. Graphics, 91-108.

SiMs, K. 1990. Particle Animation and Rendering using Data Parallel Com-
putations. SIGGRAPH 90, 405-413.

STARIK, K., AND WERMAN, M. 2003. Simulation of Rain in Videos. Tex-
ture Workshop, ICCV .

TOKAY, A., AND BEARD, K. 1996. A Field Study of Raindrop Oscillations.
Part I. Journal of Applied Meteorology 35.

WANG, N., AND WADE, B. 2004. Rendering Falling Rain and Snow. SIG-
GRAPH (sketches 0186).

(b) Zoomed-in shot (c) Focused on the lamp (d) Focused in front of lamp

(c) Constant brightness model

(b) Zoomed-in shot
.4 }“!‘v;. - PRI POV

| _ 1 i mml :
Li!u N 0 O o (1 O [cises o o o i il 1 A |
IV (a) Overcast (b) Partial overcast (d) Magnified Reglons

v (a Iluminated from front (b) INluminated from side (c) Magnified Regions

Figure 5: Rain rendering results. I Rain rendered against a black background with a distant light source at a horizontal angle of 60° in I(a) and
10° in I(b). Note the change in streak appearance with the lighting. I(c)-(d) Frames with the same camera and rain settings but rendered with
constant brightness streaks. II(a) A simple night scene with a single isotropic light source. Notice the halo generated by rain around the light
source. 1I(b) Zoomed-in view of the scene that reveals the complex brightness patterns within the streaks. II(c)-(d). The same scene rendered
with camera defocus effects. III(a) Rendered rain added to a scene with several colored and anisotropic light sources. Note the realistic
shading effects around the sources. III(b) The complex patterns within the streaks are more visible in the zoomed-in image. Compare our
rendering with that using the constant brightness streak model in III(c). IV Scene with changing outdoor illumination. IV(a) Rain rendered
for overcast, IV(b) partially overcast and IV(c) sunny conditions. Note the variation in rain appearance as the illumination changes from
ambient to directional. 1V(d) Magnified images (original image resolution used for rendering) of the selected image regions (white boxes).
V A scene with moving light sources. Note the differences in the appearance of rain streaks when illuminated from the direction of the camera
viewpoint in V(a) from the front and from the side in V(b). V(c) Magnified images of the selected image regions (red boxes).

