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Abstract
The visual effects of rain are complex. Rain consists of spa-
tially distributed drops falling at high velocities. Each drop re-
fracts and reflects the environment, producing sharp intensity
changes in an image. A group of such falling drops creates a
complex time varying signal in images and videos. In addition,
due to the finite exposure time of the camera, intensities due to
rain are motion blurred and hence depend on the background
intensities. Thus, the visual manifestations of rain are a combi-
nation of both the dynamics of rain and the photometry of the
environment. In this paper, we present the first comprehensive
analysis of the visual effects of rain on an imaging system. We
develop a correlation model that captures the dynamics of rain
and a physics-based motion blur model that explains the pho-
tometry of rain. Based on these models, we develop efficient
algorithms for detecting and removing rain from videos. The
effectiveness of our algorithms is demonstrated using experi-
ments on videos of complex scenes with moving objects and
time-varying textures. The techniques described in this paper
can be used in a wide range of applications including video
surveillance, vision based navigation, video/movie editing and
video indexing/retrieval.

1 Steady and Dynamic Weather Conditions
Outdoor vision systems are used for various purposes such as
tracking, recognition and navigation. Despite their widespread
use, current systems do not account for common weather con-
ditions such as rain, snow, fog and mist. In order to develop
vision systems that perform under all weather conditions, it
is essential to model the visual effects of the various weather
conditions and develop algorithms to remove them.

Weather conditions vary widely in their physical properties
and in the visual effects they produce in images. Based on
their differences, weather conditions can be broadly classified
as steady (fog, mist and haze) or dynamic (rain, snow and hail).
In the case of steady weather, individual droplets are too small
(1 − 10 µm) to be visible to a camera, and the intensity pro-
duced at a pixel is due to the aggregate effect of a large num-
ber of droplets within the pixel’s solid angle (see Figure 1(a)).
Hence, volumetric scattering models such as attenuation and
airlight [9] can be used to adequately describe the effects of
steady weather. Algorithms [10] have been recently developed
to remove the effects of steady weather from images.

On the other hand, the constituent particles of dynamic
weather conditions such as rain, snow and hail are larger
(0.1−10mm) and individual particles are visible in the image.
An example is shown in Figure 1(b), the streaks of rain are
caused by individual drops. Here, aggregate scattering models
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(a) A scene in fog (b) A scene in rain

(c) Rain and moving objects (d) Rain and ripples

Figure 1: The visual appearances of steady (fog) and dynamic (rain)
weather conditions differ widely. (a) An image of a scene taken under
foggy conditions. The intensity at each pixel is due to the aggregate
effect of a large number of droplets within the pixel’s solid angle. (b)
An image of a scene taken on a rainy day showing streaks caused
by the motion blur of individual drops. An algorithm that detects and
removes rain must be robust to complex scene and camera motions as
in (c) and at the same time insensitive to other time-varying textures
such as water ripples as in (d).

previously used for steady conditions are not applicable . The
analysis of dynamic weather conditions requires the develop-
ment of stochastic models that capture the spatial and temporal
effects of a large number of particles moving at high speeds (as
in rain) and with possibly complex trajectories (as in snow).

In this work, we focus on the problem of rain. Rain consists
of a distribution of a large number of drops of various sizes,
falling at high velocities. Each drop behaves like a transparent
sphere, refracting and reflecting light from the environment to-
wards the camera. An ensemble of such drops falling at high
velocities results in time varying intensity fluctuations in im-
ages and videos. In addition, due to the finite exposure time
of the camera, intensities due to rain are motion blurred and
therefore depend on the background. Thus, the visual mani-
festations of rain are a combined effect of the dynamics of rain
and the photometry of the environment.

Rain has been studied extensively in the fields of atmospheric
sciences, signal communication and remote sensing [8, 13, 6].
Most of these studies use active illumination sources (lasers)
and specialized detectors (photo-cells) to examine the effects
of rain on a transmitted signal. However, the effects of rain
on a camera viewing a scene in a natural environment are very
different and remain unexplored.
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In computer graphics, rain has been rendered using particle
systems [11] or heuristic models [12]. However, these ren-
dering methods are not based on the physical properties of
rain and fail to represent the complex visual effects of rain.
One possible approach to analyzing the appearance of rain is
to learn a model from real rain videos (for instance, dynamic
textures [2]). However, as mentioned before, the appearance
of rain depends on several factors including the physical prop-
erties of rain, the environment and the camera settings. Hence,
learning a general model for the appearance of rain in an arbi-
trary scene and camera setting is hard.

In this paper, we present the first comprehensive analysis of the
visual effects of rain on imaging systems. We begin by briefly
summarizing the physical properties of rain such as the spatial
distribution, shapes, sizes and velocities of drops. Then, we
develop two separate models that capture the dynamics and the
photometry of rain. Based on these models, we develop effi-
cient algorithms for detecting and removing rain from videos.
We demonstrate the effectiveness of our algorithms through
experiments on videos of complex scenes with moving objects
and time-varying textures. Our results can be used in a wide
range of applications such as video surveillance, vision based
navigation, movie editing and video indexing/retrieval.

2 Physical Properties of Rain
Rain is a collection of randomly distributed water droplets of
different shapes and sizes that move at high velocities. The
physical properties of rain have been extensively studied in
atmospheric sciences [4, 1, 7, 6, 13]. Here, we briefly summa-
rize these properties and make observations that are relevant
to our goal of modeling the appearance of rain.

The size of a raindrop typically varies from 0.1 mm to 3.5 mm.
The distribution of drop sizes in rain is given by the Marshall-
Palmer distribution [7]. Figure 2(a) shows the distribution for
a typical rainfall. Note that the density of drops decreases ex-
ponentially with the drop size.

The shape of a drop can be expressed as a function of its size
[1]. Figure 2(b) shows the shapes of raindrops of various sizes.
Smaller raindrops are generally spherical in shape while larger
drops resemble oblate spheroids. In a typical rainfall, most of
the drops are less than 1 mm in size, as seen in Figure 2(a).
Hence, most raindrops are spherical and we will use this ap-
proximation in our work.

As a drop falls through the atmosphere, it reaches a constant
terminal velocity. The terminal velocity v of a drop is also
related to its size a and is given by [4]

v = 200
√

a , (1)
where a is in meters and v is in meters/s.

The individual raindrops are distributed randomly in 3D space.
This distribution is usually assumed to be uniform [6, 13].
Moreover, it can be assumed that the statistical properties of
the distribution remains constant over time [6]. These assump-
tions are applicable in most computer vision scenarios.

3 Appearance Model for Rain
In this section, we analyze image formation through rain. The
complex spatial and temporal intensity fluctuations in images
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(a) Drop size distribution (b) Shapes of raindrops

Figure 2: (a) The Marshall-Palmer distribution [7] gives the number
density of raindrops as a function of drop size. Note that the density
of drops decreases exponentially with drop size. (b) The shapes of
raindrops of various sizes (0.5 − 2.5 mm). Due to air pressure, the
bases of the drops are flattened in the direction of fall. From (a) we
note that a large fraction of rain drops are small and hence spherical.

produced by rain depend on several factors: (a) drop distri-
bution and velocities; (b) environment illumination and back-
ground scene; and (c) the intrinsic parameters of the camera.
We first develop a correlation model that captures the dynam-
ics of rain based on the distribution and velocities of raindrops.
Then, we develop a physics-based motion blur model that de-
scribes the brightnesses produced by streaks of rain.

3.1 Dynamics of Rain

Consider a camera observing a volume of rain. Drops are ran-
domly distributed in this volume and fall with high velocities.
The projection of these drops onto the image plane produces
a time-varying random field in image space which represents
the dynamics of rain. For now, we consider only the image
projections of the drops and not their intensities. Thus, the
dynamics of rain may be represented by a binary field

b(�r, t) =
{

1, if drop projects to location �r at time t;
0, otherwise,

(2)

where �r represents the spatial coordinates in the image and t
is time. Initially, we consider both the space and time parame-
ters, �r and t, to be continuous.

As mentioned in Section 2, we assume that the distribution of
drops in the volume is uniform over space and time. Under
this condition, the binary random field b(�r, t) is wide sense
stationary in space and time [6]. This implies that the correla-
tion function Rb(�r1, t1; �r2, t2) depends only on differences in
the image coordinates (∆�r = �r1 − �r2) and the difference in
time (∆t = t1 − t2). That is:

Rb(�r1, t1; �r2, t2) ≡ 1
L

∫ L

0

b(�r1, t1 + t) b(�r2, t2 + t) dt

= Rb(∆�r, ∆t) , (3)

where, the correlation Rb is computed over a large time period
[0, L]. Rb(∆�r, ∆t) can be computed by measuring the tem-
poral correlation with time lag ∆t between the values of the
binary field at points �r and �r + ∆�r. An important constraint
arises due to the straight line motion of the drops. Consider a
drop that falls with image velocity �vi. After time ∆t, the dis-
placement of this drop is �vi∆t. Hence, the binary field at time
instants t and t + ∆t are related as

b(�r + �vi∆t, t + ∆t) = b(�r, t) . (4)
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Figure 3: (a) Spatio-temporal correlation in a continuous space-time
volume. Two image points �r and �r1 = �r + �vi∆t are temporally
correlated due to rain (Rb(�vi∆t, ∆t) is high). (b) In discrete do-
main, computing the correlation Rb(�mp, 0) is equivalent to comput-
ing Rb(�vi∆t, ∆t) over the entire duration [0 ≤ ∆t ≤ T ]. Hence,
Rb(�mp, 0) is high for pixels (shown shaded) separated by distance
[0 ≤ �mp ≤ �viT ].

As a result, the correlation Rb(�r, t;�r + �vi∆t, t + ∆t) is high.
From equation (3), we write

Rb(�r, t;�r + �vi∆t, t + ∆t) = Rb(�vi∆t, ∆t) . (5)

This implies that the value of the binary field b at any two
image coordinates, separated by �vi ∆t in space are correlated
with time lag ∆t. This is illustrated in Figure 3(a).

The above correlation is analyzed in continuous domain.
However, imaging systems have a finite pixel size p and a fi-
nite integration time T . In a discrete domain, let us denote the
correlation by Rb(�mp, nT ), where �m is the displacement in
integer image coordinates and n is the time lag in number of
frames. The discrete binary field at any frame is obtained by
integrating the continuous binary field over the time duration
T . Hence, computing the correlation Rb(�mp, nT ) is equiva-
lent to computing Rb(�vi∆t, ∆t) over the entire time interval
[nT ≤ ∆t ≤ (n+1)T ]. As a result, Rb(�mp, nT ) is high for all
pixels separated by the distance [�vinT ≤ �mp ≤ �vi(n + 1)T ].
Figure 3(b) shows the pixels for which the zeroth time lag cor-
relation Rb(�mp, 0) is high, where [0 ≤ �mp ≤ �viT ].

Note that different drops may have different (unknown) im-
age velocity magnitudes |�vi| depending on their sizes and dis-
tances from the camera. However, within a local region, drops
fall more or less in the same direction �vi/|�vi|. Hence, irre-
spective of the drop velocity magnitudes, the correlation Rb

remains high in the direction �vi/|�vi| of rain and low in all other
directions. In summary, the binary field b produced by rain ex-
hibits the following important properties :

• Since drop distribution is uniform over space and time,
the binary field b due to rain is wide sense stationary.

• The temporal correlation between pixels in any neighbor-
hood is high in the direction of rain and can be used to
detect rain and compute its direction.

3.2 Photometry of Rain

We now model the intensities produced in an image by falling
raindrops. In previous work [3], we studied the appearance of
a stationary drop and its relation to the radiance distribution
of the environment. We first summarize the main points of
this study. Then, we develop a model for the motion-blurred
intensities produced by a falling drop.
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(a) The field of view of a raindrop

(b) Experiment on the brightness of raindrops
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Figure 4: Geometry and brightness of a raindrop. (a) The field of
view of a raindrop is approximately 165◦. (b) Experiment verifying
the average brightnesses of raindrops. The background is a plane with
5 horizontal stripes of different shades of gray. The average intensi-
ties produced in the drop-sized regions A through E are plotted as a
function of time. Note that the drops (spikes) are brighter than their
backgrounds. Further, in the absence of motion-blur, the brightnesses
of the drops are roughly the same and independent of the background.

3.2.1 Brightness of a Stationary Raindrop

Raindrops behave like lenses refracting and reflecting (both
specularly and internally) scene radiances towards the camera.
We have developed detailed geometric and photometric mod-
els [3] for the refraction through and reflection from a spher-
ical raindrop. These models show that raindrops have a large
field of view of approximately 165◦ (see Figure 4(a)) and the
incident light that is refracted towards the camera is attenuated
by only 6%. Based on these optical properties of a drop, we
make the following observations:

• Raindrops refract light from a large solid angle of the en-
vironment (including the sky) towards the camera. Spec-
ular and internal reflections further add to the brightness
of the drop. Thus, a drop tends to be much brighter than
its background (the portion of the scene it occludes).

• The solid angle of the background occluded by a drop
is far less than the total field of view of the drop itself.
Thus, in spite of being transparent, the average brightness
within a stationary drop (without motion-blur) does not
depend strongly on its background.

We verified these observations using a video of drops falling
under an overcast sky. The video was captured with low ex-
posure time to prevent motion blur of drops. The background
scene consisted of horizontal stripes of different brightnesses,
as shown in Figure 4(b). The average intensities of drop-sized
regions marked A through E are plotted as a function of time.
Each spike corresponds to a sudden increase in brightness
when a drop passes through the marked region. Note that the
brightnesses of the drops (peak values of the spikes) are much
higher than the corresponding background intensities. Also,
these peak values are approximately the same even though the
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background intensities are very different (see the dashed line
in Figure 4(b)).

3.2.2 Photometry of Rain Streaks: Motion Blur

Falling raindrops produce motion-blurred intensities due to the
finite integration time of a camera. These intensities are seen
as streaks of rain. Unlike a stationary drop, the intensities of a
rain streak depend on the brightness of the (stationary) drop as
well as the background scene radiances and integration time
of the camera. Let us now analyze these dependencies.

Consider a video camera with a linear radiometric response
and exposure (integration) time T , observing a scene with rain.
To determine the intensity Id produced at a pixel effected by a
raindrop, we need to examine the irradiance of the pixel over
the time duration T . Figure 5(a) shows a raindrop passing
through a pixel within the time interval [tn, tn + T ]. In the
Appendix, we show that the time τ that a drop projects onto
a pixel is far less than T . Thus, the intensity Id is a linear
combination of the irradiance Ebg due to the background of
the drop and the irradiance Ed due to the drop itself:

Id(�r) =
∫ τ

0

Ed dt +
∫ T

τ

Ebg dt. (6)

Here, we have dropped the parameters (�r, t) on the right hand
side for brevity. If the motion of the background is slow, Ebg

can be assumed to be constant over the exposure time T . Then,
the above equation simplifies to

Id = τĒd + (T − τ)Ebg , Ēd =
1
τ

∫ τ

0

Ed dt , (7)

where, Ēd is the time-averaged irradiance due to the drop. For
a pixel that does not observe a drop, we have Ibg = Ebg T .
Thus, the change in intensity ∆I at a pixel due to a drop is

∆I = Id − Ibg = τ (Ēd − Ebg) . (8)

Recall from Section 3.2.1 that raindrops are much brighter
than their backgrounds. Thus, Ēd > Ebg and ∆I is posi-
tive. By substituting Ibg = Ebg T in equation (8), we obtain a
relation between ∆I and Ibg as

∆I = −β Ibg + α , β =
τ

T
, α = τ Ēd. (9)

In the Appendix, we derive the time τ for which a drop re-
mains within a pixel as a function of the physical properties of
the drop (size and velocity). Also, we show that τ and hence
β are constant for all pixels within a streak. In addition, since
the brightness of the (stationary) drop is weakly effected by
the background intensity, the average irradiance Ēd can be as-
sumed to be constant for pixels that lie on the same streak (see
Section 3.2.1). Thus, the change in intensities ∆I observed at
all pixels along a streak are linearly related to the background
intensities Ibg occluded by the streak.

In the Appendix, numerical bounds are also derived for the
parameters β and τ . We show that the maximum value of τ
is approximately 1.18 ms, which is much less than the typical
exposure time T ≈ 30 ms of a video camera. As a result, the
slope β is shown to to lie within the range 0 < β < 0.039 .
Based on these bounds, we make the following observations:
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Figure 5: The intensity change at a pixel due to a falling raindrop.
(a) The average irradiance at the pixel due to the rain drop is Ēd and
that due to the background scene is Ebg . Note that Ēd > Ebg . The
drop projects onto a pixel for time τ < 1.18 ms, which is far less than
the typical exposure time T of a camera. (b) Intensities of a pixel in
three frames. A drop stays over the pixel in only a single frame and
produces a positive intensity fluctuation of unit frame width.

• The time a drop stays at a pixel is less than the integration
time of a typical video camera. Thus, a drop produces a
positive intensity change (∆I > 0) of unit frame width at
a pixel as illustrated in Figure 5(b).

• The change in intensities observed at all pixels along a
rain streak are linearly related to the background intensi-
ties Ibg occluded by the streak. The slope β of this linear
relation depends only on the physical properties of the
raindrop. This can be used to detect rain streaks.

4 Detection of Rain in Videos
Based on the dynamics and photometric models of rain, we
now develop a robust algorithm to detect (segment) regions
of rain in videos. Although our models do not explicitly take
into account scene motions, we will show that they provide
strong constraints which are sufficient to disambiguate rain
from other forms of scene motions.

4.1 Applying Constraints of Photometric Model

Consider a video of a scene captured in rain such as the one
shown in Figure 6. We apply constraints derived using the
photometric model to detect candidate pixels effected by rain
in each frame of the video. In Section 3.2.2, it was shown that
a drop produces a positive intensity fluctuation of unit frame
duration. Hence, to find candidate rain pixels in the nth frame,
we need to only consider intensities In−1, In and In+1 at each
pixel corresponding to the 3 frames n−1, n and n+1, respec-
tively (see Figure 5(b)). If the background remains stationary
in these three frames1, then the intensities In−1 and In+1 must
be equal and the change in intensity ∆I due to the raindrop in
the nth frame must satisfy the constraint

∆I = In − In−1 = In − In+1 ≥ c , (10)

where c is a threshold that represents the minimum change in
intensity due to a drop that is detectable in the presence of
noise. The result of applying this constraint with c = 3 gray
levels is shown in Figure 6(a). The selected pixels (white)
include almost all the pixels effected by rain.

1When the background is not stationary over the three frames, we may
miss some streaks. However, since we detect rain using a sufficient number of
frames (say, 30 frames) missed rain pixels may be detected in other frames.
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Original Video

(c) Binary field due to rainb(e) Segmented rain region (d) Correlation magnitude

(a) Candidate rain pixels (b) Extracted rain streaks

Compute the
direction of
correlation

Select positive
unit-frame width
signals in time

Enforce linear
photometric
constraint

Compute
spatio-temporal
correlation

Figure 6: The rain detection algorithm applied to a video. (a) Using the photometric model to identify pixels that are effected by rain.
Candidate rain pixels are shown in white. Note that there are several false positives (non-rain pixels). (b) Applying the linear photometric
constraint to streak intensities (equation (9)). This reduces false positives significantly to yield an estimate of the binary rain field b. (c)
The computation of spatio-temporal correlation in the binary field b. (d) A correlation map computed using 11 × 11 neighborhoods over 30
frames. Pixels with high intensity values represent rain pixels while the non-rain pixels have low intensity values. (e) Needle map showing
the segmentation of the scene into regions with and without rain. The needle map is kept sparse for clarity.

In the presence of object motions in the scene, the above con-
straint also detects several false positives. Some of the false
positives can be seen in and around the moving person in Fig-
ure 6(a). To reduce such false positives, we apply the photo-
metric constraint in equation (9) as follows. For each individ-
ual streak2 in frame n, we verify whether the intensity changes
∆I along the streak are linearly related to the background in-
tensities In−1, using equation (9). The slope β of the linear
fit is estimated. Then, streaks that do not satisfy the linearity
constraint, or whose slopes lie outside the acceptable range of
β ∈ [0 − 0.039], are rejected. Figure 6(b) shows a significant
decrease in false positives after applying this constraint. By
applying these constraints to all the frames, an estimate of the
binary rain field b is obtained (see Figure 6(c)).

4.2 Applying Constraints of Dynamics Model

Although a significant reduction in false positives is achieved
using the photometric constraint, some false positives will re-
main. In this step, we further reduce the false positives us-
ing the dynamics model. In Section 3.1, we showed that in a
binary field produced by rain strong temporal correlation ex-
ists between neighboring pixels in the direction of rain. Us-
ing the estimated binary field b, we compute the zeroth or-
der temporal correlation Rb of a pixel with each of its neigh-
bors in a local (l × l) neighborhood, over a set of frames
{n, n−1, . . . , n−f}. Figure 6(d) shows the correlation values
obtained for all (11×11) neighborhoods in frame n, computed
using the previous f = 30 frames. Bright regions indicate
strong correlation. The direction and strength of correlation
is computed for each neighborhood center which is depicted
in Figure 6(e) as a needle map. The direction of the needle
indicates the direction of correlation (direction of the rainfall)
and its length denotes the strength of correlation (strength of
the rainfall). The needle map is kept sparse for clarity. Weak

2A linear time sequential labeling algorithm (Matlab function “bwlabel”)
[5] is used to segment streaks in the binary video frames.

and non-directional correlations occur at pixels with no rain3

and hence are rejected. Thus, constraints of the photometric
and dynamics models can be used to effectively segment the
scene into regions with and without rain, even in the presence
of complex scene motions.

5 Removal of Rain from Videos
Once the video is segmented into rain and non-rain regions, we
apply the following simple method to remove rain from each
frame of the video. For each pixel with rain in the nth frame,
we replace its intensity In with an estimate of the background
obtained as (In−1 + In+1)/2 (see Figure 5(b)). This step re-
moves most of the rain in the frame. However, since drop ve-
locities are high compared to the exposure time of the camera,
the same pixel may see different drops in consecutive frames.
Such cases are not accounted for by our detection algorithm4.
Fortunately, the probability of raindrops effecting a pixel in
more than three consecutive frames is negligible. In the case
of a pixel being effected by raindrops in 2 or 3 consecutive
frames, we remove rain by assigning the average of intensities
in the two neighboring pixel (on either side) that are not ef-
fected by raindrops. Our results show that this additional step
can be very effective for rain removal.

Note that we only remove streaks that can be detected.
Severely defocused streaks and streaks on bright backgrounds
produce very small changes in intensities that are difficult to
detect in the presence of noise. Hence, we are unable to re-
move such streaks. In addition, we do not handle the steady
effects of rain in this work. Raindrops far from the camera are
much smaller than a pixel. Hence, the intensity at a pixel is due
to a large number of drops in the pixel’s field of view. These
aggregate effects are similar to the effects of fog. Hence, de-
fogging algorithms [10] can be used to remove the steady ef-
fects of rain.

3Typically, the false positive streaks due to camera and object motions vary
in direction over time and thus do not exhibit directional correlation.

4In detecting rain, we did not consider this case in order to minimize false
detection due to object/camera motions.
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6 Experimental Results
We conducted experiments on several videos with rain to
demonstrate the effectiveness of our algorithms. In all ex-
periments, we chose the photometric threshold c = 3 and
the spatio-temporal correlation was computed using (11× 11)
neighborhoods over f = 30 frames. The rain segmentation
has a temporal lag since 30 frames were used to compute
spatio-temporal correlation.

Figure 7(a) shows 3 frames from the movie “Magnolia”, where
a person is moving and speaking over the phone. Rain is vis-
ible through the window. The camera moves and zooms in
on the person. The detection task is challenging due to the
fast moving textures (shirt creases and folds on the arm). De-
spite these complexities, our algorithm robustly detects only
pixels with rain (see Figure 7(b)). Note that we are unable
to detect rain in pixels with a bright background (white wall)
because the changes in intensities produced by rain are very
low. Derained frames are shown in Figure 7(c) and the differ-
ences between the derained and original frames (scaled by a
constant) are shown in Figure 7(d). Similar results are shown
for a clip from the movie “Seven” in Figure 8(I). Despite the
fast back and forth motion of the person’s head and the book,
our algorithm detects only pixels effected by rain.

Figure 8(II) shows results for a scene with raindrops falling
and forming a pool of water. The ripples of water may be
viewed as a temporal texture with frequencies similar to those
produced by rain. Even in this case, the algorithm detects only
pixels with rain (see Figure 8(II)(b)). The derained frames are
shown in Figure 8(II)(c). These examples demonstrate that our
algorithm is effective for scenes with complex motions and at
the same time is insensitive to time-varying textures that have
temporal frequencies similar to those due to rain.

7 Conclusion
We have developed a comprehensive model for the visual ap-
pearance of rain. Based on this model, we presented efficient
algorithms for the detection and removal of rain from videos.
Note that simple temporal filtering methods are not effective
in removing rain since they are spatially invariant and hence
degrade the quality of the image in regions without rain. In
contrast, our method explicitly detects pixels effected by rain
and removes the contribution of rain only from those pixels,
preserving the temporal frequencies due to object and camera
motions. The proposed algorithm can be used in a wide range
of applications including video surveillance, video/movie edit-
ing, and video indexing/retrieval. Our models also have impli-
cations for efficient and realistic rendering of rain. Currently,
we do not handle the steady effects of rain and we do not re-
move severely defocused rain streaks. In future work, we wish
to address these issues and also extend our analysis to other
types of dynamic weather conditions such as snow and hail.
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Figure 9: Schematic to compute the time τ that a drop stays over a
pixel

A Bounds for Photometric Model Parameters
We derive an expression for the time τ that a drop stays over a pixel.
Figure 9 shows a drop passing through a pixel. Consider the right
angled triangle �ADC. Then, τ is given by,

τ =
AB + 1

vi
=

2
√

a2
i − ρ2

i + 1

vi
<

2ai + 1

vi
, (11)

since 0 < ρi ≤ ai . A streak is visible for a drop that projects to a
region larger than a pixel i.e 2 ai > 1. Then, we obtain a conservative
upper bound τ < 4 ai/vi. If f is the effective focal length of the
camera and z is the distance of the drop from the camera, then τ
can be related to the physical properties of the drop (size a and fall
velocity v) by substituting ai = f a

z
, and vi = f v

z
, to get the range

0 < τ < 4 a/ v . Substituting v from equation (1), we obtain range
of possible values for τ (and hence for β = τ/T ) in terms of drop
size a as:

0 < τ <
√

a/50 sec , 0 < β <
√

a/(50 T ) , (12)

where, T is the exposure time, typically 1/30 sec for a video camera.
Since the maximum value of a = 3.5× 10−3 m, the possible ranges
for τ and β can be obtained as 0 < τ < 1.18 ms and 0 < β < 0.039 .
Now let us consider the dependence of τ on ρi for all pixels within
a streak. From Figure 9, we see that ρi does not change along the
direction of the streak. Further, since the width of the streak (image
size of the drop) is only a few pixels, the change in ρi across the
streak is also negligible. Thus, the dependence of τ on ρi is weak
and can be neglected. In other words, τ and β are constant for all
pixels on a streak.
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(a) Frames from the original video

(b) Rain detection shown using needle maps

(c) Derained frames

(d) Difference between the original and the derained frames

Figure 7: Detection and removal of rain for a clip of the movie “Magnolia” (Original images courtesy of New Line Productions- c©1999
New Line Productions, Inc.). (a) Three frames from the original video. The scene consists of a person moving and speaking on the phone
and rain visible through the glass window. The camera pans and zooms in on the person. Fast moving textures (shirt creases and folds on the
moving arm) make the detection task challenging. (b) Detected regions with rain represented as a needle map. The needle map is kept sparse
for clarity. The direction of the needle at a pixel represents the direction of rain and the length of needle represents the strength of the rain. (c)
Derained frames. (d) Difference between the original frames and the derained frames. For illustration purposes, the difference images have
been scaled by a constant.
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(d) Difference between original and the derained frames

(a) Frames from the original video

(c) Derained frames

(d) Difference between original and derained frames

(a) Frames from the original video

(c) Derained frames

(b) Rain detection shown using needle maps (b) Rain detection shown using needle maps

(I) (II)

Figure 8: (I) Rain detection and removal for a clip of the movie “Seven” (Original images courtesy of New Line Home Entertainment
- c©2001 New Line Home Entertainment, Inc.). Despite the fast back and forth motion of the head and the book, the algorithm detects only
pixels that have rain. When viewing on a screen, please zoom in to see the subtle rain streaks in the original frames. (II) In this example the
rain causes ripples in the pool of water. These ripples may be viewed as a temporal texture with frequencies similar to those produced by
rain. However, since the dynamic and photometric properties of rain are very different from those of the ripples, our algorithm detects only
pixels with rain. For illustration purposes, the difference frames have been scaled by a constant factor.
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