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Abstract

While an exact definition of texture is somewhat elusive,
texture can be qualitatively described as a distribution of
color, albedo or local normal on a surface. In the literature,
the word texture is often used to describe a color or albedo
variation on a smooth surface. We refer to such texture
as 2D texture. In real world scenes, texture is often due
to surface height variations and can be termed 3D texture.
Because of local foreshortening and masking, oblique views
of 3D texture are not simple transformations of the frontal
view. Consequently, texture representations such as the
correlation function or power spectrum are also affected
by local foreshortening and masking. This work presents a
correlation model for a particular class of 3D textures. The
model characterizes the spatial relationship among neigh-
boring pixels in an image of 3D texture and the change of
this spatial relationship with viewing direction.

1 Introduction

While an exact definition of texture is somewhat elusive,
texture can be qualitatively described as a distribution of
color, albedo or local normal on a surface. In the liter-
ature, the word texture is often used to describe a color
or albedo variation on a smooth surface. We refer to such
texture as 2D texture. In real world scenes, texture is often
due to surface height variations and can be termed 3D tex-
ture. Only recently has the issue of 3D texture become a
topic of interest in the literature [7][14][3][5][4][17][9][15].
Our prior work on 3D texture includes [3][5] which pro-
vides measurements of 3D texture as a starting point for
the investigation of texture appearance as a function of il-
lumination and viewing direction and [4] which presents
a histogram model for the class of 3D texture that is
randomly rough, Lambertian, monochrome and isotropic.
This work continues the development by presenting a cor-
relation model for the same class of 3D textures to charac-
terize the spatial relationship among pixels and the change
of the spatial relationship with viewing direction.

Many texture algorithms have been developed for 2D
texture analysis such as shape from texture [11][16][10],
texture recognition and texture segmentation [6][18][8][12].
Most of these algorithms are based implicitly or explicitly
on the power spectrum or equivalently on the correlation
of image texture. For 3D texture, the correlation func-
tion of image texture changes in a complicated manner
with viewing direction because of local foreshortening ef-

Figure 1. (Top Row) Oblique views of 3D texture. From left to
right, the associated viewing angle θv is 33.75◦, 56.25◦ and
78.75◦. These images were obtained from a rough plaster
sample of the texture database described in [5]. (Bottom
Row) Oblique views of a 2D texture with θv varying as
in top row. These views were generated by warping the
frontal view of the same plaster surface. This contrived
2D texture has the same appearance in the frontal view
as the rough plaster sample.

fects that depend on the varying local surface normal. In
this work we present a model which uses surface statistical
parameters to predict the change in the correlation length
with viewing direction. Consider the texture images in
Figure 1. This figure shows three oblique views of two
surfaces at increasingly oblique viewing angles. The sur-
faces shown have the same image texture viewed frontally,
but one surface is rough (3D texture) and the other sur-
face is smooth (2D texture). The images of the smooth
texture are simply warped versions of the frontally viewed
3D texture. Notice oblique views of the 2D and 3D tex-
ture are quite different. In particular, the oblique views
of 2D texture show higher spatial frequencies and there-
fore a smaller correlation length than the oblique views
of 3D texture. A computational model which quantifies
the change in correlation length with viewing direction is
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Figure 2. For a fixed distance k in the image, the corresponding
surface distance is a random variable τk.

clearly important for algorithms which rely on spectral
characteristics of texture.

2 Correlation Model

We assume that the 3D texture of interest is Lamber-
tian and has a random height profile that can be modeled
as a gaussian distribution with variance σ2

h. We further
assume that two surface points are jointly normal and the
autocorrelation of the surface height process is gaussian
with variance β2. The image of this surface gives rise to
an image texture. The details of the surface model are
given in Appendix 5.1. In this work, we are interested in
finding the correlation length of the image texture for an
arbitrary illumination and viewing direction. A fixed dis-
tance k in the image corresponds to a random distance τk
on the surface due to the varying surface profile as shown
in Figure 2. Because τk is a random variable denoting the
surface sampling, the correlation function can be written
as

E (I [j] , I [j − k]) = E {E (I(t), I(t − τk)|τk)} , (1)

where E denotes the expected value, I[j] is the intensity
for image pixel j and I (t) is the intensity for the surface
point at t. Note that the image intensity is written as a
one-dimensional quantity for notational simplicity. To fur-
ther simplify the notation let I(t) and I(t− τ) be denoted
by I0 and Iτ respectively. Then the expected value can be
expressed as

E (I [j] , I [j − k]) =
∫ ∞

0

E (I0, Iτ |τk = τ) pτk (τ) dτ, (2)

where pτk (τ) is the probability density function (pdf) of
the random variable τk.

2.1 PDF of Surface Sampling

To derive pτk we have adapted and extended the rough
surface analysis given in the acoustics literature [1][19][2]
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Figure 3. The probability pτk (τ ) dτ can be expressed as the
probability the line h = at+ h0 + b intersects the surface
at t = τ and the surface point at t = τ is visible.

several decades ago by researchers who modeled the acous-
tics of a rough ocean floor. Using the law of total proba-
bility,

pτk (τ) =
∫
p (τ |n0 = n) p (n0 = n) dn, (3)

where n0 is the surface normal at t = 0.
Let h0 denote the surface height at t = 0, and let hτ

denote the height at t = τ. Then,

Pr [τk = τ ]

= Pr
[

surface point at τ is visible
AND hτ = aτ + h0 + b| Xv0

]
, (4)

where

a = tan θv,

b =
k

sin θv
,

θv = polar angle of viewing direction,
Xv0 = event that surface point at t = 0 is visible.

This situation is illustrated in Figure 3. The conditional
expression is

Pr [τk = τ |n0] =

Pr
[

surface point at τ is visible
AND hτ = aτ + h0 + b|n0, Xv0

]
. (5)

That is,

Pr [τk = τ |n0]
= Pr [Xvτ AND hτ = aτ + h0 + b|n0, Xv0] .

=
∫
p (Xvτ , h0 = h, hτ = aτ + h+ b|n0, Xv0) dh

=
∫
p (Xvτ |h0 = h, hτ = aτ + h+ b, n0, Xv0)×

p ( h0 = h, hτ = aτ + h+ b|n0, Xv0) dh, (6)

where Xvτ = event that surface point at t = τ is visible.
The term p (Xvτ |h0 = h, hτ = aτ + h+ b, n0, Xv0) can

be found by extending the analysis of [19] and [1] as in



Appendix 5.2. The result is,

p (Xvτ |h0 = h, hτ = aτ + h+ b, n0, Xv0)
≈ Pr (surface doesn’t cross the ray aτ + h+ b in (0, τ))

=
(∫

Mv

p (n) dn
)

exp

−κ
 erf

(
h+b+aτ√

2σh

)
−

erf
(
h+b√
2σh

)  , (7)

where κ is a function of σh/β and the viewing direction
and is derived in Appendix 5.2; Mv is the set of surface
normals that have a positive dot product with the viewing
direction.

The term p (h0, hτ |n0, Xv0) can be expressed as

p (h0, hτ |n0, Xv0) =
p (Xv0|h0,hτ , n0) p (h0,hτ , n0)

p (n0, Xv0)

=
p (Xv0|h0,n0) p (h0,hτ , n0)

p (Xv0|n0) p (n0)

=
p (Xv0|h0,n0) p (h0,hτ |n0)

p (Xv0|n0)

=
exp

(
−B(1−erf(h0))√

2σh

)
p (h0,hτ |n0)

qv
,

(8)

for n0 ∈Mv, where we use the following results from [19]

p (Xv0|h0,n0) = exp
(−B (1− erf (h0))√

2σh

)
, (9)

p (Xv0|n0) = qv. (10)

The terms B and qv are derived in [19] and are a function
of the surface statistics and viewing direction. Putting it
all together and letting

ν =
(∫

Mv

p (n) dn
)
/qv,

we have

p (τ |n0) =∫
p (Xvτ |h0 = h, hτ = aτ + h+ b, n0, Xv0)×

p ( h0 = h, hτ = aτ + h+ b|n0, Xv0) dh

= ν

∫ ∞
0

exp

−κ
 erf

(
h+b+aτ√

2σh

)
−

erf
(
h+b√
2σh

) ×
exp

(
−B (1− erf (h))√

2σ

)
p (h0,hτ |n0) dh. (11)

So,

pτk (τ) dτ =
∫
p(τ |n0 = n)p(n0 = n)dndτ

= ν

∫ ∫ ∞
0

exp

 −κ
 erf

(
h+b+aτ√

2σh

)
−

erf
(
h+b√
2σh

) −
B
(
1− erf

(
h+b+aτ√

2σh

))
×

exp
(
−ξh2 − γh− η

)
dh dn dτ , (12)

where

exp
(
−ξh2 − χh− η

)
= p (h0 = h, hτ = h+ b+ aτ, n0 = n) .

(13)

The parameters ξ, χ and η are readily derived from the
multivariate normal surface model. The resulting integral
is too complicated to solve analytically and is evaluated
using numerical integration.

2.2 Examples of pτk (τ)

The sampling on the surface varies with the local height
variations on the surface. When the viewing ray intersects
uphill (positive sloped) portions of the surface, the dis-
tance between samples is small. On the other hand, when
the viewing ray intersects downhill (negative sloped) por-
tions of the surface, the sampling distance is large. In addi-
tion, peaks on the surface cause neighboring surface points
to be occluded and therefore the corresponding sampling
distance is large. In this section we look at several exam-
ples of the predicted sampling distance pdf pτk as derived
in the previous section.

Figure 4 shows the simulated surface for four differ-
ent combinations of σh and β. These simulated surfaces
are provided only as a reference to interpret the sampling
pdf examples and were not used in the calculations. Fig-
ure 5 shows the predicted values of pτk for k = 1, 2, 3 and
θv = 33.75◦. Consider the characteristics of each curve. In
example A of Figure 5, where σh is low and β is low, the
sampling distance has a mean value at k/ cos θv and has
approximately equal distribution of sample values lower
and heigher than this mean value. As k increases, pτk
shows very little change with the exception of its mean
value. To see that this behavior is expected, consider the
corresponding simulated surface shown in example A of
Figure 4. For this viewing direction, there are very few oc-
clusions and the area of uphill points projected to the im-
age are approximately equal to the area of downhill points.
Therefore we expect an equal distribution of the curve pτk
around the mean. The value of the mean is what we ex-
pect; it is the sampling distance that would occur in the
limit as σh goes to zero or β goes to ∞ and the rough
surface becomes smooth.

In example B of Figure 5, with its corresponding sim-
ulated surface shown in Figure 4, the value of σh is low
but the value of β is large. Because of this relatively large
correlation distance, the surface is smoother and there is
less variation of τk, i.e. pτk has a smaller variance than ex-
ample A. Also, small values of k are likely to correspond
to values of τk that are within the correlation length and
therefore pτk for smaller k values have a smaller variance.

Example C of Figure 5, corresponds to large σh and
small β. In this case there are significant occlusions from
tall surface points. The length of the occluding mask varies
causing a large variation of τ . For smaller k values, there
is more of a chance of intersecting an uphill portion of the
surface so the curve has more weight at low τ values.

In example D, which corresponds to large σh and large
β, the curves for pτk are similar to those of example B with
the exception of a large variation of τ around the means
caused by a larger value of σh.

Figure 6 shows the same examples with a more oblique
viewing direction, θv = 56.25◦. The plots are similar to
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Figure 4. Four one dimensional surfaces provided for illustra-
tion purposes. A: σh = 0.5, β = 1. B: σh = 0.5, β = 5. C:
σh = 2, β = 1. D: σh = 2, β = 5.
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Figure 5. Four examples of pτk obtained from the derived
model with θv = 33.75◦ and k = 1, 2, 3. A: σh = 0.5, β =
1. B: σh = 0.5, β = 5. C: σh = 2, β = 1.D: σh = 2, β = 5.

those shown in Figure 5 with the exception that the occlu-
sions from tall surface points are large at the oblique angles
causing much larger τ values to be significantly probable.

These plots show the correct behavior by qualitative
arguments. In addition, during model development the
predicted pdf of τk was compared to a computed version
obtained by ray-tracing simulated surfaces. There was a
good correspondence between the model predictions and
these simulations.

2.3 Correlation Length

Let the correlation length of the surface be τ ′, so that
when τk > τ ′,

E (I0, Iτ |τk = τ) = 0.

We see from Equation 2 that if

pτk (τ) = 0 for τ < τ ′,
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Figure 6. Four examples of pτk obtained from the derived
model with θv = 56.25◦ and k = 1, 2, 3. A: σh = 0.5, β =
1. B: σh = 0.5, β = 5. C: σh = 2, β = 1. D: σh = 2, β = 5.

then

E (I [j] , I [j − k]) = 0.

Let L be the value such that

pτk (τ) = 0 for τ < τ ′ whenever k > L. (14)

This value of L is the correlation length in the image, i.e.

E (I0, Ik) = 0 when k > L. (15)

We note that L is a function of the viewing direction
and the surface statistics. The correlation length is not
independent of illumination direction in the presence of
cast shadows. However if cast shadows are not dominant
and the correlation is computed using only non-shadowed
pixels, the resulting correlation length is equal to L.

While the random variable τk is not directly observable
from the image, E (I0,Ik) and therefore L can be estimated
from the image. The estimated values of L can be used to
estimate surface statistics from a set of images obtained
with known viewing direction but unknown illumination
direction. Conversely, if the surface statistics are known
the viewing direction can be estimated using the value of
L obtained from the image.

3 Results

We employ the texture images obtained from the pub-
licly available database described in [5]. Figure 7 shows
the images of rough plaster taken under 9 different illu-
mination and viewing directions. From left to right, the
columns correspond to θv = 33.75◦, 56.25◦ and 78.75◦.
From top to bottom the illumination polar angle is θs =
11.25◦, 33.75◦ and −11.35◦. For the images in each row the
correlation length was computed and plotted as a func-
tion of θv in Figure 8 (dashed lines). Using the correlation
lengths we estimated the value of σh and β for this surface
as σh = 0.57 and β = 1.16. The corresponding model esti-
mate of the correlation length L is shown in Figure 8. Also
shown in this figure is the correlation length for a planar



Figure 7. Images of rough plaster (sample 11 in the texture
database) taken under 9 different illumination and view-
ing directions. From left to right the columns correspond
to θv = 33.75◦, 56.25◦ and 78.75◦. From top to bottom
the illumination polar angle is θs = 11.25◦, 33.75◦ and
−11.35◦.

surface (2D texture). There are two important things to
notice here. First, the measured correlation length as a
function of viewing direction is similar for all three illu-
mination directions considered. Second, the model does
a good job predicting the correct value of the correla-
tion length especially when compared to the prediction
obtained by assuming 2D texture.

4 Conclusion/Summary

For image understanding in real world scenes, algo-
rithms and models which handle 3D texture are becoming
increasingly important. In [4], we developed a histogram
model for 3D texture that predicts the histogram of image
intensities as a function of viewing and illumination di-
rection. Using the histogram model, we estimated surface
roughness from a series of images taken under different illu-
mination and viewing directions. However, the histogram
does not provide information on the spatial relationship
of image pixels and the estimated surface roughness does
not reveal the spatial relationship of surface points. The
new model presented here allows the prediction of corre-
lation length as a function of viewing direction. From a
series of images we’ve estimated both surface roughness
and surface correlation. Consequently, the model is used
to determine the spatial relationship of image pixels and
surface points.

5 Appendix

5.1 Surface Statistics

We assume the height of the surface is a gaussian ran-
dom variable, i.e. the pdf of the height ph has a standard
deviation σh and is given by

ph =
1√

2πσ2
h

exp

(
− (h−mh)

2

2σ2
h

)
.
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Figure 8. Measured and modeled correlation lengths. The
dotted lines show the measured correlation length L as a
function of θv = 33.75◦, 56.25◦ and 78.75◦. Each dotted
line corresponds to a different illumination direction θs =
11.25◦, 33.75◦,−11.25◦.The solid line corresponds to the
model of the correlation length using the parameters that
best match the measurements: σh = 0.57 and β = 1.16.
The dashed line shows the correlation length that would
be predicted if we assume the texture is a 2D texture.

We assume the correlation function is gaussian with a stan-
dard deviation of β, i.e.

E (h (x1,y1) , h (x2,y2))

= σ2
h exp

(
− (x1 − x2)

2 − (y1 − y2)
2

2β2

)
.

5.2 Ray Crossing PDF

In this section we’ve adapted our notation to be more
consistent with [19]. According to the development in [19],

Pr (surface doesn’t cross the ray aτ + δ in (0, τ) |δ, δ′)

= C exp

[
−
∫ τ

0
1

2πσhσ
×∫∞

η0
(η − η0) exp

(
− (δ+η0τ)2

2σ2
h
− η2

2σ2

)
dη

]
,

where η0 is the slope of the viewing ray, δ is the height of
the surface, δ′ is the slope of the surface, σ = σh/β, and
C is the unit step function

C = u (η0 − δ′) = 1 if δ′ ≥ η0

0 otherwise.

Therefore,

Pr (surface doesn’t cross the ray aτ + δ in (0, τ) |δ, δ′)

= C exp

[
−
∫ τ

0
1

2πσhσ

∫∞
η0

(η − η0)×
exp

(
− (δ+η0τ)2

2σ2
h
− η2

2σ2

)
dηdτ

]

= C exp

[
−
∫ τ

0

1
2πσhσ

A exp

(
− (δ + η0τ

′)2

2σ2
h

)
dτ

]
,



where

A =

 −√2πση0 + σ
√

2π erf
(

1√
2σ
η0

)
η0

+2σ2 exp
(
− η2

0
2σ2

)  .

Because

∫ ∞
η0

(η − η0) exp

(
− (δ + η0τ)

2

2σ2
h

− η2

2σ2

)
dη =

= A exp

(
− (δ + η0τ

′)2

2σ2
h

)
,

the integral can be evaluated as follows

− 1
2πσhσ

∫ τ

0

(
A exp

(
− (δ + η0τ

′)2

2σ2
h

))
dτ ′

= −1
2

√
2πσhA

− erf
(
δ+η0τ√

2σh

)
+ erf

(
1√
2σh

δ
)

η0

=
(

1√
2π

σ

η0
e−

1
2
η2
0
σ2 − 1

2

(
1− erf

(
η0√
2σ2

)))
×(

− erf
(
δ + η0τ√

2σh

)
+ erf

(
δ√
2σh

))
.

So the result is

Pr (surface doesn’t cross the ray aτ + δ in (0, τ) |δ, δ′)

= C exp


(

1√
2π

σ
η0
e−

1
2
η2
0
σ2 − 1

2

(
1− erf

(
η0√
2σ2

)))
×(

− erf
(
δ+η0τ√

2σh

)
+ erf

(
δ√
2σh

))
 .

Now we integrate over δ′,

Pr (surface doesn’t cross the ray aτ + δ in (0, τ) |δ) =∫
Pr
(

surface doesn’t cross the ray
aτ + δ in (0, τ) |δ, δ′

)
p (δ′) dδ′

=
(∫

Mv

p (n) dn
)

Pr
(

surface doesn’t cross the ray
aτ + δ in (0, τ) |δ, δ′ ∈Mv

)

=
(∫

Mv

p (n) dn
)

exp

κ (σ, η0)

 − erf
(
δ+η0τ√

2σh

)
+

erf
(

δ√
2σh

)  ,
where Mv is the set of surface normals that have a positive
dot product with the viewing direction. Therefore,

κ (σ, η0) =
(

1√
2π

σ

η0
e−

1
2
η2
0
σ2 − 1

2

(
1− erf

(
η0√
2σ2

)))
.
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