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Abstract

Image texture can arise not only from surface albedo
variations (20 texture) but also from surface height uari-
ations (30 texture). Since the appearance of 30 texture
depends on the illumination and viewing direction in a
complicated manner. such image texture can be called a
bidirectional texture function. A fundamental represen-
tation of image texture is the histogram of pixel inten-
sities. Since the histogram of 30 texture also depends
on the illumination and viewing directions in a com-
plex fashion, we refer to it as a bidirectional histogram.
In this work. we present a concise analytical model for
the bidirectional histogram of Lambertian, isotropic, ran-
domly rough surfaces! which are common in real-world
scenes. We demonstrate the accuracy of the histogram
model by fitting to several samples from the Columbia-
Utrecht texture database. The parameters obtained from
the model fits are roughness measures which can be used
in texture recognition schemes. In addition. the model
has potential application in estimating illumination di-
rection in scenes where surfaces of known tilt and rough-
ness are visible. We demonstrate the usefulness of our
model by employing it in a novel 30 texture synthesis
procedure.

1 Introduction

The term image texture. or simply texture, usually
refers to t,he  digital image of a textured surface. In order
to understand image texture, the nature of the surface
texture must be specified. Image texture can arise not
only from surface albedo variations (2D texture) but also
from surface height variations (3D texture). The dis-
tinction between 3D texture and 2D texture is explored
in recent work [3],[8],[4],[7],[5].  While there is a large
body of work dealing with algorithms for the analysis
and synthesis of 2D texture, comparable work for 3D
texture is quite sparse. Since the appearance of 3D tex-
ture depends on the illumination and viewing direction
in a complicated manner, it is useful to refer to image
texture as a bidirectional texture function.

Modeling and synthesizing this bidirectional texture
is key to achieving robust texture recognition and seg-
mentation as well as photorealistic texture rendering. A
fundamental representation of texture is the histogram
of pixel intensities. For 3D texture, just as image tex-
t.ure  is bidirectional, the histogram is a bidirectional
histogram. Changes in the histogram of 3D texture
with illumination and viewing directions are indicative

of the surface structure. The work of [8] also addresses
histograms of 3D texture by investigating t,he physical
mechanisms underlying bidirectional histograms from a
large variety of surfaces and by using statistical simula-
tions to generate histograms of gaussian rough surfaces.

In this work we develop an analytical model of the
bidirectional histogram of image texture. For arbitrary
surfaces, developing such a model is extremely difficult.
So, for tractability, we assume the imaged surface has
an isotropic random-slope profile and constant-albedo
Lambertian reflectance. This model proves t.o be a good
approximation for a variety of natural and man-made
surfaces found in ordinary scenes. Our model is based
on a geometric/photometric analysis of the interaction
of light with the surface. We show the accuracy of the
model by fitting to the histograms of real 3D textures
from the Columbia-Utrecht texture database [3].

The model can be used in applications for both com-
puter vision and computer graphics. The parameters ob-
tained from the model fits are roughness measures which
can be used in texture recognition schemes. In addition,
the model has potential application in’estimating illumi-
nation direction in scenes where surfaces of known tilt
and roughness are visible. We demonstrate the useful-
ness of our model by employing it in a novel 3D tex-
ture synthesis procedure called texture-morphing. We
show that results obtained using texture-morphing are
superior to those obtained with standard techniques of
texture-mapping.

2 Histogram Model

There are two main tasks involved with the devel-
opment of the histogram model. The first task is the
conversion of the surface slope probability density func-
tion (pdf) to t.he image intensity pdf. This conversion
requires a careful analysis of surface masking, shadowing
and shading that results in an expression for the image
intensity pdf in integral form. This integral is rather
complicated and does not lend itself to an analytical so-
lution. The second task of the model development is a
suitable approximation of the integral that leads to a
concise parametric histogram representation.

2.1 Surface Normal  PDF

The surface is assumed to be isotropic with a gaussian
distributed surface slope. Let G denot,e  the global nor-
mal of the surface. The local surface normal is a random
vector denoted by N with polar angle B and azimuthal
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the integration is over only one variable. The details
of the transformation are given in Appendix A.l. We
then project the new integrand onto a set of basis poly-
nomials that are conducive to integration as is det,ailed
in Appendix A.2. As a result of the coordinate trans-
formation and basis decomposition, Equation 17 can be
expressed as

PI (&I dZ = 08)

where L is the number of basis polynomials, aj are the
coefficients obtained when projecting the integrand onto
the basis polynomials, and +.L’ are the functions result-
ing from the integration of the basis polynomials. The
details are described in Appendix A.2.

In matrix notation this becomes

PI CL) dL = -& bPY Q. 09)

where K is an L x (2L - 1) matrix which depends on
S (source direction); 1-1 is a (2L - 1) x 1 vector which
depends on V (viewing direction) and S; cy is an L x
1 vector which depends on 0 (surface roughness); and

( >
& is a constant which depends on V, S and u.

Note that pi (IO) dIO  is the value of the histogram for
a single intensity bin 1,. To obtain an expression for the
entire histogram, we construct the matrix R so that the
rows are the individual “~1  vectors for each intensity I,, E
[0, 11. For example! if there are 256 discrete intensity
values R is a 256 x L matrix. Define i as the predicted
histogram vector. Then,

h = --+a. (20)
”

This equation gives a simple matrix formula for the
complete bidirectional histogram h of a Lambertian,
isotropic, randomly rough surface.

3 Histogram Model Fits

The measured histograms were obtained from the
Columbia-Utrecht texture database for the following
samples: Sample 11 (plaster), Sample 10 (plaster), Sam-
ple 49 (concrete), Sample 50 (concrete) and Sample 8
(pebbles). For each sample, 19 histograms from images
obtained with different viewing and illumination direc-
tions were used to represent the measured bidirectional
histogram. These histograms correspond to the plane-
of-incidence measurements from the database. Let hj (i)
denote the ith element of the jth measured histogram
where i = 0, 1, ..255 and j = 0, 1: . ..18. Similarly let
ij(i) denote the ith element of the jth estimated his-
togram as given by Equation 20. Since our histogram
model is appropriate for constant-albedo samples, only
gray-scale image information was used. In the model,
shadows are assumed to be zero intensity; however, in

the actual images shadows are usually non-zero. To ac-
count for this discrepancy, all image pixels with inten-
sity lower than a manually chosen shadow threshold are
counted as zero-intensity shadows.

The camera response for the measurements was ap-
proximately linear so each recorded intensity in related
to the actual intensity by a gain factor and an offset.
Three parameters were estimated for each sample: gain
c, offset x, and roughness parameter 8. The actual
albedo of the sample is implicitly included in the es-
timation of camera gain C. The value for L in Equa-
tion 18 was chosen as 16, for a compact yet accurate rep-
resentation. The Levenberg-Marquardt algorithm (im-
plemented in Matlab) was used to estimate the parame-
ters C, x and r~ which minimize the error E, taken over
the collection of histograms, where

18 255

E = TJ x(hj(i) - h;(Ci + x))‘. (21)
j=O  a=0

The fits were improved by applying gaussian  blurring to
the modeled histogram. The fit.ting results for five differ-
ent texture samples are shown in Figure 3. These results
indicate a good match between the model and measure-
ments even in the shadow regions that correspond to
zero intensity.

4 Applications

We now discuss how the model developed in this pa-
per can be used in 3D texture algorithtis for recognition
and synthesis.

The model-fitting procedure provides a roughness pa-
rameter that can be used for recognition. While all char-
acteristics of the texture are not captured by a single
roughness parameter, it does provide a simple concise
texture description that is useful for distinguishing a va-
riety of textures. In addition, if roughness and surface
slant are known for a portion of the scene, the model can
potentially be used to determine the illumination direc-
tion. Implementing these applications of recognition and
photometric analysis is saved for future work.

This model can also be used in a novel synthesis tech-
nique that we have developed for 3D textures. Assume
that the frontal view of the textured surface is given,
and the goal is to synthesize an oblique view. Stan-
dard texture-mapping addresses this problem by assum-
ing a planar texture. Under this planar assumption,
the oblique view is then synthesized by uniformly re-
sampling the frontal view image. For 3D texture, this
texture-mapping method results in a rather poor qual-
ity synthesis as illustrated in Figure 4. We introduce a
new method of texture-synthesis called texture-morphing
which estimates the non-uniform resampling function re-
quired to transform a frontal view of 3D texture into an
oblique view. This estimation is driven by the goal of
matching the histogram of the synthesized texture to the
histogram of the oblique view texture. Since the bidirec-
tional histogram model provided in this paper provides
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the target oblique view histogram. only t,he frontal image
and the roughness parameter are required to obtain the
oblique view image. At each iteration of the estimation,
a comparison is made between the current histogram and
the desired histogram; regions where pixels are overrep-
resented are sampled more sparsely and regions where
pixels are underrepresented are sampled more densely.
The results of texture-morphing and a comparison to
texture-mapping is shown in Figure 4. The synthesis
via texture-morphing provides a superior match to the
actual oblique view of the sample. suggesting that 3D
texture-rendering can be a promising application of the
bidirectional histogram model.

A APPENDIX

A.1 Coordinate F’rame Transformation

The best coordinate frame to do the integration of
Equation 17 is one with the z-axis aligned with the il-
lumination direction S. Let n, denote the local surface
normal in this coordinate frame with azimuthal angle &
and polar angle 0,. Then the integral over the cone is
simply the int,egral  over the azimuthal angle &. Let R,
be the rotation matrix from the coordinate frame aligned
with S to the coordinate frame aligned with G so that
the conversion of a surface normal n, to n is given by

[

cos  es
n = R,‘n, = sines % 2;; ] [  ~k$% ] .0

-

(22)
We use the notation

n~V=ccos&+dsin~,+e, (23)

where V = [Q, vy,vz] and

C = u, cos es sin 19~  - v, sin es sine,, (24)
d = vy sin e,, (25)
e = ‘u, sin es cos ec + V, cos es cos 8,. (26)

The integral in this coordinate frame is written as

PI CL) dL =
qsin(e,,)----_I-9°F ?'N

1“)
where 8,, is the polar angle of the cone corresponding
to I, in the coordinate frame aligned with S, n,, is the
surface normal defined by (e,,, &) and 6’ (&)  is the polar
angle of n,, relative to G as illustrated in Figure 5.

Because of masking, the integration is generally over
only a portion of the cone about S, as illustrated in Fig-
ure 1. To compute the limits note that integration is
over MU n iUh where M, is the set {& : n . V > 0) and
hZh is the set { & : n G > 0) .

To determine the set M,,, consider the intersection
points where c cos d + d sin d + e = 0, which are

Pa=  2  arctan
-2d + 2J(d’  + 3 - e*)

2(-c+e) 2 (28)

Figure 5. The cone illustrated corresponds to the sur-
face normals for intensity Z, according to the Lamber-
tian assumption. In the coordinate frame aligned with
the illumination direction S, these surface normal have
the same polar angle 0,, but different azimuth angles
&. A given surface normal nc makes and angle of Q( &)
with the global surface normal G.

4j = 2 arctan
-2d - 2J(d* + c2 - ez)

2(-c+e) . (29)

Given these intersections, There are two possibilities for
the M,,. Either

nflJ={4C:$*<dc<~j}, (30)

or
A& = {& : qi$ < 4, < 2r + 4%) (31)

In order to find the correct choice, the sign of the deriva-
tive of n V, must be checked at &. Specifically, If
(-csin4 + dcos4)  I+@i 2 0 then Equation 30 holds;
otherwise Equation 31 is the correct choice.

To determine the set Mh, consider the values of 4
which satisfy

n . G = (- sin es sin & cos qb + cos es cos e,) = 0 (32)

and denote the two solutions as & and 41, where

@k = arccos (cos es)( cos 8,
sin es sin ec > ’

and (33)

& = - arccos (cases)
cos 8,

sin es sin e, > ’ (34)

Checking the derivative of n . G, we find that Mh =
{& : C,bk < q& < 41) if (sin es sin 8, sin 4) Idcok 2 0; oth-
erwise Mh = (4 : q$ < ‘$ < 2r f $k} .

From the geometry of the problem, we know that the
sets AZh and fiyU will be continuous. Their intersection
however may lead to two disjoint sets (41 5 QJ 5 $2) and
(4s 5 4 < 44) as illustrated in Figure 6. The final gen-
eral form of the integral is
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Figure 3. Each column corresponds to the histogram model fit for a sample from the Columbia-Utrecht texture
database (31. From left to right the samples are Sample 11 (plaster), Sample 10 (plaster), Sample 49 (concrete), Sample
50 (concrete) and Sample 8 (pebbles). In each panel the model fit is shown by the solid line while the measured
histogram is shown by the dotted line. The zero intensity bin is shown with an ‘x’ for the measured histogram and an
‘0’ for the modeled histogram. The estimated roughness parameter for each sample, from left to right, is 0.41. 0.23,
0.24, 0.31, 0.36. respectively. For each row, the polar angle of the viewing direction V and the illumination direction
S are given on the left in degrees (negative polar angles correspond to a 180” azimuth). The model was fit using 19
histograms per sample. but for conciseness, 8 histograms per sample are shown in this figure.

Near Frontal View Simulated Oblique View
Texhtre-Mapping

Actual Oblique View Simulated Oblique View
Texfure-Morphing

Figure 4. Illustration of 3D texture synthesis using texture-morphing and the histogram model. From left to right
the images are 1) plaster from a near frontal view, 2) a simulated oblique view obtained by applying standard texture-
mapping to the frontal view image, 3) the actual oblique view of the plaster sample, 4) a simulated oblique view by
applying texture-morphing to the frontal view image. The simulated view obtained by texture-morphing is significantly
better than texture-mapping.
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Figure 6. From left to right. the four main intersection
outcomes i\fCBnnfh  are illustrated: (1) the sets partially
overlap, (2) one set is a subset of the other, (3) the in-
tersection is two disjoint sets. and (4) the intersection
is the empty set. In each illustration, the solid line ter-
minated by solid circles corresponds to M,, the dashed
line terminated by open circles corresponds to nfh  and
the wide gray line corresponds to the intersection.

A.2 Approximation of Integrand

The integral for pr is very complicated and an analyt-
ical solution is not readily attainable. Instead we seek
an approximation of the integral. By considering the
rotation defined by matrix R,, we see that

case = acos& + b, (36)

where a = - sin 8s sin BCO  and b = cos 0~ cos BcO. An im-
portant observation can be made from this relation. Ap-
proximations of the integrand in terms of a polynomial
in cos0 will lead to an approximation that is a polyno-
mial in cos$, . Such a polynomial is easily integrated
analytically. In fact, it is only necessary to approximate
(PN (R;‘w) / cosQ)since the product of a polynomial
in cos & and (c cos 4, + d sin & + e) is also readily inte-
grated analytically. The discrete cosine transform pro-
vides us with the means to make this approximation.
Defining L as the truncation point of the summation,
leads to the following approximation

p~(R;‘nc)

co5 e(& 1 z C,“=l  Qj92(j-1)  ( case  (4c))
=  c,“=, ajgz(j-1)  ( acosqkfb),

(37)

where
gj (cos e) = cos (je)  . (38)

Define KS to be the coefficient of the term cost & in the
polynomial gj (a cos & + b) so that

Substitute the approximation back into the expression
for pl (IO) in Equation 27, and rearrange to get

pr (10)  dl0 = ~~;~IcT3~,K;x

5 c COS’+~  & + d cos” & sin & + e cos’  &d&dQ,.
(40)

Then, Equation 35 can expressed as

(41)

where

p’ = s,“: COS’&  (ccos  & + d sin d, + e) dd, sin &de,

+ &y cos’ & (ccos & + d sin & + e) d&  sin B,dB,.

(42)
In matrix notation this becomes

(43)

where K is an L x (2L - 1) matrix which depends on
S (source direction); p is a (2L - 1) x 1 vector which
depends on V (viewing direction) and S: a is an L x
1 vector which depends on u (surface roughness); and

( >
& is a constant which depends on V, S and cr.

Construct the matrix 0 so that the rows are the in-
dividual KP vectors for each intensity 1, E [O.  11. For
example, if there are 256 discrete intensity values 0 is
a 256 x L matrix. Define h as the predicted hist,ogram
vector. Equation 43 gave the expression. for a single
histogram bin, or one element of the vector h. The en-
tire histogram can be expressed by the following matrix
equation,

Fl = -+h
v

This expression is the final form of the bidirectional his-
togram model.
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