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ABSTRACT

This paper presents a complete framework for creating a speech-
enabled avatar from a single image of a person. Our approach uses
a generic facial motion model which represents deformations of a
prototype face during speech. We have developed an HMM-based
facial animation algorithm which takes into account both lexical
stress and coarticulation. This algorithm produces realistic anima-
tions of the prototype facial surface from either text or speech. The
generic facial motion model can be transformed to a novel face ge-
ometry using a set of corresponding points between the prototype
face surface and the novel face. Given a face photograph, a small
number of manually selected features in the photograph are used to
deform the prototype face surface. The deformed surface is then
used to animate the face in the photograph. We show several exam-
ples of avatars that are driven by text and speech inputs.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
Multimedia Information Systems—Animations; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Animation

1 INTRODUCTION

While a substantial amount of work has been done on developing
human face avatars, we have yet to see avatars that are highly real-
istic in terms of animation as well as appearance. The goal of this
paper is to create speech-enabled avatars of faces that provide real-
istic facial motion from text or speech inputs. Such speech-enabled
avatars can significantly enhance user experience in a variety of
applications including mobile messaging, information kiosks, ad-
vertising, news reporting and videoconferencing.

Our approach to facial animation employs the generic facial motion
model previously introduced in [3]. The model represents a defor-
mation of the 3D prototype facial surface due to articulation during
speech as a linear combination of a small set of basis vector fields.
The coefficients of this representation are the time-dependent facial
motion parameters. In order to build a speaker-dependent facial mo-
tion model for a new subject, we first deform the prototype surface
into a novel surface using a small set of feature points on the novel
face. Then, the basis vector fields are adapted to the novel facial
surface with the help of the deformation obtained in the previous
step.

We train a set of Hidden Markov Models (HMMs) using the facial
motion parameters obtained from motion capture data of a single
speaker. Our facial motion synthesis algorithm utilizes the trained
HHMs to generate facial motion parameters from either text or
speech input.

We apply the facial motion synthesis algorithm to animate avatars
created from a single photograph. Since depth information is not
directly available from a single photograph, we flatten (project)
both the prototype surface and the basis vectors of the facial motion
model to obtain a reduced 2D representation. To create a avatar,
we first select a few corresponding points between the prototype
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surface and the person’s face in the photograph. Using these cor-
respondences, we deform the prototype surface and adapt the basis
vector fields to obtain the speaker-dependent facial motion model.
We have developed real-time rendering software that can produce
realistic facial animations of avatars from facial motion parameters
generated from either text or speech input. In order to enhance re-
alism, our rendering system also synthesizes eye gaze motion and
blinking.

The main technical contributions of our work can be summarized
as follows. First, we present an end-to-end system for building
an avatar from a single photograph. Second, we have developed
a novel, HMM-based facial motion synthesis algorithm. Our algo-
rithm, compared to the existing HMM-based approaches [7, 15],
takes into account the effects of lexical stress and co-articulation by
learning them from the training data. Finally, to include the effects
of eye gaze changes and blinking, we present a texture synthesis
based method for obtaining a complete eyeball model from the in-
complete view of an eye in a photograph.

In [4], we show how our approach can be used to build volumet-
ric displays featuring speech-enabled 3D avatars. We use a simple
method for recovering 3D face geometry and texture from a sin-
gle mirror-based stereo image. A physical 3D avatar of the per-
son’s face is created by engraving the obtained facial surface in-
side a solid glass block using sub-surface laser engraving technol-
ogy. The facial motion animation synthesized from text or speech
is projected onto the static 3D avatar using a digital projector. Even
though the physical shape of the avatar is static, the projection of
facial animations onto it results in a compelling experience for the
viewer.

2 RELATED WORK

Our work is related to previous works in several fields, including
computer graphics and computer vision. Here, we discuss the pre-
vious works that are most relevant to ours.

Facial Motion Representation: Existing approaches to facial mo-
tion synthesis fall into either image-based or model-based cate-
gories. Image-based approaches, such as [8, 11], rely on building
statistical models which relate temporal changes in the images at
a pixel level to the sequence of phonemes uttered by the speaker.
A major disadvantage of image-based models is that they require a
large training set of facial images in order to synthesize novel fa-
cial animations. In contrast, model-based approaches represent the
shape of a speaker’s face with either a 2D or 3D mesh. Articula-
tory facial motion is described as deformation of the mesh and is
controlled by a set of parameters. One of the most popular tech-
niques parameterizes mesh deformations with the help of muscle
models [19] and uses facial muscle activations to produce facial an-
imation. On the other hand, performance-driven approaches learn
facial motion from recorded motions of people. In this paper, we
take the model-based approach and use a compact parameterized
facial model built from motion capture data presented in [3].

Facial Motion Synthesis: Given a parametric representation of fa-
cial motion, the role of speech synthesis algorithms is to generate
parameter trajectories from a time-aligned sequence of phonemes.
One of the approaches to visual speech synthesis is based on defin-
ing a key shape for each of the phonemes and smoothly interpolat-
ing between them [16]. Similar to acoustic speech synthesis, visual
speech synthesis methods fall either into concatenative or HMM-



based categories. Concatenative approaches rely on stitching to-
gether pre-recorded motion sequences, which correspond to tri-
phones [8], phonemes [21] or even longer speech units [9]. HMM-
based synthesis [7, 15], on the other hand, models the dynamics of
visual speech with the help of hidden Markov models. Trajecto-
ries of facial motion parameters are generated from HMMs based
on the maximum likelihood criteria. Our method trains HMMs that
can capture the effects of both coarticulation as well as lexical stress
and produce realistic facial motions from either text or speech in-
puts.

2D Avatars from a Photograph: Although a number of ap-
proaches to fitting a deformable model to a photograph have been
suggested, generation of speech-enabled avatars from a single im-
age remains an open research problem. For instance, Blantz et
al. [5] developed a method to transfer static facial expressions ob-
tained from laser scans to photographs. The main drawback of this
work is its high computational cost. A few commercial systems
(see [1, 2], for example) introduced recently aim to animate user-
supplied facial images, but the facial motions they produce lack
realism. We present an end-to-end system for creating speech-
enabled avatars from a single photograph which can be animated
from text or speech in real-time. We believe the realism of the vi-
sual speech produced by our approach is fairly high compared to
those of existing systems.

3 FACIAL MOTION REPRESENTATION

Our approach to synthesizing facial animation from text or speech
utilizes the 3D parametric facial motion model previously intro-
duced in [3]. For the sake of completeness, we briefly review this
model. First, a generic, speaker-independent facial motion model
is estimated. Then, this model is adapted to a novel speaker’s face.

The generic facial motion model describes deformations of the pro-
totype face represented by a parametrized surface xxx(uuu),xxx ∈ R

3,uuu ∈

R
2. The displacement of the deformed face shape xxxt(uuu) at the mo-

ment of time t during speech is represented as a linear combination
of the basis vector fields ψψψk(uuu) :

xxxt(uuu) = xxx(uuu)+
N

∑
k=1

αk,tψψψk(uuu). (1)

The vector fields ψψψk(uuu) defined on the prototype facial surface xxx(uuu)
describe the principal modes of facial motion and are learned from
motion capture data as described in [3]. At each instant of time, the
deformation of the prototype facial surface is completely described
by a vector of facial motion parameters ααα t = (α1,t ,α2,t , ...,αN,t)

T .
The dimensionality of the facial motion model is chosen to be N =
9.

The above basis vector fields are defined with the respect to the pro-
totype surface and, thus, have to be adjusted to match the geometry
of a novel face. We employed the method developed in [3] for facial
motion transfer which enables one to map the generic facial motion
model using a few corresponding points between the prototype face
and the novel face.

3.1 Visual Speech Unit Selection

In large vocabulary speech applications, uttered words are consid-
ered to be composed of phones which are acoustic realizations of
phonemes. We make use of the CMU phone set, which consists of
39 distinct phones along with a silence unit /SIL/ which describes
inter-word intervals. In order to accommodate lexical stress, the
most common vowel phonemes are cloned into stressed and un-
stressed phones (for example, /AA0/ and /AA1/). In particular,
we chose to model both stressed and unstressed variants of phones
/AA/, /AE/, /AH/, /AO/, /AY/, /EH/, /ER/, /EY/, /IH/, /IY/, /OW/
and /UW/. The rest of the vowels in the CMU set are modeled

s1 s2

p11 p22

1-p11
1-p22

Figure 1: HMM topology for a phone in the CMU set. The allowed
transition between the HMM states s1 and s2 are shown as arcs with
the transition probabilities pi j .

independent of their lexical stress. Each of the phones, including
stressed and unstressed variants, is represented as a 2-state HMM,
as shown in Figure 1, while the /SIL/ unit is described using 3-state
topology. The HMM states s1 and s2 explicitly represent an onset
and end of the corresponding phone. The output probability of each
HMM state is assumed to be given by a Gaussian distribution over
the facial parameters ααα t , which correspond to the HMM observa-
tions.

3.2 HMM Training

The goal of the HMM training procedure is to obtain maximum-
likelihood estimates of the transition probabilities between HMM
states and the sufficient statistics of the output probability densities
for each HMM state from a set of observed facial motion parame-
ter trajectories ααα t , corresponding to the known sequence of words
uttered by a speaker. We use facial motion parameter trajectories
derived from the motion capture data in [3] as our training set.

In order to account for the dynamic nature of visual speech, we aug-
ment the original facial motion parameters ααα t with their first and
second derivatives. Our implementation of HMM training is based
on the Baum-Welch algorithm [18] and similar in spirit to the em-
bedded re-estimation procedure [22]. Overall, the HMM training is
realized in three major steps. First, a set of monophone HMMs is
trained. Second, in order to capture co-articulation effects, mono-
phone models are cloned into triphone HMMs which explicitly take
into account left and right neighboring phones. Finally, we employ
decision-tree based clustering of triphone states to improve robust-
ness of the estimated HMM parameters and predict triphones that
were not seen in the training set.

The training data consist of facial motion parameter trajectories ααα t

and the corresponding word-level transcriptions. The dictionary
employed in the HMM training process provides two instances of
phone-level transcriptions for each of the words – the original tran-
scription and a variant which ends with the silence unit /SIL/. The
output probability densities of monophone HMM states are initial-
ized as a Gaussian density with mean and covariance equal to the
global mean and covariance of the training data. Subsequently, 6 it-
erations of the Baum-Welch re-estimation algorithm are performed
in order to refine the HMM parameter estimates using transcrip-
tions which contain the silence unit only at the beginning and the
end of each utterance. Next, we apply the forced alignment proce-
dure [22] to obtain hypothesized pronunciations of each utterance
in the training set. The final monophone HMMs are constructed by
performing 2 iterations of the Baum-Welch algorithm.

In order to capture the effects of coarticulation, we refine the ob-
tained monophone HMMs into triphone models, which take into ac-
count the preceding and the following phones. The triphone HMMs
are initialized by cloning the corresponding monophone models and
are consequently refined by performing 2 iterations of the Baum-
Welch algorithm. The triphone state models are clustered with the
help of a tree-based procedure to reduce the dimensionality of the
model and construct models for triphones unseen in the training
set. The resulting models are often referred to as tied-state triphone
HMMs in which the means and variances are constrained to be the
same for triphone states belonging to a given cluster. The final set
of tied-state triphone HMMs is obtained by applying another 2 iter-
ations of the Baum-Welch algorithm.



4 FACIAL MOTION SYNTHESIS FROM TEXT AND SPEECH

In order to synthesize trajectories of facial motion parameters ααα t

either from text or acoustic speech signal, we firstly generate a se-
quence of time-labeled phones. When text is used as input, we em-
ploy an acoustic text-to-speech (TTS) engine to generate a wave-
form and the time-aligned sequence of phonemes. To synthesize
facial animation from acoustic speech input, we utilize a speech
recognizer and then use the forced alignment procedure [22] to ob-
tain time-labels of the phones in the best hypothesis generated by
the speech recognizer.

In the beginning of the synthesis stage, we convert the time-labeled
phone sequence to an ordered set of context-dependent HMM
states. Vowels are substituted with their lexical stress variants ac-
cording to the most likely pronunciation chosen from the dictio-
nary with the help of a monogram language model. Next, we create
an HMM chain for the whole utterance by concatenating clustered
HMMs of each triphone state from the decision tree constructed
during the training stage. The resulting sequence consists of tri-
phones and their start and end times. Since each triphone unit is
modeled as a two-state HMM, the start and end times of HMM
states cannot be directly obtained from phone-level segmentation.
However, state-level segmentation can be inferred in the maximum-
likelihood sense by utilizing the state transition probabilities esti-
mated during HMM training stage.

The mean durations of the HMM states s1 and s2 with transi-
tion probabilities, as shown on Figure 1, can be computed as
p11/1− p11 and p22/1− p22 . If the duration of a triphone n de-
scribed by a 2-state HMM in the phone-level segmentation is tN ,

the durations t
(1)
n and t

(2)
n of its HMM states are proportional to

their mean durations and are given by

t
(1)
n =

p11 − p11 p22

p11 + p22 − p11 p22
tn, t

(2)
n =

p22 − p11 p22

p11 + p22 − p11 p22
tn. (2)

Using equation (2), we obtain the time-labeled sequence of tri-

phone HMM states s(1),s(2), ...,s(NS) from the phone-level seg-
mentation. Smooth trajectories of facial motion parameters α̂αα t =
(

α(1), ...,α(NP)
)T

corresponding to the above sequence of HMM

states are generated using the variational spline approach described
in [4].

5 SPEECH-ENABLED AVATARS

In this section, we use our facial motion synthesis algorithm to build
a speech-enabled avatar from a single photograph of a person. We
deform the prototype face model to match the shape of a person’s
face in the photograph and adapt the facial motion using approach
presented in Section 3. In order to increase the realism of the ap-
pearance, we present a method for automatic synthesis of eye gaze
motion as well as blinking.

5.1 Fitting the Prototype Face to a Photograph

We start with a photograph of a person looking at the camera with
a neutral facial expression. In order to establish correspondence
between the generic facial model and subject’s face, we manually
mark 38 predefined feature points on the photograph, as illustrated
in Figure 2. With the help of these correspondences, the prototype
face is deformed to fit the geometry of the novel face in the pho-
tograph using thin-plate splines [6]. The obtained deformation is
subsequently employed to transfer the generic motion model onto
the resulting mesh using the approach developed in [3]. The entire
procedure of generating a speaker-dependent motion model from
feature points takes only a few seconds on a PC.
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Figure 2: A set of manually selected corresponding features on (a)
the prototype face model and (b) the novel face photograph.

(a)

(b) (c)

Figure 3: Eye texture synthesis and rendering. (a) Image of the right
eye. (b) The complete texture map of the eyeball obtained from (a) by
using texture synthesis. (c) The eyeball is placed behind an eyeless
image of the face and it is rotated to synthesize eye gaze changes.

5.2 Synthesis of Eye Motion and Blinking

Changes in eye gaze direction can help to make an avatar appear
more life-like. Since some regions of the iris and the sclera are ob-
structed by the eyelids in the input photograph (see Figure 3 (a)),
we develop a method for obtaining a complete eyeball model from
its partial view in the photograph. We use a sampling-based texture
synthesis algorithm [10] to create the missing parts of the cornea
and the sclera, as shown in Figure 3 (b). Using the points marked
around the eyes, we first extract image regions which contain the
eyeballs. Then, the position and shape of the iris are found using
generalized Hough transform [13] in order to segment the eye re-
gion into the iris and the sclera. Finally, the complete eyeball image
is generated by synthesizing the missing texture inside the iris and
sclera regions. This eyeball texture is mapped onto a sphere to ob-
tain the complete eyeball model. Each eyeball is placed behind the
eyeless face surface, as shown in Figure 3 (c). The eye gaze motion
is generated by rotating the eyeballs around their centers. We use a
previously proposed stochastic model [14] to generate the eye gaze
changes.

In addition to eye gaze motion, we synthesize eye blinks using the
blend shape approach [17]. The eye blink motion of the prototype
face model is generated as a linear interpolation between the two
key shapes, corresponding to the eyelid in the open and closed po-
sitions. The duration of an eye blink was chosen to be 200 ms and
the interval between the consecutive blinks is randomly generated
with the average interval of 4 seconds. In order to map the eye
blink motion to the novel face, the key shapes are deformed using
the approach presented in section 5.1.

5.3 Examples of Avatars

We have developed a real-time rendering software which creates
face animations of avatars from text input. Our system is compat-
ible with any SAPI 5.1 acoustic text-to-speech synthesis engine.
Figure 4 displays a few sample frames from speech-enabled avatars
synthesized using the approach presented above.

6 DISCUSSION

In this work, we have developed an end-to-end system for creating
speech-enabled avatars from a single photograph. Such avatars are
animated from text or speech input with the help of a novel motion
synthesis algorithm. We have also developed a method for synthe-



(a) Input photographs (b) Synthesized images

Figure 4: Photographs of two persons and images of speech-enabled avatars created from these photograph.

sizing eye gaze motion from a photograph. In [4], we demonstrate
that our approach can also be used to build volumetric displays that
feature speech-enabled 3D avatars. We now discuss the limitation
of our work and open problems we plan to address in the future.

The HMM-based facial motion synthesis approach implicitly as-
sumes that the visual and acoustic realizations of phonemes are
synchronous. However, there is cognitive evidence that there exists
only loose synchronicity between them [12]. For example, facial
articulations sometimes precede the sounds they produce. One may
expect an improvement in the quality of synthesized facial anima-
tions if the visual and acoustic speech are modeled asynchronously
by extending the HMM-based approach using, for example, dy-
namic Bayesian networks.

In order to transform the generic facial motion model and obtain the
geometry of a novel face from a photograph, our approach requires
a few corresponding points to be established between the prototype
face and the novel face. In our current implementation, the corre-
sponding features are marked manually on the input photograph. In
the future, we expect that avatars can be created from photographs
automatically using face detection algorithms [20].

The realism of the appearance of our speech-enabled avatars is lim-
ited by absence of teeth in the facial animations. We plan to address
this issue in the future by adding a textured teeth model to an avatar.
Another factor that can enhance the perception of speech-enabled
avatars is rigid head motion animation. Automatic synthesis of re-
alistic head motions is a challenging problem since head motion is
often influenced by prosodic features of speech and will be included
in the future implementations of our system.
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