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Ordinal Measures for Visual Correspondence

Abstract

We present ordinal measures of correlation for establishing image correspondence. Linear
correspondence measures like correlation and the sum of squared differences are known
to be fragile. Ordinal measures, which are based on relative ordering of intensity values
in windows, have demonstrable robustness to depth discontinuities, occlusion and noise.
The relative ordering of intensity values in each window is represented by a rank permu-
tation which is obtained by sorting the corresponding intensity data. By defining a novel
distance metric between the rank permutations of windows, we arrive at ordinal correla-
tion coefficients. These coefficients are independent of absolute intensity scale, i.e they
are normalized measures. Further, since rank permutations are invariant to monotone
transformations of the intensity values, the coefficients are unaffected by nonlinear effects
like gamma variation between images. Since ordinal coefficients are non-parametric, con-
fidence levels can be attached to them even in the absence of statistical structure to data,
for instance, when a window straddles a depth discontinuity. We have developed a sim-
ple algorithm for efficient implementation of ordinal correlation coefficients. Experiments
suggest the superiority of ordinal measures over existing techniques under non-ideal con-
ditions. Though we present ordinal measures in the context of stereo, they serve as a
a general tool for image matching that is applicable to other vision problems such as
motion estimation and image registration.



1 Introduction

Stereo systems for depth estimation work reasonably well with smooth surfaces that are
mostly Lambertian in reflectance. However, many surfaces in real scenes exhibit sharp
discontinuities with non-Lambertian reflectance. It is a challenge for practical systems
to produce accurate depth maps in such settings. The lack of robustness in dealing with
depth discontinuities, occlusion, and specular reflection was clearly noted in [Bolles et al.-
1993] while evaluating operational stereo systems. The same issues also arise in motion
estimation, however, for the sake of clarity, we will uniformly discuss them in the context
of robust stereo design.

Stereo matching algorithms have been classified into two categories: area-based
and feature-based [Barnard and Fischler-1982]. Area-based schemes have been popu-
lar in photogrammetry [Panton-1978] and computer vision [Okutomi and Kanade-1992]
since they produce dense depth maps without requiring explicit surface reconstruction.
Feature-based methods, in contrast, obtain depth only at feature locations like edges and
corners which are often sparse. The heart of any area-based method lies in the similarity
criterion used that determines optimal statistical correlation between corresponding re-
gions in stereo images. A similarity measure has to satisfactorily deal with the following
issues:

e Depth discontinuities: A window located on a depth discontinuity will represent
scene points at different depths. Further, windows around corresponding points in
the two stereo images do not represent the same surface regions. The issue then is
to identify correspondence even in the presence of such inconsistent intensity data
(see Figure la). *. Resorting to a large window to obtain higher data consistency
is not a panacea since the recovered depth boundary would be blurred.

e Occlusion: A problem related to depth discontinuities is that of occlusion. Due to
occlusion, portions of a scene are visible only in one of the two images (see Figure
Ib) A stereo operator must correctly identify occlusion regions by reporting that
no match can be found for points therein.

e Noise: Noise is caused during image sensing and digitization. Image pixel values
can vary even within regions that are smooth and textureless in the original scene
due to the limited counting statistics for the photons, or because of electronic
imperfections. A reliable stereo measure must tolerate low signal-to-noise ratio
which is common with low resolution sensors.

e Specular reflection: Corresponding point intensities are not identical in the pres-
ence of specular reflection, the specular intensity at any scene point being dependent

!Figure 1b, 1d are clipped from a stereo image pair captured by Steve Cochran, USC Institute of
Robotics and Intelligent Systems. Its description: ”Partial view of a Rubik’s cube occluding a wooden

block”.



on the viewing direction [Torrance and Sparrow-1967]. As a result, corresponding
windows can be quite dissimilar and their correlation can be low (see Figure lc).
Stereo algorithms must allow for deviations from the Lambertian model, specular
reflection being the most dramatic of such aberrations.

e Window Distortion: Due to projection from different viewpoints, corresponding
windows do not represent the same surface patch in the scene, except when the
surface is fronto-planar (see Figure 1d). While matching using a small window
is less susceptible to the effects of window distortion, a low image signal-to-noise
ratio would mandate the use of a larger window. Choosing the appropriate window
size depends on local terrain curvature which is not known apriori and is difficult
to model [Okutomi and Kanade-1992]. The computational challenge is essentially
similar to that with discontinuities, i.e can the stereo measure endure certain degree
of data inconsistency in corresponding windows?

e Camera Parameter Variations: If two different cameras are used for binocular
stereo, then the camera aperture, bias reference and gamma factors could be dif-
ferent between them. Therefore, sensor outputs could be unequal even in the ideal
Lambertian case.

[ L
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Figure 1: Tllustration of different phenomena which affect window-based stereo matching.
In pictures (a), (¢), (d) identically sized windows are shown around corresponding pixels -
the center pixels. (a) Since the center pixel is located on a depth discontiuity, the windows
represent different surface locations, (b) Due to occlusion, pixels in the left window are
not visible in the right, therefore, correspondence cannot be achieved at those left pixels.
(c) Specular reflection causes intensities in corresponding windows to differ. Notice the
varying location of the highlights with respect to the texture. (d) Projective distortion
results in windows being different which can be seen from the unequal texture frequency.

Stereo methods must be robust to the above vagaries, i.e we require stereo oper-
ators that: a) are insensitive to outliers to a high degree, b) can reliably locate matches
even with inconsistent or inhomogeneous intensity in corresponding windows, ¢) can iden-
tify mismatches(or matches) with prescribed confidence, d) are insensitive to deviations
from the Lambertian model, and e) are independent of sensor gain and bias. In this



paper, we present ordinal measures of association ([Critchlow-1985], [Alvo and Cabilio-
1992], [Gideon and Hollister-1987]) which possess the above desirable qualities to a high
degree. An ordinal variable implies one drawn from a discrete ordered set like the grade
in school. The ratio between two measurements is not of consequence; only their relative
ordering is relevant. The relative ordering between measurements is expressed by their
ranks. A rank permutation is obtained by sorting the sample in ascending order and
labeling them using integers [1,2,...,n], n being the size of the sample. In our applica-
tion, intensity is viewed as an ordinal variable. Ordinal correlation measures are based on
the rank permutations within windows rather than absolute intensity data. Well-known
ordinal measures include the Kendall’s 7 and the Spearman’s p [Kendall and Gibbons-
1990]. Both coefficients are relatively unaffected by the presence of random data outliers
like noise, in comparison to direct image correlation. However, if the ranks within each
window are significantly distorted like in the presence of specular reflection or disconti-
nuities, they are not satisfactory. This is in contrast to the measures described in this
paper which are robust to rank distortion. They are non-parametric, which means, they
can be interpreted even in the absence of strong structural assumptions about the data
in windows, like bivariate normality. Thus, confidence thresholds for matching can be
established to identify occlusion regions even in the presence of data contamination. We
present a simple computationally economical algorithm to evaluate the measures. Exper-
iments with real images and comparison with existing matching methods suggest their
superiority.

2 Image Matching Approaches

Common window-based intensity matching approaches can be classified into categories
listed below:

e Linear correlation methods: Most currently used stereo matching methods
belong to this category; for instance those based on the sum of squared differ-
ences (SSD) [Okutomi and Kanade-1992] and cross correlation [Svedlow et al.-
1978]. Let I; and I, represent intensities in two windows i.e we have n tuples
(I, 13),..., (I, 13), n depending on the size of the window used. The quantity
SSD = y°r_, (Ii — I5)? measures the squared Euclidean distance between (15, I5),
and a value close to zero indicates a strong match. The normalized correlation

coefficient (NCC) is given by:

Y (I = L)(I; = 1))

NCC = —— —
VI = T2 S (1 - To)?

where I; and I, represent the corresponding sample means. Like SSD it appraises
the degree of linearity between the samples being compared. It is related to the



least squares line of fit [Conover-1980] by:

Yizi (I — (al} 4 ))?

2

NCC?=1—
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where a,b are regression constants and o? is the sample variance of I,. When
a = 1,b =1, i.e there is no difference in scale or shift between the random variables,
the relation between NCC and SSD follows immediately. Hence, NCC' has similar
properties to SSD. The absolute value of NCC lies between 0 and 1, and a value of 1
indicates perfect matching windows. While NCC' is preferable since it is invariant to
linear brightness and contrast variations between perfect matching windows, SSD
is computationally more attractive. However, the following deficiencies restrict the
use of both measures:

— In the presence of depth discontinuities, only part of the data is valid for
cross correlation, and the rest can be regarded as outliers. The outliers should
either be detected and discarded, or the similarity measure used should not
be susceptible to their presence. While the former option is not often feasible,
linear correlation and SSD are fragile in the presence of outliers [Black-1992).
In fact, the breakdown point of these measures is 0 since a single data value
can distort them arbitrarily.

— As mentioned earlier, intensities in corresponding windows are not identical in
the presence of specular reflection. Further, corresponding intensities are also
not related linearly; thus NCC' could be a poor estimator of correspondence.
Bhat and Nayar [Bhat and Nayar-1995] formulated an approach to determine
optimal stereo configurations — binocular and trinocular — such that intensity
differences at corresponding points is limited (in at least one stereo pair, for
the case of trinocular configurations), while depth resolution is maximized.
The optimal configuration parameters were determined independent of sur-
face normal and light source direction. Stereo images obtained using such a
configuration could be reliably matched using correlation since the variation
between corresponding windows was restricted. Nevertheless, the threshold
which determines the allowable intensity difference at corresponding points
had to be chosen empirically.

— Choosing a confidence threshold for matches (or mismatches) has to be empir-
ical [Ching et al.-1993], [Ito and Ishii-1986]%. The reason is that a significance
level cannot be assigned to a correlation value without explicit distributional
assumptions about the window data samples. Such statistical assumptions
cannot be made especially when intensity distribution in a window results
from different surfaces. For example, when a window corresponds to two sur-
faces with different albedo variations.

2A notable exception being [Huttenlocher and Jaquith-1995] who estimates probability of correct
matches while using the Hausdorff distance.



— Unless image noise is additive and Gaussian, the least squares distance is not
optimal for measuring linearity between random variables. Since image noise
is often far more complicated than a Gaussian process, the line of regression
obtained by SSD can be quite unsatisfactory.

¢ Robust statistical methods: Since the Euclidean norm is highly sensitive to
outliers, robust statistical methods have been developed which seek to minimize
their effects. The least squares criterion is replaced by:

7’L

E=3 (po(I; = 1))

=1

where p, is a robust estimator, and the objective is to minimize £. The common
characteristic of robust estimators is that they cause outliers to contribute less
weight compared to inliers. The Lorentzian estimator p,:

Iz,

polz) = log(1 + L(5)) ()
has been used for motion estimation [Black-1992]. Many other estimators have been
defined, all of which have a common parameter that needs to be set beforehand:
the point at which measurements must be considered outliers (for example, in the
Lorentzian, o determines the threshold). Too high a value for the parameter can
cause the estimator to behave like SSD and too low a value can cause mismatches
because the influence of valid data would reduce correspondingly. Setting this
threshold parameter is not an easy problem and often has to be chosen based on
experience. Further, it can vary with scenario depending on image contrast and
noise level. It is desirable to have a universal measure of correlation independent
of absolute intensity scale and experimental conditions.

e Image transform-based methods: These methods are based on comparing
stereo images transformed using local window operators. Kories and Zimmer-
man’s [Kories and Zimmerman-1986] monotonicity operator, and Zabih’s [Zabih
and Woodfill-1994] rank transform fall in this category. The latter defines rank (of
the center pixel P in a window W) as:

R(P,W) = |P' € W|I(P') < I(P)]

where |.| refers to cardinality. The stereo images are fully transformed using the
above operator and the resulting mappings are compared using SSD or NCC'. The
advantage of these schemes are that correlation of rank transformed images is not
dependent on absolute gray values, and hence relatively insensitive to data outliers.
However, they depend quite heavily on the center pixel which is undesirable. The
necessity to use linear correlation operators on the transformed images partially
defeats the purpose of these schemes. We experimentally compare our approach
with this scheme.



Methods have also been developed to match local intensity gradients instead of raw
intensity values [Scharstein-1994]. However, their performance tends to be poor
when gradient information is not reliable.

e Filter-based methods: Image correspondence proceeds in the frequency domain,
after convolving the images with suitable band-pass filters like Gabor and hyperge-
ometric filters[Sanger-1988], [Xiong and Shafer-1994]. These methods obtain sub-
pixel disparity without resorting to ad hoc techniques like local interpolation of
correlation values [Tian and Huhns-1986]. They are less susceptible to bandlim-
ited noise and lighting differences between images. However, these algorithms work
poorly at depth boundaries and occluded areas [Sanger-1988], and cannot deal with
specular reflection satisfactorily.

In addition, some algorithms fall into two categories, for example, the method in
[Xiong and Shafer-1994] typically uses SSD to find matches to pixel resolution and then
uses hypergeometric filters to obtain subpixel accuracy. However, the original problem
of locating matches with high confidence remains unresolved due to previous mentioned

disadvantages of SSD.

3 Ordinal Measures

In this section, we present ordinal measures of association after a brief review of the
concept of correlation based on distance metrics. We discuss the sensitivity of the mea-
sures with respect to outliers and rank distortion, and compare them to other correlation
methods.

3.1 Motivation

As noted earlier, ordinal measures are more robust compared to linear correlation mea-
sures. To see this, consider the following example of a 3 x 3 reference window M with
intensity [y:

M
10 30 70
20 50 80
40 60 100



Under ideal conditions, the corresponding window S with intensity /5 is identical and so
are their rank matrices:

1 37 1 3 7
2 5 8 2 5 8
4 6 9 3 6 9

Recall, that an ordinal measure of association is based on ranks rather than in-
tensity values themselves. Let us modify one pixel A in S, say the one with intensity
value 100, through a range of different values between [0, 255]. This simulates the effect
of a random outlier. Clearly, in the range (80,255], ranks of the intensity values in S are
not modified, and hence any ordinal measure of correlation remains at 1. This is unlike
the linear correlation coefficient which can substantially deviate. For example, when the
pixel takes a value of 255, NCC = 0.645. This attractive property of ordinal measures
motivates us to apply them for stereo matching. We now formally introduce the concepts
underlying ordinal measures using distance metrics.

3.2 Review

A ranking which represents the relative ordering between values of an ordinal variable is
simply a permutation of integers. More precisely, if 5,, denotes the set of all permutations
of integers [1,2,...,n], then any ranking is an element of this set. To define correlation
between two rankings 7,7, we require a measure of closeness - a distance metric -
between them [Critchlow-1985]. Once a distance metric d(7y, 73) is defined, a coefficient
of correlation « can be obtained as:

2d(ﬂ'17ﬂ'2)
=1 -—-— "7 % 2
“ M (2)

where M is the maximum value of d(7q,73), V(71,72) € S,. « lies in the range [—1, 1].
M is attained when the two permutations are reverses of each other, and hence o = —1.
Different distance metrics are possible, an example being the Hamming distance dj:

dp(m, m2) = 3 (Isgn(my —m5)]) (3)

k3

where
1 ifz>0
sgn(z) =< 0 ifz=0
-1 ifz<0

For the Hamming distance, M = n. The Kendall’s 7 and the Spearman’s p can be
expressed using distance metrics although it is seldom done. Let d(71, 73) and di (71, 72)
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denote distance metrics as defined below:

di(mm) = 3500 [sgn(i — w]lsgn(r} — )

ds(771,7T2) = E(ﬂ'i—ﬁé)Z
(4)

dj estimates the number of discordant pairs, i.e pairs in one sample whose ordering
do not agree with the corresponding pairs in the other. d; is simply the Euclidean
distance between the rankings. The maximum values of dj and d; are M = ﬂnQ—_ll and

M = @, respectively. By substituting d; and d;, and their corresponding maximum
values in equation 2, we obtain Kendall’s 7 and Spearman’s p, respectively. The above
analysis strictly holds when ties are absent in each ranking. In the case of ties, some
modification must be made in defining the distance metric; however, the approach for

defining correlation remains unaltered.

We noted earlier that data inconsistency between corresponding windows can oc-
cur due to the presence of specular reflection and discontinuities. This could result in
corresponding rank matrices being distorted unlike in the case of the example discussed
in section 3.1. As a result, ordinal measures like the Kendall’s 7 and Spearman’s p are
inadequate.

3.3 Proposed Measures

For a set of window intensity values (I}, I})™,, let 7! be the rank of I! among the I; data,
and 7} be the rank of I among the I, data. Let us assume that the ranks are unique for
the time being; we will discuss tied ranks at a later juncture. We define a composition
permutation s as follows:

ik
s = Ty

ko= (') (5)

where 77! denotes the inverse permutation of m;. The inverse permutation is defined
as follows: If 71 = j, then (7;')? = i. Informally, s* is the rank of the pixel in I, that
corresponds to the pixel with rank ¢ in /;. Under perfect positive correlation, s should
be identical to the identity permutation given by u = (1,2,...,n).

By defining a distance measure between s and u, we in turn obtain a notion of
distance between 7, and 7;. The deviation dfn at each s' is defined as the number of
s',7 =1,...,1 greater than z. Formally,

7

d, = Y J(s >1)

i=1
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where J(B) is an indicator function of event B, i.e J(B) is 1 when B is true and 0
otherwise. The vector of d: values is termed as the distance vector dy,(s,u). Informally,
the distance vector estimates the number of s elements that are out of position, similar to
the Hamming distance. However, it does not penalize out of position elements as severely
as the Hamming distance, which makes our distance vector relatively less sensitive to rank
distortion effects observed between corresponding windows during specular reflection and
depth discontinuities. If (I3, [;) were perfectly correlated, then dm(s,u) = (0,0,...,0).
The maximum value that any component of the distance vector can take is |%] which
must occur in the case of perfect negative correlation (see Appendix B). Now, a measure
of correlation k = k(1q, I3) is defined using equation 2 as:
2maz’ d

B ()

If I; and I, are perfectly correlated (s = u), then x = 1. It falls to —1 when (/3 [5) are
uncorrelated. x has desirable properties of a correlation coefficient, namely:

/i(]l,]g) =1-

e it is independent of scaling and shift of the intensity values. For our application, it
implies independence from camera aperture settings and bias,

e it is a normalized measure, i.e —1 < k <1,

e it is symmetrical,i.e ([, [3) = (I3, 1) (see Appendix C). Therefore, either stereo
image can be used as reference.

o x(f([1),h(L3)) = k(I1,13) where f and h are strictly monotonically increasing or
decreasing functions of I; and I, respectively. If one of f,h is increasing and the
other is decreasing, then the value of k simply has its sign switched. This property
comes useful when two different cameras are used for binocular stereo and have
different responses to image irradiance. Each sensor output [ is related to image
irradiance £ as: .

I=gE"+m

where ¢ is the camera gain, m is the reference bias factor, and v accounts for
image contrast. For illustration, let the gains of the cameras be identically 1.0
and the bias of the cameras be 0. Let the imaged surface be Lambertian, i.e the
image irradiance from any point is identical for both sensors. Then, the two sensor
outputs are related by the equation I = (I3)" where t = 1—? In general, t # 1, and
hence the linearity between the two sensor outputs is lost. However, |«| remains at
1 because (I3)" is a strictly increasing or decreasing function® of I depending on t,
and hence does not change its ranking.

3Note that this property of the correlation coefficient does not help to deal with specular reflection
since no monotonic relationship between the variables I; and I3 can be established.
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Figure 2: Flow-chart depicting the procedure involved in computing & or y

Another measure of correlation x(/y, [3) which is computationally less expensive

is defined as: _

2dd
5]

Here d™? refers to the deviation at the |Z]| index of the distance vector. It has the same

2
properties as , but in practice is somewhat less robust. Theoretically, deviation at any

X(Ih]?) =1

(8)

index of the distance vector could be used to define a correlation coefficient. However, the

largest range of deviation — [0, | 7]] — occurs at the middle index position, the maximum
occurring in the case of perfect negative correlation (see Appendix B). As a result, the
discriminatory power of x is higher, an useful property for stereo matching. Note, it does
not imply that the maximum component value of each possible distance vector always
occurs at the middle index position, in which case the definition of £ would be redundant.
Before concluding this section, we summarize the procedure involved in computing our

measures, with a flow-chart shown in figure 2.
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3.4 An Example

We will illustrate the evaluation of the two coefficients , x using the following example.
Consider the following pair of 3 x 3 intensity windows which need to be compared:

10 30 75 15 30 60
20 50 85 20 50 90
45 60 95 45 70 85

The data in these windows are arbitrarily chosen. The permutation s is given by:
s=1(1,2,3,4,5,7,6,9,8), and the distance vector dy evaluates to (0,0,0,0,0,1,0,1,0).
Therefore, maz?_,(d: ) = 2,5 = 0.5, and x = 1.0. It can be seen that « is more sensitive
than x for small deviations. For small samples, the measures can easily be computed
by hand, as seen from the above example. For larger samples, obtaining dy, can be
computationally expensive if the naive method of searching through s for each index, is
used. We present a more efficient algorithm when computational issues are discussed.

3.5 Sensitivity

The most useful quality of the measures are their insensitivity to random noise and rank
distortion which can occur due to specular reflection and discontinuities. Our discussion
of these effects will be in the context of k but could be easily extended to y too. Consider
the example of section 3.1. k remains at 1 when the intensity of pixel A is modified to a
value in the range (80 — 255]. The reason is that the corresponding rank matrices remain
unchanged. Now let the value of pixel A in window S be changed to 75. Then, the rank
matrices representing 7; and 7, are:

M S
13 7 1 3 7
25 8 25 9
4 6 9 4 6 8

Note the modification of ranks in S. As might be expected, k decreases and acquires a
value of 0.8. This is in fact quite comforting since it shows that « is sensitive to changing
data. On the other hand, NCC changes from 1.0 to 0.6. Now let A take a value between
0 and 10, in which case the rank matrix of S is significantly modified as shown below:

M S
1 3 7 2 4 8
25 8 3 6 9
46 9 5 7 1

11



However, the value of x remains at 0.8. This behaviour is in sharp contrast to the
Kendall’s 7 and Spearman p [Kendall and Gibbons-1990] which fall steeply to 0.556 and
0.4, respectively?. If pixel A takes a value of 0, then the linear correlation coefficient

NCC drops to 0.311.

The above example, albeit contrived, serves to illustrate the robustness of the
measures we propose. In reality, the manifestation of specular reflection and discontinu-
ities can distort ranks between corresponding windows more drastically, i.e more than
one data value in S may differ from the corresponding value in M. However, by choosing
a sufficiently large window we achieve similar insensitivity which is demonstrated in the
experiments. In summary, our measures capture the general relationship between data
without being unduly influenced by unusual (yet accurate — after all, specular reflection
and discontinuities are ”valid” physical phenomena) data. It is worth noting that the
Hamming distance (equation 3) which can be used to define a measure of correlation, is
not one of choice since it is sensitive to rank distortion.

3.6 Comparison

We compare our measures with SSD ,NCC' and Zabih’s rank transform. We have not
tabulated the results based on the Lorentzian estimator (equation 1) because of the
additional free parameter threshold . We use the [Aschwanden and Guggenbuhl-1993]
test suite consisting of four sequences of images generated as benchmarks for matching
algorithms. In each sequence, one parameter is varied; we will use sequences in which
the noise level is varied (see Figure 3). None of the pair of images in a sequence are
stereoscopic since viewpoint between them remains unchanged. Therefore, the matching
location for any pixel remains the same between images, and there is no question of
occlusion. Further, there are no depth discontinuities.

In Figure 3, salt and pepper noise® was added to the right image. Notice the

significant degradation of image quality. We use the intensity variance in the window
to estimate the amount of texture around the center pixel. If the variance is below a
threshold, then we do not consider that point for matching. However, in Zabih’s method,
the rank transformed images are used for correlation instead of original intensity images;
therefore, to keep the comparison fair, the test for sufficient texture is performed using
the same variance threshold while transforming the images. As noted earlier, disparity
evaluation is a non-issue. However, to simulate stereo matching, we use a search range
R of +£10 pixels. Matches are established for a region of size 100 x 100 (= 10*) pixels of
the left reference image.

41t is futile to compare absolute values of correlation measures since each of them have different
interpretations. Only if explicit distributional assumptions of the sample population can be made, like
bivariate normality, can we relate different quantities.

5This is used to model electronic noise. Pixels are randomly chosen and set to black(”pepper”) or
white(”salt”).

12



Figure 3: Image pair with salt and pepper noise added to the right image. This pair is
used to test k and x with other measures. Locating right matches with such significant
image degradation is an imposing computational challenge.

The results of matching are shown in Table 1 which tabulates the number of
matches incorrectly identified by each measure, i.e the number of false positives are
reported. Each measure is denoted by the appropriate abbreviation. It can be seen
that x gives the best results of all. y does better than NCC and SSD but not as well
as Zabih’s method. While y does not perform as well as &, it is computationally less
expensive which makes it attractive. All measures did better with increasing window
size.

The two measures were next tested on a random dot stereogram (see Figure 4)
and compared with the other methods. The random dot stereo pair, each image of size
64x64 pixels, depicts a square (size:20x20 pixels) moving 4 pixels to the right in front of a
stationary textured background. Gaussian noise of variance 5.0 is added to both images,
and there is a difference in intensity scale of 10% between the images. The computational
problems are: a) To obtain correct disparity at all corresponding points including those
at depth boundaries between the background and the moving plane, and b) to correctly
report that no matches can be found in the occlusion region — the region of size 4 x 20
to the right of the moving square with respect to the reference image. Note that there is
no window distortion since the surface is fronto-planar.

The search range is fixed at £10 pixels on a scanline for all methods. All methods
also incorporate a back matching strategy wherein each match is verified independently by
matching patches from the left image in the right image, and wvice versa. If the match for
a window from the left image is not mapped back to within a pixel of its location in the
left image, it is not considered valid. This is a more uniform way to compare measures

13



Measure Mismatches
X7 9x9 11 x 11
Window | Window | Window
K 1324 923 791
Zabih 1752 1171 809
X 1856 1270 1001
Norm. Corr. | 4128 2991 2245
SSD 4567 3469 2645

Table 1: Comparison of different measures using the images shown in Figure 3. The
number of incorrect matches identified by each measure at different window sizes is
tabulated.

than to use different thresholds for different similarity measures in order to determine
mismatches. The results (number of mismatches) are shown in Table 2.

Once again & does the best in comparison to the other measures. The improvement
may not seem as drastic as in the earlier example. The reason is that the number of
pixels on discontinuities and in the occlusion region is small - only 140. On the average,
k performs about 21% better than NCC, 49% better than SSD, and about 31% better
than the rank transform. y does almost as well as normalized correlation but better than
SSD and Zabih’s rank transform. The number of mismatches obtained by SSD in regions
not corresponding to depth discontinuities or the occlusion zone decreases progressively
with window size. However, in all other cases, the corresponding figure remains nearly
constant at 0. Hence, mismatches are all on the depth boundaries and in the occlusion
region. With increasing window size, the probability of smoothing of disparity values
across depth boundaries and the occlusion region increases, which explains the observed
degradation in performance of all measures except SSD.

4 Statistical Issues

In this section, we will discuss statistical issues relevant to the proposed measures.

o Tied data: In practice, tied ranks within a window are highly possible, i.e two
or more pixels can have identical intensity values. The question then is: What
rank should be assigned to the set of tied data values? The use of mid-ranking®, a

6All tied values are assigned ranks identical to the mean of the ranks that they would have had if
their values had been slightly different. The mid-rank could be an integer or a fraction.
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Figure 4: Left and right stereo images of a random dot stereogram are shown on the
top row. The right image is 10% darker than the left. They represent a square moving
against a stationary textured background. On the bottom row, true disparity levels with
respect to the left image are shown in different shades. The darkest region (to the right
of the inner square) indicates the occlusion region.

popular technique [Kendall and Gibbons-1990] in rank tests, does not help in this
case since it assigns identical ranks to all data values within a tied group. Hence,
the definition of s in equation 5 remains unclear. In general, if there are ¢ groups of
tied data, each group containing n;,5 =1, ..., g elements, then the total number of
rankings possible is ny!n,!.., n,l. We rank tied values such that the relative spatial
ordering between them is preserved. This method of breaking ties ensures that
when sample windows correspond, the two rankings are consistent. In other words,
our ranking method most favors positive correlation.

e Sample size: The window size determines the amount of sample data that will be
used for comparison. When the window size is small, say 3 x 3, only 5 values
([5] 4+ 1) are possible for x (and x). Hence, the discriminability of the coefficients
is low, and mismatches could result with high probability. As the window size
increases, the discriminatory power of the coefficients increases. On real images,
typically window sizes of 7 x 7 or 9 x 9 perform well as can be seen from the
experiments.
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Measure Mismatches
X7 9x9 11 x 11
Window | Window | Window
K 54 75 98
X 87 79 110
Norm. Corr. | 72 95 108
Zabih 124 100 112
SSD 211 141 134

Table 2: Comparison of different measures using the random dot stereo images shown in
Figure 4. The number of matches incorrectly identified by a measure at different window
sizes is shown.

o Confidence Thresholds: As noted in section 2, the linear correlation coefficient has
no clear meaning, i.e it is not possible to attach a significance level” to it without
explicit distributional assumptions about the sample data. These assumptions
cannot be made, especially for samples containing inhomegenous data. Therefore,
an algorithm cannot reject or accept a match with any confidence. Typically an ad
hoc threshold based on experience is chosen. This is true of distance measures like
SSD and the Lorentzian estimator too.

On the other hand, the significance level of our measures can be tested, as explained
below. Ideally, we would like to know the distribution of & (or x) as a function of
the sample size n, under a null hypothesis of there being no correlation between
two data sets. In our problem, accepting the null hypothesis implies rejecting the
match obtained, and wvice versa. If the distribution was known, then we would be
able to formulate a look-up table containing the threshold value of &, for different
window sizes, at which to reject a match with some chosen confidence level®. For
example, a table for £ would look like:

“In this paper, the significance level denotes the maximum probability at which the null hypothesis
is rejected. The corresponding value of the test statistic (x or ) is the confidence threshold, and (1 -
significance level) expressed in percentage is called the confidence level.

8This confidence level indicates how conservative or liberal is the user. A conservative would choose
a high confidence level, like 99%, to reject the null hypothesis. It may be argued as to why choosing an
arbitrary confidence level is better than choosing an arbitrary threshold for the correlation coefficient.
The reason is that a confidence level is a universal estimate; it does not depend on image or sensor
quality, and experimental conditions.
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Specified Confidence level = t%
Window size | Computed Threshold
3 x3 c1

5 x5 Cy

A match between two windows would be rejected, if the x between them is below
the appropriate threshold. Unfortunately, the exact distribution for x as a function
of sample size is not known.

However, we can obtain the above table using computer simulation [Gideon and
Hollister-1987]. Under the null hypothesis of there being no correlation between
the rankings, s can be any member of the universal permutation set S, with equal
probability of # For each s we evaluate k, tabulate the frequency f of each
occurrence of k, the probability % of k and its cumulative probability distribution
P. Then we determine ¢ in the equation: P(k > ¢) =1 —t, where ¢ and ¢ refer to
the confidence threshold and confidence level in the above table. For large sample
sizes, the number of s permutations can be prohibitively large to enumerate. Hence,
we do not generate all s, but only a sufficiently large number.

As an example, for a window size of 7 x 7 and ¢ = 99%, we would not accept a
match unless k exceeds ¢ = 0.33. To verity this threshold, we used it for matching
in the random dot stereogram example. We replaced the back matching strategy by
the threshold to evaluate a match. The number of mismatches obtained increased
marginally from 54 to 57. This small increase could be attributed to the errors
associated with hypothesis testing (see [Conover-1980]). We also used this threshold
with a real stereo image pair which is discussed in section 6. Nevertheless, detailed
experimental analysis has to performed before such thresholds can be used for
practical stereo work.

Relationship to the Kolmogorov-Smirnov statistic: k bears a relationship to the
Kolmogorov-Smirnov (K-S) statistic [Conover-1980] which is used for testing good-
ness of fit between two distribution functions. The problem of fitting can be stated
as: Given a random sample X;, X,,..., X, with some unknown distribution func-
tion F'(x), can we measure the "closeness” of F(z) from a hypothesized distribution
function H(x)? Since F(z) is unknown, the empirical distribution function S(x) is
used for comparison with H(z). S(x) is defined at each # = X as the fraction of
X;s that are less than or equal to X. It has been shown that S(x) converges to
F(z) as the sample gets larger. The K-S statistic 7,, is defined by:

T, = max |H(z) — S(z)|
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In other words, T}, is the upper bound of point wise differences |H(z) — S(z)|. The
exact distribution of 7}, is known, and hence confidence levels can be established
for testing goodness of fit.

T, has a close functional resemblance to max!_,d' as explained below. From
equation 6,

Tna’x?zldf’n = 7na,$;?:1('. - Z J(SJ S L))

= mazl_(H, (1) — S.(7))

H,(7) and S,(¢) are analogues of H(xz) and S(z). Note the close similarity in
definition between the S(z) and S,(¢). The difference is that in our case, we are
not hypothesizing a distribution function for s, rather finding how close it is to the
identity permutation.

5 Computational Issues

The naive algorithm for computing every distance vector component d'. by searching
linearly through s is an O(n*) method. In order to establish correspondence for a pixel
in the master image, we search through a range R in the second image. Therefore, the
cost of computing dy, could be O(Rn?). This is in addition to the sort operations to
perform ranking. In this section, we sketch a simple O(n) algorithm for building dm
while simultaneously evaluating max?_,d¢ . This is explained below using a geometrical
construction (see Figure 5).

The large dots represent the elements of the s permutation. The distance vector
component dF! is equal to the number of s elements in the rectangular region GCDE.
This is identical to the total number of s elements in rectangular regions HCDF and
GHFE. If, while computing d’_, the total number of s elements equal to [i,7 + 1] was
recorded as say m (equal to s elements in the region ABHG), then the number of s
elements within the area GHFE = d¢©. — m. Therefore, while computing d'*!, only s
elements in the area HCDF need to be determined. This is true for : = 1,...,n, and
thus we obtain a O(n) algorithm to calculate the distance vector. It is trivial to compute
maxl,(d). An algebraic proof is also sketched in Appendix A. Mathematically, our

algorithm states that,

) ) 3 ) i+1 .
dt=d, =3 Ji<s <i+ 1)+ > J(s >i+1) (9)

The only costly operations are therefore those of sorting window data which is
O(n logn). Note, however, that we do not have to sort a window in the second image
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Figure 5: Scatter diagram of a bivariate rank distribution is shown. The large dots
represent the ranking of [; with respect to Iy, i.e their ordinate values when read along
the positive x axis give s as in equation 3. The crosses on the straight line at a slope of
45° refer to the identity permutation u. ¢ and 2 4 1 refer to indices of the distance vector.

every time it slides across through one pixel distance within the search range R, if we use
heap-sort in which data is maintained as a heap tree [Press et al-1989]. Only delete and
insert operations corresponding to difference between the old and the new window, have
to be performed. Since each operation is of the order O(logn) and the total number of
operations is less than n, this scheme is more economical than sorting anew.

A preferable alternate scheme to avoid comparison sorting (heapsort, quicksort) is
as follows. Note that intensity values are integers and lie in the range [0,2% — 1] where k
represents the number of bits of intensity resolution. We can now use counting sort which
is O(n + 2¥). Currently, 8-bit sensors are the norm which implies intensity values must
lie in the range [0 — 255]. Hence, sorting in a window is O(n + 256) - linear in n. Note
that counting sort is effective with tied data values too. To find that value of n when
counting sort begins to perform better than comparison sort, the following inequality
must be satisfied:

cin logn > ca(n + 256)

where ¢;, ¢ are constants of the algorithm. If ¢; = ¢;, then for n > 64 (or equivalently, a
window of size 8 x 8) counting sort is better. When sensors of higher intensity resolution
are used (k > 10), then the earlier algorithm would be of choice.

It should be noted that computation of k and x is much better than that of the
Kendall’s 7 which is O(r?). It is asymptotically identical to Spearman’s p, and in practice
slightly better. It is less economical than NCC and much costlier than SSD. However,
the increased reliability over SSD and NCC may compensate for the decreased economy
in certain applications.
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6 Experiments

Ideally, we would like to compare our measures with others using dense ground truth,
but unfortunately such data is lacking [Bolles et al.-1993]. In this paper, we present three
experiments which qualitatively substantiate the results presented in section 3.6. In all
cases, £ 1s used for matching.

The first is a stereo image pair in figure 6 from the Calibrated Imaging Laboratory
at CMU [Maimone and Shafer-1996]. A sequence of images was obtained by moving the
camera horizontally. Precise disparity was tabulated at 28 points (shown in the figure)
using an active range sensing method. Note that many points are located on depth
discontinuities which pose a serious problem for stereo matching. The disparity range is
[20 — 35] pixels with respect to the left stereo image. A window size of 9 x 9 is used for
matching. Except for point 14 located at the bottom left in figure 6¢c, all others were
matched accurately upto pixel accuracy. This result was consistent with two other stereo
image pairs in the same sequence.

Next, we use a stereo pair of a densely textured cube?(see Figure 7) with disparity
variation in the range [25 — 50] pixels. The issues are to obtain accurate disparity in spite
of the significant projective distortion, and to match correctly at the edges. The window
size is 9 X 9. The resulting dense disparity map is shown in figure 8 which is accurate.
To verify, we compared the obtained disparity by the plane-fit error method [Xiong and
Shafer-1994], and the result is nearly 100% accurate (upto pixel accuracy).

Finally, we use an outdoor stereo image pair (Figure 9) (from SRI) which was
captured using a laterally moving camera. The disparities are in the range [0 — 28] pixels
with respect to the left image. A window size of 7 x T is used for matching. In this case,
we do not use back-matching, and instead we use a confidence threshold of 0.33 for  as
explained in section 4. The resulting disparity map is shown in Figure 10 and is quite
accurate. It must be noted that the result is qualitative since there is no ground truth.

7 Discussion

We have presented ordinal measures for visual correspondence and have shown them to
be robust in the presence of depth discontinuities, occlusion, and non-linear reflectance.
We also developed a computationally efficient algorithm for evaluating these measures.
We have concentrated on robustness in the presence of rank distortion and outliers in
corresponding windows. But this robustness could turn into a liability when comparing
windows which do not correspond. When window intensity values are replaced by their
corresponding ranks, there is a loss of information, namely , the ratio between different
measurement values. As a result, textures that are different may have the same rank

9This stereo pair was developed at the University of Illinois by Bill Hoff. Its title, ”Synthetic image
of a cube with gray random-dot texture”.
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Figure 6: Stereo image pair obtained by the Calibrated Imaging Lab in CMU (by Mark
Maimone) is shown on the top row. The bottom picture shows 28 points for which precise
disparity has been obtained using an active range method.

distribution. These textures may represent non-corresponding surface patches, therefore,
an ordinal measure like ours will incorrectly report perfect match between them. On
the other hand, normalized correlation between the intensity values will be low which
enables disambiguating correspondence. The loss of discriminability due to the choice
of an ordinal scale of measurement is the price one pays for robustness. However, in
practice, the above discussed case seems more pathological rather than the norm.

An issue which we did not deal with is that of obtaining subpixel disparity. Us-
ing ordinal measures, we could locate upto pixel accuracy. Two approaches could be
adopted to achieve this: a) local interpolation of correlation values, and b) an iterative
scheme based on non-parametric regression. Iterative approaches based on least squares
regression between windows that correspond to pixel accuracy, are used often [Lucas
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Figure 7: Stereo pair of a densely textured cube from the University of Illinois (by Bill
Hoff)
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Figure 8: Dense disparity map corresponding to the cube stereo pair obtained using .

and Kanade-1981]. Non-parametric regression techniques may offer a good solution since
they do not make strong model assumptions between the regression variables, namely,
the intensities in windows.

A  Computation of the Distance Vector

In section 5, we sketched a method to compute the distance vector using a geometrical
construction. Here we will show the same algebraically and prove it is correct using
induction. The distance vector dp, is given by equation 6. Our algorithm states that:

) 41
A =d, ZJL<S]<Z-|—1 +Y I > i+ 1)
J=1 =z
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Figure 9: Stereo image pair of the SRI "tree” sequence.
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Figure 10: Density plot of disparity corresponding to the "tree” stereo pair, obtained
using k.

Since s', i = 1,...,n can only takes discrete values of 1,...,n, the above equation can
be rewritten as:
dt'=d, — O J(s" =i+ 1))+ J(sip1 >+ 1) (10)

i=1

In computing di*!) only J(s;41 > ¢ + 1) has to be calculated, if E§:1 J(s? =i+ 1) was
stored while evaluating d' . Therefore, we have a O(n) algorithm.

To prove that this algorithm correctly obtains the distance vector dy,, we will use
induction. The above equation is true for ¢ = 0. If it is true for ¢ = k (hypothesis), i.e

JE = gk (ZJ(SJ =k+ 1)) +J(Sk+1 >k + 1)
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we will show it is true for : = k + 1. Consider the equation:

k+1 ]
P=d""" — (3" J(s" =k+2)) + J(sp42 > k +2)

i=1

From our hypothesis and equation 6, the above equation can be rewritten as:

k k k+1
P=3"J(s > k)= J(s" = k+1))+J (sps1 > k+1)— (D J(s' = k+2))+J (sp12 > k+2)
7=1 7=1 7=1

which simplifies to P = EHQ J(s? >k +2). Thus P = d**2, hence proved by induction.

B Distance Vector under Negative Correlation

The maximum value that a distance vector component can take must occur when the
two rankings being compared are negatively correlated (x or y should be equal to —1).
When the rankings are negatively correlated, the s permutation (Equation 5) is identical
to [n,n—1,...,1], as shown in Figure 11.

Figure 11: Scatter diagram of a perfect negatively correlated bivariate rank distribution.
The negatively sloped dotted line indicates the s permutation. ¢ and j correspond to the
index of the distance vector.

The distance vector component d’ is equal to number of elements of the s vector
lying in the area bounded by (¢ = 0,2 = ¢,y = ¢,y = n), i.e the region FEBA. This
bounded area becomes a maximum when 7 = j = | %] (the region GDCA). This region of
maximum area includes the maximum number of s elements. Hence, the distance vector
component d’, j = |2] is a maximum and is identical to |Z].
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C Symmetric nature of <

In this section, we will sketch a proof using induction for the symmetry of «, i.e k([y, I3) =
(I3, ). Equivalently, we have to show that maz’_,d is invariant. We will prove a
stronger result, namely, that the distance vector itself is invariant.

Let st and s} denote the s permutations used to compute (I, I5) and &(Iy, I),
respectively. Let di = dm(s1,u) and dz = dm(s2, u) denote the corresponding distance
vectors. Then from equation 6,

di = 3 J(s] > 1)

d, = ﬁjj(sg > i) (11)

We need to prove P(i) : d8 = dj, Vi. To do so, we use induction. For i = n, di = d}, = 0,
hence P(n) is true. Now we prove P(k— 1) holds when P(k) is true. From the induction
hypothesis,

k , k
ZJ(3{>k:ZJ32>k
7=1 7=1

To prove P(k — 1) : Zf;ll J(s) > k—1) = Zf;% J(sy > k —1). Using the induction
hypothesis, the LHS of P(k — 1) can be written as:

k=1 k =1
SIsisk—1) = Y J(si> k) = J(sE> k) + Y J(si = k)
J=1 7=1 i=1
k 4 k=1
= Y J(sy> k)= J(sy > k) + > J(s1 = k) (12)
J=1 7=1

We show that —J(sf > k) + Y0} J(s) = k) is equal to —J(s5 > k) + Yrot J(sh = k).

Let @1, Q2, )3, ()4 represent Boolean expressions as below:

Q1 : s>k
Qa(7) = si=k, e[l k—1]
Qs : sE>k

Qs(j) : sh=k,je[l k—1]

Note that Ef;ll J(Q2(7)) and Ef;ll J(Q4(y)) can attain a maximum value of 1 (= True)
since only one j can satisfy the the corresponding Boolean expression. Now, the following
logic assertions can be easily deduced:
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o If 3j,Qy(j) is true, then Qs is false,
o If Vj, Q5(j) is false, then Qs is true,
o If  is true, then Vj, Qu(j) is false,
o If  is false, then 37, Q4(j) is true.

From symmetry, other assertions can be derived. Therefore, the following logic table is
obtained:

Q1 Q2 Q3 (4

True | False | True | False

True | True | False | False

False | True | False | True

= W N =

False | False | True | True

Using the above table, equation 12 can be expressed as:

k-1 4 k , k-1 :
SNoU(si>k—1) = > J(sy>k)—J(sh>k)+ > J(sh=k)
71=1 7=1 7=1
k—1 '
= J(sy > k—1)

1

s,
Il

Therefore, P(k — 1) holds when P(k) is true. Since P(n) is true, the relation d@ = d,
holds for all ¢. From the above proof, it follows that (1, I2) = (12, I1).
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