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Abstract 
We present a method for motion estimation using ordinal 

measures. Ordinal measures are based on relative ordering 
of intensity values in a image region called rank permutation. 
While popular measures like the sum-of squared-difference 
( S S D )  and normalized correlation (NCC) rely on linear- 
ity between corresponding intensity values, ordinal measures 
only require them to be monotonically related so that rank 
permutations between corresponding regions are preserved. 
This property turns out to be usefil for motion estimation 
in tagged Magnetic Resonance Images. We study the imag- 
ing equation involved in two methods of tagging and observe 
temporal monotonicity in intensity under certain conditions 
though the tags themselves fade. We compare our method to 
S S D  and NCC in a rotating ring phantom image sequence. 
We present an experiment on a real heart image sequence 
which suggests the suitability of our method. 

1. Introduction 
In motion estimation from image sequences, an aim is to 

determine those displacements which best register pixels in 
one image frame with corresponding pixels in the next. In 
this paper, we suggest an approach using ordinal measures 
that possesses demonstrable robustness in scenes where pixel 
intensity varies temporally. 

Extensive research has been reported in motion estimation 
and optical flow, and it is impossible to list all related work 
here for lack of space. A few surveys have appeared in the 
literature and an excellent recent one is [2]. Regardless of 
the approach used, almost all methods implicitly or explic- 
itly assume that intensities at corresponding points are iden- 
tical, which is sometimes called the Lambertian assumption. 
This assumption is not true either due to temporally changing 
characteristics of the imaging system, or due to effects such 

as specular reflection. A strikingly illustrative example where 
the constant intensity assumption breaks is Tagged Magnetic 
Resonance imaging which is the main focus of the paper. 

Standard cardiac MR imaging produces images in which 
the tissue has nearly constant brightness, making it impossi- 
ble to determine image motion. However, by tagging [ll], a 
prespecified spatially varying intensity pattern can be made 
to appear on the otherwise homogenous tissue. The pattern 
itself deforms according to the heart motion, and is then im- 
aged by standard MR methods. But, the tag pattern fades 
with time as seen in figure 1. Consequently, algorithms that 
assume intensity constancy are deficient. 
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Figure 1. Tagged MR cardiac images at two dif- 
ferent instances. Notice the fading of tags in 
(b) with respect to (a). Although the fading oc- 
curs in a non-linear fashion, intensities at cor- 
responding points are monotonically related. 

The use of optical flow techniques for cardiac motion anal- 
ysis was pioneered by Prince and his colleagues. They have 
closely analyzed several issues including variants to standard 
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optical flow [ 111, [9], optimal intensity patterns for tagging 
[6], and the use of pre-filtering and multi-resolution meth- 
ods [I]. Prince and McVeigh [ I l l  developed the variable 
brightness flow algorithm which is a significant improvement 
over standard optical flow. It requires prior knowledge re- 
garding spatial distribution of tissue and imaging parameters. 
Gupta and Prince [9] proposed an interesting alternative by 
adopting Gennert's [7] model of image intensity variation 
which relates intensity at corresponding points by a multi- 
plier term that smoothly changes. This technique requires 
estimates, though only approximate, of certain tissue param- 
eters. Therefore, the above schemes may be considered as 
parametric techniques for motion computation. 

Consider the situation when no imaging parameters are 
available regarding the acquisition of the tagged MRI se- 
quence. Here, recourse to a standard region matching ap- 
proach or a gradient-based method becomes necessary. Our 
approach based on ordinal measures belongs to the for- 
mer category. However, unlike the popular sum-of-squared- 
difference measure (SSD)  and the normalized correlation co- 
efficient (NCC) for region matching which rely on linearity 
between intensities at corresponding points, ordinal measures 
only require them to be related monotonically. We carefully 
analyze the tagged spin-echo MR imaging equation [ 11 J and 
the echo-planar imaging equation which are used by medical 
methods for generating tags. From the analysis, we observe 
that intensity of a point in the tagged images at different times 
are related by a monotonic function, under certain assump- 
tions. This forms the motivation for use of our measures. We 
compare our approach to SSD and NCC using an image se- 
quence with ground truth. We present an experiment on heart 
images which suggests the suitability of our method. 

2. An Ordinal Measure 

The similarity criterion used for identifying correspond- 
ing windows is an ordinal measure, as in [4] where it was 
presented in the context of robust stereo matching. A brief 
review of the measure is given below. Methods based on lo- 
cal transformation of intensity values like those in [I21 and 
[ 101 would also be interesting to consider. 

Let 11 and 12 represent intensities in windows of suc- 
cessive images. For the set of window intensity values 
(I:, let .-f be the rank of 1; among the 11 data, and 
.-; be the rank of 1; among the 12 data. Below, we present a 
method for defining the distance between rank permutations 
similar to that reported by [8]. We assume that there are no 
ties in the data. The method to handle tied values is discussed 
in [4]. A composition permutation s can be defined as: 

(1) 

where 7r;' denotes the inverse permutation of .-I. The in- 
verse permutation is defined as follows: If .-f = j, then 

' k  sz = 7r2, IC = (7ryl)i 

(7r;')j = i .  Informally, s is the ranking of 1 2  with re- 
spect to that of 11. Under perfect positive correlation, s 
should be identical to the identity permutation given by U = 
(1,2, . . . , n). By defining a distance measure between s and 
U ,  a notion of distance in turn is obtained between .-I and 7r2. 

The deviation d& at each s i ,  i = 1, . . . , n is defined as: 

where J ( B )  is an indicator function of event B, i.e J ( B )  is 
1 when B is true and 0 otherwise. The vector of d& values 
is termed as the distance vector d,(s, U ) .  This measure has 
its analog in the definition of the Kolmogorov-Smirnov test 
statistic (see [4] for details). Each component of the distance 
vector, referenced by its positional index, estimates the num- 
ber of predecessing elements in s that are out of position. If 
(11,12) were perfectly correlated, then d,(s, U )  = 0.  The 
maximum value that any component of the distance vector 
can take is which must occur under perfect negative cor- 
relation. Now, a measure of correlation n(11,12) is given by: 

If 11 and 1 2  are perfectly correlated (s = U ) ,  then n = 1. 
It falls to -1 when ( 1 1 , 1 2 )  are perfectly negatively corre- 
lated. Figure 2 describes a simple example which illustrates 
the procedure for computing n. IC has the following desirable 

Figure 2. Example illustrating the procedure for 
computing K. 

properties of a correlation coefficient: 
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0 It is independent of linear scaling and shift between I1 
and 12 since 7r1 and 7rz remain unchanged. This implies 
independence from camera gain and bias. 

It is symmetrical, i.e ~ ( l ~ , . T z )  = ~ ( 1 2 , I l ) .  Hence, ei- 
ther image can be used as reference. 

~ ( f ( l l ) , h ( l 2 ) )  = ~ ( I 1 , l z )  where f and h are mono- 
tonically increasing functions. This property turns out 
to be very useful in our application. To illustrate this 
property, consider the case when different cameras are 
used for stereo. Each sensor output I is related to image 
irradiance E as: 

Parameter 
DO (spin density) 
TE (echo time) 

T'1 (longitudinal relaxation time) 
T2 (transverse relaxation time) 
k z  (frequency in radial x) 
k ,  (frequency in radial y) 

TR (pulse repetition time) 

8 (Tip angle) 

I = g ~ t  f m  

Value 
300.0 
0.03 s 
10.0 s 
0.3 s 
0.1 s 
4.71 radkm 
4.71 radkm 
45" 

where g is the camera gain, m is the reference bias fac- 
tor, and y accounts for image contrast. Since gain and 
bias account for linear variations which, as noted earlier, 
do not affect K ,  let us assume only gamma variation be- 
tween the sensors. In other words, let the gains of the 
sensors be identically 1 .O and the bias factors be 0. Fur- 
ther, let the imaged surface be Lambertian, i.e the image 
irradiance from any point is identical for both sensors. 
Then, the sensor outputs are related as I: = (I;)' ,  Vi 
where t = E. In  general, t # 1, and hence the lin- 
earity between the sensor outputs is lost. If t > 1, then 
I$ < I t ,  Vi, and if t < 1, then I$ > I:, V i .  However, n 
remains at 1 because 7r2 remains the same as 7r1. 

3. Tagged MRI Imaging 
To study cardiac motion during systolic contraction, tags 

are generated by applying a magnetic field in the left-ventricle 
(LV) at the beginning of contraction (end-diastole). A two- 
dimensional cross-sectional image of the LV is taken at reg- 
ular time intervals during motion. As noted earlier, the tags 
fade with time, i.e the image becomes progressively uniform 
in intensity. The reason is that the tissues return to their orig- 
inal magnetization state, i.e the state before tags where ap- 
plied. Temporal tag fading depends upon the properties of 
the heart tissue being imaged, and the amount of motion of 
the heart itself. Under the assumption of zero heart motion, 
the intensity of a point T = r ( z ,  y) in the heart, at time t ,  is 
given by the tagged spin-echo MR imaging equation [ 1 I] as: 

where DO,  TI and Tz (called the spin density, longitudinal 
and transversal relaxation times, respectively) are determined 
by the properties of the heart tissue and vary throughout the 
image. TE and TR, (called the echo time and pulse repeti- 
tion time, respectively) are fixed imaging parameters. ( ( r )  

Table 1. Parameter values for the imaging equa- 
tion, as described in Gupta and Prince. 

Figure 3. Illustration of a spatial tag pattern pro- 
duced over a window. 

is the spatially varying magnetization pattern applied at end- 
diastole, or t = 0, which causes the tags to appear and an 
example function (see [ l  11 for more details) is given below: 

( ( r )  = [cos2 6 - sin2 8 cos (k,rZ)] 
x [cos2 6 - sin2 8 cos (kyr,)] ( 5 )  

where k,, k ,  and 8 are prespecified constants, and rz  and r ,  
are components of r.  Figure 3 illustrates the kind of tagging 
produced with equation 5 ,  using constants specified in table 
1. In  this figure, DO, T I ,  T2 arefixed and only ( ( r )  varies. 

To see how tags fade with time, consider figure 4. Each 
curve denotes intensity variation with time for a sample point 
in the heart defined by r,,ry. Notice that at time t = 0, 
intensity values of the three points differ much more than than 
at time t = 1.0. Hence, contrast in the image decreases with 
time, although not linearly. Using equation 5, we can relate 
the intensities of a point r at times t and at t + S t  as: 

6 t  
I ( r ,  t + 6 t )  = e-Tlc.,[I(r, t )  - F ( r ) ]  + F ( r )  

(6) 
-TR F ( r )  = K ( r )  [I -((.)e T ~ ( P ) ]  
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Figure 4. Illustration of temporal intensity vari- 
ation of three different sample points in the 
heart. Notice the progressively narrowing dif- 
ference between the intensity profiles which 
results in the image becoming more uniform. 

It follows that the intensity at a point is a monotonically in- 
creasing function of time (also seen in figure 4). Now if we 
make the assumption that, over a window in the image which 
corresponds to a small region in the heart, the intensity pro- 
files of different points do not cross each other, then the rela- 
tive ranking of the intensities at time t + S t  is preserved with 
respect to that at time t. This is a valid assumption because 
DO, TI and T2 do not change dramatically in a small local re- 
gion. Hence, the s permutation and K value (in equations 1 
and 3) between the two windows do not change. This is the 
key observation. As noted earlier, equation 4 is strictly true 
only under zero motion of the heart. However, if the motion 
is small between frames due to high temporal sampling, then 
the imaging equation is quite adequate. 

There are other forms of tagging, and in one method called 
echo-planar imaging (EPI), there is a distinction between 
tagged and non-tagged regions in terms of applied magneti- 
zation. However, our method is equally applicable on images 
acquired using this method as discussed in [5 ] .  

4. Comparison 
We now compare the performance of the ordinal measure 

K against the sum-of-squared-differences S S D  and normal- 
ized correlation NCC using a sequence (Figure 4). The se- 
quence is that of a rotating ring phantom obtained using a 
Tesla whole-body scanner (see [ 1 11 for details). While the 
object undergoing motion is not the heart, an operational 
tagged MR imaging system was used to obtain the images 
which distinguishes this sequence from a synthetic one. The 

parameters used in obtaining the images are given in table 1 
and table 2. Using these parameters, it is possible to com- 
pute true motion at each pixel in the image. True motion is 
of subpixel resolution, but for comparison we check to see if 
correspondence has been established to the nearest pixel. The 
algorithm for all three measures is identical: For each pixel 
in the reference image (R) find the best matching window in 
the next image ( S )  in a pre-defined search range. 

I Image Parameter I Value 
Image size 150 x 150 
Pixel size (along II: and y) 
Period of rotation of ring 
Time interval between images (dt) 
Inner and outer radii of ring 

0.078125 cm 

0.05 s 
2.5 cm, 4.5 cm 

Table 2. Image and ring parameters used in the 
ring sequence (from Gupta and Prince). 

(d) t=0.15~ (e) t=0.2s (f) t=0.25s 

Figure 5. Six consecutive frames of a rotat- 
ing ring phantom image sequence from Johns 
Hopkins University (courtesy Sandeep Gupta). 

Table 3 summarizes the results of matching with each 
measure for four different pairs in the image sequence. It 
must be noted that for this sequence, there is no question 
of reporting false positives due to occlusion - each pixel in 
an image has a corresponding pixel in every other image. 
However, there can be false positives in the overlapping re- 
gions between the background and object which a window 
can straddle. All three methods did the best when band-pass 
filtered versions of the images were used, rather than the raw 
images themselves, hence the results are compiled on those 
filtered images. For all methods, the pre-defined search range 
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Matching using Frames (a) and (b) 
Measure I Mismatches I Percentage 

NCC 1577 I ~~~~~~ 1 Figure 6. Subsampled needle diagram of flow I S S D  1 1820 (to nearest pixel) between frames (c) and (d) of , , , , 
I Matching using Frames (c) and (d) 1 
I Measure I Mismatches I Percentage I - - 

(Nf) Mismatches 1 
14.01 Yo 
25.14% 

S S D  2222 30.86% 

16.27% J 34.69 % 
SSD 2692 37.39 % 

Table 3. Comparison of the three measures. 

was 1 5  pixels in the horizontal and vertical directions. To 
keep the comparison fair, no thresholds were used on any 
measure for rejecting or accepting a match. Instead, in each 
case, every pixel correspondence (with respect to image R) 
was verified by using image S as reference and checking to 
see if the resulting match mapped back to the same pixel. If 
not, then the pixel correspondence was rejected. Also, we 
used a uniform threshold on the grey-level variance in a win- 
dow around each pixel in image R, for attempting a match 
(for example, matching was not attempted by any method 
when a window completely occupies the black background 
region). Window size was 9 x 9 in all cases. If the number of 
mismatches is Nf , the number of false negatives for pixels in 
the object is N f n  and the number of false positives for pixels 
outside the object is N f p ,  then Nf = N f n  + N f p .  Percent- 
age mismatches is % x 100 where Nt is the total number of 
pixels in the object, found equal to 7200. 

Performance of K was much superior to SSD, as pre- 
dicted. Gratifying was the better performance of K with re- 
spect to NCC, a more equitable comparison in a sense be- 
cause both measures are normalized for intensity changes 

the rotating ring phantom using a) K ,  b) NCC. 

between windows. A reason for better performance is that 
NCC compensates only for linear variations. As expected of 
any window measure, most errors occur on the boundary be- 
tween the tagged region and background. We have tabulated 
N f n  and N f p  independently, in [5]. From a computational 
speed perspective, S S D  was superior. Figure 6 shows a nee- 
dle diagram corresponding to the flow obtained with K (to the 
nearest pixel) with images (c) and (d). It would be illuminat- 
ing to study matching when tag frequency is altered. 

5. Experiment 
We applied the motion estimation method as described in 

the previous sections, to a real heart image pair (see figure 5) .  
The images are taken at consecutive time intervals. We chose 

Figure 7. Cardiac images, taken at consecutive 
time instances, used for motion estimation. A 
portion of image (a) is marked for which flow is 
depicted separately in figure 9. This region 
was chosen because pixels therein undergo 
significant temporal intensity change. 

a k3 pixel search range along each axis, and a window size 
of 9 x 9. We also adopted an arbitrary confidence threshold of 
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0.6 on the correlation value to eliminate poor matches. The 
images are of size 256 x 256. Motion is small in most regions, 
often much less than a pixel and hence subpixel motion esti- 
mation is required. The subpixel motion estimation method 
is discussed in [5]. Results of matching are shown in figures 
8 and 9. The blank regions indicate portions where motion 
could not be computed due to lack of texture, or because the 
confidence in matching was low. It appears that the flow in 
the diagram is consistent with that of the heart. 
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. .  ... 

..... . _ _ A  __-_ ...... _----___.. . . . . . . . . .  ...... ____._.. .............. ......___... ................. ........................... .............................. ............................. ............................... 

...... _ _  -.,\ ................. 
.............................. ............................ ............................ 

Figure 8. Complete needle diagram of the flow 
computed using the images in figure 7. 

6. Discussion 
We presented a method for motion estimation using or- 

dinal measures in the context of tagged MR imaging where 
intensities at corresponding points, though not identical, are 
related monotonically. A restriction of our approach is that 
parameterized motion models like an affine model [3]  can- 
not be embedded within the correlation measure, unlike SSD 
based schemes. In other words, our approach is not regres- 
sion based where motion model parameters could be deter- 
mined iteratively, possibly in a hierarchical fashion. How- 
ever, for applications like cardiac motion estimation which 
involves deformable objects, such parameterized models are 
clearly insufficient in any case. Hence, our approach is non- 
parametric in intensity and motion modeling. 
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