
Ordinal Measures for Visual Correspondence * 

D i n k  N. Bhat and Shree K. Nayar 

Department of Computes Science, Columbia University, NY 10027 

Abstract 
W e  present ordinal measures for establishing ima  e 

correspondence. Linear correspondence measures d e  
correlation and the s u m  of squared differences are known 
to  be fragile. Ordinal measures, which are based on  
relative ordering of intensit  values an windows, have 
demonstrable robustness t o  A p t h  discontinuities, occlu- 
sion and noise. The  relative ordering of intensaty values 
in each window as represented by a rank permutation 
which is obtained by sortin the corresponding inten- 
sity data. By uszng a novel &stance metric between the 
rank permutations, we arrive at ordinal correlation coef- 
ficients. These coefficients are independent of absolute 
intensity scale, i.e they are normalized measures. Fur- 
ther, since rank permutations are invariant t o  monotone 
transformations of the intensity values, the coefficients 
are unaffected by nonlinear effects like gamma variation 
between images. W e  have developed a simple dgomthm 
for their e f ic ien t  implementation. Experiments suggest 
the superiority of ordinal measures over existing tech- 
ni ues under non-ideal conditions. Though we present 
orjanal measures in the context o stereo, they serue as 

to  o t t e r  vision problems such as mot ion  estimation and 
image registratton. 
1 Introduction 

Stereo systems for depth estimation work reasonably 
well with smooth surfaces that are mostly Lambertian 
in reflectance. However, many surfaces in real scenes 
exhibit shar discontinuities with non-Lambertian r. - 
flectance. T\e lack of robustness in such settings was 
clearly noted in [4] while evaluating operational stereo 
systems. These issues also arise in motion estimation, 
however, for the sake of clarity, we will uniformly discuss 
them in the context of robust stereo. 

Area-based stereo methods have been popular since 
they produce dense depth maps without re uiring ex- 
plicit surface reconstruction. The heart 09 any such 
method lies in the similarity criterion used that de- 
termines optimal statistical correlation between corre- 
sponding regions. A similarity measure has to satisfac- 
torily deal with the following issues: 

a a eneral tool for image matc  f ing that is applicable 

Depth discontinuities: A window located on a 
de th  discontinuit will represent scene points at 
dilerent depths. h r t h e r ,  windows around corre- 
spondin points in the stereo ima es do not rep- 
resent t i e  same surface regions. TEe issue then is 
to  identify correspondence even in the presence of 
such inconsistent intensity data  (see Figure la ) .  

~~~ ~ 
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Occlusion: A roblem related to depth disconti- 
nuities is that oFocclusion. Due to  occlusion, por- 
tions of a scene are visible only in one of the two im- 
ages (see Figure 1b)l. A stereo operator must cor- 
rectly identify occlusion regions by reporting that 
no match can be found for points therein. 

0 Noise: Noise is caused due to  statistical limita- 
tions in the sensing and di itization process, and 
electronic im erfections. f reliable stereo mea- 
sure must t o i r a t e  low signal-to-noise ratio which 
is common with low resolution sensors. 

0 Specular reflection: Corresponding point inten- 
sities are not identical in the presence d specular 
reflection, the specular intensity at  any scene point 
being dependent on the viewing directicin (see Fig- 
ure IC). Stereo algorithms must allow for devia- 
tions from the Lambertian model, specular reflec- 
tion being the most dramatic of such aberrations. 

0 Window Distortion: Due to  projection from dif- 
ferent viewpoints, corrt 3s p ondina ,windows do not 
represent the same surface patc in the scene, ex- 
cept when the surface is fronto-planar (see Fig- 
ure Id). The computational challenge is essen- 
tially similar to  that with discontinuities, i.e can 
the stereo measure endure .certain degree of data  
inconsistency in corresponding windows? 

0 Camera Parameter Variations: If different sen- 
sors are used for stereo, then the camera aperture, 
bias reference and gamma factors could vary be- 
tween them. Therefore, sensor outputs could be 
unequal even in the ideal Lambertian case. 

Stereo methods must be robust to  the above vagaries, 
i.e we require stereo operators that: a) are insensitive to  
outliers to  a high degree, b) can reliably 1oca.te matches 
even with inconsistent or inhomogeneous intensity in 
corresponding windows, c) can identify mismatches(0r 
matches) with prescribed confidence, d) are insensitive 
to deviations from the Lambertian model, and e) are 
independent of sensor gain and bias. In this paper, 
we present ordinal measures of association ([5], [l], [ 6 ] )  
which possess the above desirable qualities; to  a high 
degree. An ordinal variable implies one drawn fr0m.a 
discrete ordered set like the grade in school. The ratio 
between two measurements is not of consequence, only 
their relative ordering is relevant which is ex ressed by 

the sample in ascen8ng order and labeling them using 
their ranks. A rank ermutation is obtalned % y sorting 

’Figure l b  Id are clipped from a ima e pair captured by Steve 
Cochfan, U S 6  Institute of Robotics an$ Intelli ent Systems. Its 
description: “Partial vlew of a Rublk’s cube oc8uding a block”. 
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(a) Depth discontinuity (b) Occlusion 

(c) Specular Reflection (d) Projective Distortion 

Figure 1: Illustration of different phenomena which af- 
fect window-based stereo matching. In (a) , (e),  (d) iden- 
tically sized windows are shown around corresponding 
pixels - the center pixels. (a) Since the center pixel is 
located on a depth discontiuity, the windows represent 
different surface locations. (b) Due to occlusion, pix- 
els in the left window are not visible in the right one, 
therefore, correspondence cannot be achieved at those 
left pixels. (c) Specular reflection causes intensities in 
corresponding windows to  differ. Notice the varying lo- 
cation of the highlights with respect to the texture. (d) 
Projective distortion results in windows bein different 
which can be seen from the unequal texture B requency. 

integers [l, 2 , .  . . , n],  n being the size of the sample. In 
our application, intensity is viewed as an ordinal vari- 
able. Consequently, ordinal correlation measures are 
based on the rank permutations rather than absolute in- 
tensity data.  Well-known ordinal measures include the 
Kendall’s 7- and the Spearman’s p [7]. Both coefficients 
are relatively unaffected by the presence of random data 
outliers like noise, in comparison to direct image corre- 
lation. However, if the ranks within each window are 
si nificantly distorted like in the presence of s ecular 
reiection or discontinuities, they are not satisE)actory. 
This is in contrast to the measures described in this 
paper which are robust to rank distortion. They are 
non-parametric, which means, they can be interpreted 
even in the absence of stron structural a s u m  tions 
about the data  in windows. %bus, confidence tgresh- 
olds for matching can be established to identify occlu- 
sion regions. We present a simple and computationally 
economical algorithm to  evaluate the measures. Exper- 
iments with real images and comparison with existing 
matching methods suggest their superiority. 

2 Ordinal Measures 
In this section, we present ordinal measures of associ- 

ation after a brief review of the concept of correlation 
based on distance metrics. We discuss the sensitivjty of 
the measures with respect to  outliers and rank distor- 
tion, and compare them to other correlation methods. 

2.1 Motivation 

window M (master) with intensity 11: 
Consider the following example of a 3 x 3 reference 

A4 
10 30 70 
20 50 80 
40 60 100 

Under ideal conditions, the corresponding window S 
(slave) with intensity I:! is identical and so are their 
rank matrices: 

1 3 7  1 3 7  
2 5 8  2 5 8  
4 6 9  3 6 9  

Recall, that  an ordinal measure of association is based 
on ranks rather than intensity values themselves. Let 
us modify one ixel A in S, sa the one with inten- 
sity value 100, &rough a range ofdifferent values, This 
simulates the effect of a random outlier. Clearly, in the 
range (80,2551, ranks of the intensity values in S are 
not modified, and hence any ordinal measure of corre- 
lation remains at 1. This is unlike the linear correlation 
coefficient which can substantially deviate. For exam- 
ple, when the pixel takes a value of 255, the normal- 
zzed correlataon coe cient NCC = 0.645. This attrac- 

them for stereo matching. We now formally introxuce 
the concepts underlying ordinal measures using distance 
metrics. 
2.2 Review 

A ranking which represents the relative ordering be- 
tween values of an ordinal variable is simp1 a permu- 
tation of integers. More precisely] if S,, denotes the 
set of all permutations of integers [I, 2 , .  . . , n],  then any 
ranking is an element of this set. To define correlation 
between two rankings T I ,  7rz, we require a measure of 
closeness - a dzstance metrzc - between them [5]. Once 
a distance metric d(7r1,7rz) is defined, a coefficient of 
correlation cy can be obtained as: 

tive property of or %i inal measures motivates us to  a ply 

where M is the maximum value of d(7r1> T Z ) ,  V(7r1, 7r2) E 
S,. cr lies in the range [-1,1]. M is attained when 
the permutations are reverses of each other, and hence 
Q = -1. Different distance metrics are possible, an 
example being the Hamming distance d h :  

where sgn(z) = x/lxI. if x # 0, and 0 otherwise. For the 
Hamming distance, M = n. The Kendall’s T and the 
Spearman’s p too can be expressed using distance met- 
rics although it is seldom done. The reader is referred 
to [3] for details. 

We noted earlier that  data inconsistenc between cor- 
responding windows can occur due to d e  presence of 
specular reflection and discontinuities. This could re- 
sult in corresponding rank matrices being distorted un- 
like in the case of the example discussed in section 2.1. 
As a result, ordinal measures like the Kendall’s T and 
Spearman’s p are inadequate. 
2.3 Proposed Measures 

let T ;  

be the rank of I ;  among the I1 data, and T;  be the rank 
For a set of window intensity values ( I ; ,  
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of I; among the IZ data. Let us assume that the ranks 
are unique for the time being; we will discuss tied ranks 
at a later juncture. We define a composition permuta- 
tion s as follows: 

(3) 

where "1' denotes the inverse permutation of 'TI. The 
inverse permutation is defined as follows: If n-f =: j ,  then 
(nTi)j  = i. Informally, si is the rank of the pixel in 1 2  
that corresponds to  the pixel with rank i in II. Under 
perfect positive correlation, s should be identical to the 
identity permutation given by U = (1 ,2 ,  . . . ,la). 

By defining a distance measure between s and U ,  we 
in turn obtain a, notion of distance between TI and T Z .  

The deviation d; at each sa is defined as the number of 
s J ,  j = 1,. . . , i greater than i. Formally, 

i 

d& = J ( s j  > i )  (4) 
j=1 

where J ( B )  is an indicator function of event B ,  i.e J ( B )  
is 1 when B is true and 0 otherwise. The vector of d; 
values is termed as the distance vector dm(s,u)i [SI. In- 
formally, the distance vector estimates the numlber of s 
elements that are out of position, similar to the Ham- 
ming distance. However, it does not penalize out of 
position elements as severely as the Hamming distance, 
which makes our distance vector relatively less sensitive 
to  rank distortion effects observed between corres ond- 
ing windows during specular reflection and dept8 dis- 
continuities. If (I1 , 1 2 )  were perfectly correlated, then 
dm(Slu) = ( O , O , .  . . , O ) .  The maximum value that any 
component of the distance vector can take is L2J which 
must occur in the case of perfect negative correlation [3]. 
Now, a measure of correlation K = ~(11, I z )  is defined 
using equation 1 as: 

2 maxllZl d:, 
K ( I 1 ,  I 2 )  = 1 - L5J ( 5 )  

If 11 and 1 2  are perfectly correlated (s = U ) ,  then K = 
1. It falls t o  -1 when (I l ,  I z )  are perfectly negative 
correlated. IC has the following desirable properties of a 
correlation coefficient: 

0 it is inde endent of scaling and shift of the intensity 
values. I%r our application, it implies independence 
from camera aperture settings and bias, 

0 it is a normalized measure, i.e -1 5 K :< 1, 

it is symmetrical, i.e ~ ( I 1 , l z )  = K(Iz,I~). Hence, 
either stereo image can be used as reference [3], 

n(f(II) ,h(IZ)) = ~ ( I 1 , 1 2 )  where f and h are 
strictly monotonically increasin or decreasin 
functions of I1 and Iz, respectiveyy. If one of f 
is increasing and the other is decreasin then the 
value of IC simply has its si n switched. %Inis prop- 
erty comes useful when different camexas are used 

Left Stereo Image Right Stereo Image 

Obtain Obtsn 

Compute 
Distance vector (Cl 

Evaluate Ordinal Correlation 

Figure 2:  Flow-chart depicting the procedure involved 
in computing K or x.  

for stereo and have different responses to  image ir- 
radiance. Each sensor output I is relateid to  image 
irradiance E as: 

~ = ~ ~ f + m  

where g is the camera giLin, m is the reference bias 
factor, and y accounts for image contratst. For il- 
lustration, let the gains of the cameras be identi- 
cally 1.0 and the bias of the cameras be 0. Let the 
imaged surface be Lambertian, i.e the image irra- 
diance from any point is identical for both sensors. 
Then, the sensor outputs are related by the equa- 
tion 11  = ( I z ) t  where t = 2. In general, t # l, 
and hence the linearity between the sens,or outputs 
is lost. However, 161 remains at  1 because ( 1 2 ) t  is 
a strictly increasin or decreasin function2 of I 2  
depending on t ,  an8 hence its ranting remains un- 
changed. 

Another measure of correlation x(11,12) which is com- 
putationally less expensive is defined as: 

2 d z d  
x(11,12) = :t - - LSJ 

Here dKid refers to the deviation at  the 1S.J index of 
the distance vector. It has the same pro erties as K ,  
but in practice is somewhat less robust. b e  conclude 
by summarizing the procedure involved in computing 
our measures using the flow-chart shown in figure 2. 
2.4 Sensitivity 

The most useful quality of the measures are their in- 
sensitivity to random noise and rank distortion yhich 
can occur due to specular reflection and discontinuities. 
Our discussion of these effects will be in t,he context 
of K but could be easily extended to  x too. Consider 
the example of section 2.1. K remains at  1 when the 

2This property of the correlation coefficient does not help to 
deal with specular reflection since no monotonic relationship be- 
tween the variables 11 and 12 can be established. 
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intensity of pixel A is modified to a value in the range 
(80 - 2551. The reason is that the corresponding rank 
matrices remain unchanged. Now let the value of pixel 
A in window S be changed to 75. Then, the rank ma- 
trices representing T I  and 7rz are: 

K 

hl S 
1 3  7 1 3 7  
2 5  8 2 5 9  
4 6  9 4 6 8  

Window Window Window 
1324 923 79 1 

Note the modification of ranks in S. As might be ex- 
pected, K decreases and acquires a value of 0.8. This is 
in fact uite comfortin since it shows that IC, is sensi- 
tive to  clanging data. 8 n  the other hand, NCC changes 
from 1.0 to  0.6. Now let A take a value between 0 and 
10, in which case the rank matrix of S is significantly 
modified as shown below: 

n/l S 
1 3  7 2 4 s  
2 5  8 3 6 9  
4 6  9 5 7 1  

However, the value of K remains at  0.8. This behaviour 
is in sharp contrast to  the Kendall’s T and Spearman p 
[7] which fall steeply to  0.556 and 0.4, respectively. If 
pixel A takes a value of 0, then the linear correlation 
coefficient NCC drops to  0.311. 

The above example, albeit contrived, serves to  illus- 
trate the robustness of the measures we propose. In real- 
ity, the manifestation of specular reflection and discon- 
tinuities can distort ranks between correspondin 
dows more drastically, i.e more than one data v;t’iz?i 
S ma differ from the corres onding value in M .  How- 
ever $v choosing a sufficientr large window we achieve 
simiiarinsensitivitv which is Jemonstrated in the exper- 
iments. In summary, our measures capture the general 
relationship between data without being unduly influ- 
enced bv unusual yet accurate data. 
2.5 Comparison 

We compare our measures with the sum of squred dif- 
ferences measure SSD, the normalized correlation coeffi- 
cient NCC,  and Zabih’s rank transform [lo]. We use the 
test suite developed by [2] consisting of four sequences 
of images generated as benchmarks for matching aigo- 
rithms. In each sequence, one parameter is varied; we 
will use sequences in which the noise level is varied (see 
Figure 3) .  None of the pair of images in a sequence 
are stereoscopic since viewpoint between them remains 
unchanged. 

In Figure 3, salt and pepper noise3 was added to  the 
right, image. Notice the significant degradation in qual- 
ity of thc right image. We use the intensity variance in 
the window to  estimate the amount of texture around 
the center pixel. If the variance is below a threshold, 
then we do not, consider that point for matching. To 
simulate stereo matching, we use a search range R of 
*10 pixels. Matches are established for a region of size 

3This is used to model electronic noise. Pixels are randomly 
chosen and set to black(”pepper”) or white(”sa1t”). 

Figure 3: Image pair with salt and pepper noise added 
to  the right image. This pair is used to  test IC, and 
with other measures. 

100 x 100 (= lo4)  pixels of the left reference image. 
The results of matchin are shown in Table 1 which 
tabulates the number o f  matches incorrect,ly identified 
by each measure, i.e the number of false positives are 
reported. It can be seen that n gives the best result,s. 

Mismatches 
7 x 7  1 9 x 9  I 11 x 11 Measure 

1 f ; Ih  1 1752 1 1171 1 809 1 
1856 1270 1001 

Norm. Corr. 412s 2991 2245 
4567 3469 2645 

Table I: Comparison of different measures using t,hc 
images shown in Figure 3. The number of incorrect 
matches identified by each measure a t  different, window 
sizes is tabulated. 

does better than NCC and SSD but not, as well as 
fabih’s method. While x does not perform as well as K ,  
it is computationally less expensive, and is cornparablc 
to Zabih,s rank transform. All measures did better with 
increasing window size. 

The two measures were tested next on a random dot, 
stereogram (see Figure 4) and compared with the other 
methods. The random dot stereo pair, each image of 
size 64 x 64 pixels, depicts a square (size:20 x 20 pix- 
els) moving 4 pixels to the right in front of a stationary 
textured background. Gaussian noise of variance 5.0. is 
added to both images, and there is a difference in In- 
tensity scale of 10% between the images. The computa- 
t,ional problems are: a) To obtain correct disparity at, all 
corres onding points includin those a t  depth bound- 
aries {et,ween the backgrouncf and the moving plane, 
and b) to correctly report, that no matches can be found 
in the occlusion region ~ the region of size 4 x 20 t,o the 
right of the moving square wit,h respect to the referencc 
image. 

The search range is fixed at f 1 0  pixels on a scan- 
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line for all methods. All methods also incorporate a 
back matching strategy wherein each match is verified 
independently by matching patches from the left im- 
age in the right image, and vice versa. If the match 
for a window from the left image is not mapped back 
to within a pixel of its location in the left image, it is 
not considered valid. This is a more uniform way to 
compare measures than to  use different thresholds for 
different similarity measures. The results (number of 
mismatches) are shown in Table 2. 

Figure 4: Left and right stereo images of a random dot 
stereogram are shown on the top row. The right image 
is 10% darker than the left. They re resent a square 
moving against a stationary textured gackground. On 
the bottom row, true disparity levels with res ect to  the 
left image are shown in different shades. Tge darkest 
region (to the right of the inner square) indicates the 
occlusion region. 

Mismatches Measure 

Window I Window I Window 

Norm. Corr. 
Zabih 124 100 112 
SSD 211 141 134 

Table 2: Comparison of different measures using the 
random dot stereo images shown in Fi ure 4. The num- 
ber of matches incorrect1 identifiedty a measure at, 
different window sizes is &own. 

Once again IC does the best, in comparison to the other 
measures. The improvement may not seem as drastic 
as in the earlier example. The reason is that the num- 
ber of pixels on discontinuities and in the occlusion re- 
gion is small - only 140. On the average, K performs 
about 21% better than NCC, 49% better than SSD, 
and about, 31% better than the rank transform. x does 
almost as well as normalized correlation but better than 
SSD and Zabih's rank transform. The number of vis- 
matches obtained by SSD in regions not corresponding 

to  depth discontinuities or th.e occlusion zone decreases 
progressively with window size. However. in all other 
cases, the corresponding figure remains nearly constant, 
at 0. Hence, mismatches are all on the depth bound- 
aries and in the occlusion region. With increasing win- 
dow size, the probability of s,moothing of disparit>y val- 
ues across depth boundaries and the occlusion region 
increases, which explains the observed degradation in 
performance of all measures except SSD. 
3 Statistical Issues 

In this section we will discuss statistical issues relevant, 

0 Tied data: In practice, tied ranks within a win- 
dow are high1 possible, i.e two or more pixels can 
have identicayintensity values. Hence, the defini- 
tion of s in equation 3 is unclear. The question 
then is: What rank should be assigned to the set of 
tied data values? In general, if there are 9 groups 
of tied data, each group containing 1 1 , ~ ,  :i = 1 . . . , y 
elements then the total number of rankings possi- 
ble is n1!n2!..,ng!. We rank tied values such that 
the relative spatial ordering between them is pre- 
served. This method of breakinn ties enlsures that, 
when sample windows corres on$, the two rankings 
are consistent. In other ,or&., our ranking method 
most favors positive correlation. 

0 Sample size: The window size determines the 
amount of sample data that will be used for com- 
parison. When the window size is small, say 3 x 3, 
only 5 values (L;J + 1) are possible for rc (and x ) .  
Hence, the discriminabi1:ity of the coefficigent,s is low, 
and mismatches could result with hi311 p!obabilit,y. 
As the window size increases, thc iscnmmatory 
power of the coefficients increases. On real images, 
typically window sizes of 7 x 7 or 9 x 9 pctform well. 

0 Confidence Thresholds: The linear correlation co- 
efficient has no clear meaning, i.e it, is not. possi- 
ble t,o attach a significance level4 to it without, ex- 
plicit distributional assumptions about, the samplc 
data. These assumptions cannot, bc made. cspo- 
cially for samples cont,aining inhomcgenous data. 
Therefore, an algorithm, cannot rcjcct, or accept. a 
match with anv confidence. Typically an (id hoc 
threshold based on experience is chosen. 
On the other hand, the significance levcl of our 
measures can be tested using h Tpothesis testing 
methods. The reason is that although tlic distri- 
bution of the sample data is not known apriori, 
the s ermutation is uniformly dist,ribut,cd undcr 
the nu% hypothesis of there being no associatioil 
bet,ween the samples. We do not explailt thc cntlrc 
procedure here due to lack of spacc (soc [3]). but. 
we obtain a table for IC as below: 

to  the proposed measures. 

. . .  . . .  

4SSignificancc leve1,denotes the m?ximum probablilitv at. which 
a true null hypothesis is rejected. Thc correspondilig valuc of 
the test statistic ( K  or x )  is the confidence thrcsholtl, and ( 1 -  
significance level) expressed in pcrccntage is i . 1 ~  confidence Icvc~l. 
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A match between windows would be rejected at 
a specified confidence level, if K between them is 
below the appropriate threshold. 
As an example, for a window size of 7 x 7 and 
t = 99%, we would not accept a match unless K 
exceeds c = 0.33. To verify this threshold, we used 
it for matching in the random dot stereogram ex- 
ample. We re laced the back matchin strategy 
by the threshord to evaluate a match. %he num- 
ber of mismatches increased marginal1 from 54 to 
57. This small increase could be attr i luted to the 
errors associated with hypothesis testing. Never- 
theless, detailed experimental analysis has to per- 
formed before such thresholds can be used for prac- 
tical stereo work. 

9 -  

8 , . 
5 -  

4- 

3 - ~  

2 4  

1 

4 Computational Issues 

...................................... @E q-q w 
+ i  i 
I ,  I ,  

0 j i - t -  
I ,  c ......................... 3 .... !+ 
' 1 + 1  

-. ............................. qj 0 A 
-t- 0 

-t- 0 

-t- 

-t- 

The naive algorithm for computing every distance vec- 
tor component d$ by searching linearly through s is an 
O(n2)  method. Since, for every pixel in the reference 
image, we search in a range R in the second image, the 
cost of computing d, would be O(Rn2).  In this sec- 
tion, we sketch a simple O ( n )  algorithm for building 
d, while simultaneously evaluating "& d i  . This is 
explained below using a geometrical construction (see 
Figure 5 ) .  

The large dots represent the elements of the s permuta- 
tion. The distance vector component d z l  is equal to the 
number of s elements in the rectangular region GCDE. 
This is identical to the total number of s elements in 
rectangular regions HCDF and GHFE. If, while comput- 
ing dm, the total number of s elements equal to [i, i + 11 
was recorded as say m (equal to s elements in the region 
ABHG), then the number of s elements within the area 
GHFE = din - m. Therefore, while computing d%',  
only s elements in the area HCDF need to be deter- 
mined. This is true for i = 1,. . . .  n, and thus we obtain 
a O ( n )  algorithm to calculate the distance vector. It is 
trivial to  compute maz&(d,). An algebraic proof is 
also sketched in [3] .  Mathematically, 

2 z+ 1 

dz '  = di,-C J ( i  < s3 5 i+l)+C J ( s 3  > i+ l )  (7) 
3=1 j = a  

We use the following method to  obtain the rank er 
mutations instead of comparison sorting schemes w Eich 
are O ( n  logn).  Note that intensity values are integers 
and lie in the range [0 ,2k  - 11 where k represents the 
number of bit,s of intensity resolution. We can now use 
counting sort which is O(n  + 2 k ) .  Currently, 8-bit sen- 
sors are the norm which implies intensity values must 
lie in the range [0 - 2551. Hence, sorting in a window 
is O ( n  + 256)  - linear in n. Furthermore, counting sort 
is effective with tied data  values too. To find the value 
of n when counting sort out-performs comparison sort, 
the following inequality must be satisfied: 

~ 1 7 2  logn > ~ 2 ( n  + 256)  

where c1, c2 are constants of the algorithms. If c1 = c2, 
then for n 2 64 (or equivalently, a window of size 8 x 8) 
counting sort is better. 

The computational cost of K. and x is much lower than 
that of the Kendall's 7 which is O ( n 2 ) .  It is asymptob 
ically identical to that of Spearman's , and in ractice 
slightly better. It is less economicaf than N 8 C  and 
much costlier than SSD. However, the increased re- 
liability over SSD and NCC may compensate for the 
decreased economy in certain applications. 
5 Experiments 

Ideally, we would like to compare our measures with 
others using dense ground truth, but unfortunatelv such 
data is lacking [4]. In this paper, we present two of the 
conducted experiments (see [3] for other experiments) 
which qualitatively substantiate the results presented 
in section 2 . 5 ,  In both cases, K. is used for matching. 

The first is a stereo image pair in figure 6 from the Cal- 
ibrated Imaging Laboratory a t  CMU [t i] .  A sequence of 
images was obtained by moving the camera laterally. 
Precise disparity was tabulated at 28 points (shown in 
the figure) using an active range sensing method. Note 
that many points are located on depth discontinuities 
which pose a serious problem for stereo matching. The 
disparity range is [20 - 351 pixels, and a window size of 
9 x 9 is used for matching. Exce t for point 14 located 
at  the bottom left in figure 6c, a i  others were matched 
accurately upto ixel accuracy. This result was consis- 
tent with two ot ter  image pairs in the same sequence. 

Next, we use a stereo pair of a densely textured 
cube5(see Figure 7) with disparity va.riation in the range 
[25 - 501 pixels. The issues are to obtain accurate dis- 
parity in spite of the significant projective distortion, 
and to match correctly a t  the edges. The window size 

5This stereo air was developed a t  the University of Illinois by 
Bill Hoff. Its tit&, "Synthetic image of a cube with gray random- 
dot texture". 
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Figure 6: Stereo image pair obtained by the Calibrated 
Imaging Lab in CMU (by Mark Maimone) is shown on 
the top row. The bottom picture shows 28 points for 
which precise disparity has been obtained using an ac- 
tive range method. 

is 9 x 9. The resulting dense disparity map is shown in 
figure 8 which is accurate. To verify, we compared the 
obtained disparity by the plane-fit error method [9], and 
the result is nearly 100% accurate (upto pixel accuracy). 

6 Discussion 
We presented ordinal measures for visual correspon- 

dence and have shown them to be robust in the pres- 
ence of depth discontinuities, occlusion, and :non-linear 
reflectance. We also developed a computationally effi- 
cient algorithm for evaluating these measures. We have 
concentrated on robustness in the presence of rank dis- 
tortion and outliers in corresponding windows. But this 
robustness could turn into a liability when comparing 
windows which do not corres ond When window in- 
tensity values are replaced by t teir  correspondhg ranks, 
there is a loss of information, namely, the ratio between 
different measurement values. As a result, textures that 
are different may have the same rank distribution and 
hence an ordinal measure would report a good match be- 
tween them. On the other hand normalized correlation 
between the intensity values will be low which enables 
disambiguating correspondence. The loss of discrim- 
inability due to the choice of an ordinal scale of mea- 
surement is the price one pays for robustness. Equiv- 
alently, in statistical terms, ordinal measwes are much 
more robust but, less efficient than their counterparts. 
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