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Abstract—Video cameras must produce images at a reasonable frame-rate and with a reasonable depth of field. These requirements

impose fundamental physical limits on the spatial resolution of the image detector. As a result, current cameras produce videos with a

very low resolution. The resolution of videos can be computationally enhanced by moving the camera and applying super-resolution

reconstruction algorithms. However, a moving camera introduces motion blur, which limits super-resolution quality. We analyze this

effect and derive a theoretical result showing that motion blur has a substantial degrading effect on the performance of super-

resolution. The conclusion is that, in order to achieve the highest resolution, motion blur should be avoided. Motion blur can be

minimized by sampling the space-time volume of the video in a specific manner. We have developed a novel camera, called the ”jitter

camera,” that achieves this sampling. By applying an adaptive super-resolution algorithm to the video produced by the jitter camera,

we show that resolution can be notably enhanced for stationary or slowly moving objects, while it is improved slightly or left unchanged

for objects with fast and complex motions. The end result is a video that has a significantly higher resolution than the captured one.

Index Terms—Sensors, jitter camera, jitter video, super-resolution, motion blur.

�

1 WHY IS HIGH-RESOLUTION VIDEO HARD?

IMPROVING the spatial resolution of a video camera is
different from doing so with a still camera. Merely

increasing the number of pixels of the detector reduces the
amount of light received by each pixel and, hence, increases
the noise. With still images, this can be overcome by
prolonging the exposure time. In the case of video,
however, the exposure time is limited by the desired
frame-rate. The amount of light incident on the detector can
also be increased by widening the aperture, but with a
significant reduction of the depth of field. The spatial
resolution of a video detector is therefore limited by the
noise level of the detector, the frame-rate (temporal
resolution), and the required depth of field.1 Our purpose
is to make a judicious use of a given detector that will allow
a substantial increase of the video resolution by a resolu-
tion-enhancement algorithm.

Fig. 1 shows a continuous space-time video volume. A
slice of this volume at a given time instance corresponds to
the image appearing on the image plane of the camera at
this time. This volume is sampled both spatially and
temporally, where each pixel integrates light over time
and space. Conventional video cameras sample the volume
in a simple way, as shown in Fig. 1a, with a regular 2D grid
of pixels integrating over regular temporal intervals and at

fixed spatial locations. An alternative sampling of the space-
time volume is shown in Fig. 1b. The 2D grid of pixels
integrates over the same temporal intervals, but at different
spatial locations. Given a 2D image detector, how should
we sample the space-time volume to obtain the highest
spatial resolution?2

There is a large body of work on resolution enhancement
by varying spatial sampling, commonly known as super-
resolution reconstruction [4], [5], [7], [9], [13], [18]. Super-
resolution algorithms typically assume that a set of
displaced images are given as input. With a video camera,
this can be achieved by moving the camera while capturing
the video. However, the camera’s motion introduces motion
blur. This is a key point in this paper: In order to use super-
resolution with a conventional video camera, the camera
must move, but when the camera moves, it introduces
motion blur which reduces resolution.

It is well-known that an accurate estimation of the
motion blur parameters is nontrivial and requires strong
assumptions about the camera motion during integration
[2], [13], [16], [20]. In this paper, we show that even when an
accurate estimate of the motion blur parameters is available,
motion blur has a significant influence on the super-
resolution result. We derive a theoretical lower bound,
indicating that the expected performance of any super-
resolution reconstruction algorithm deteriorates as a func-
tion of the motion blur magnitude. The conclusion is that, in
order to achieve the highest resolution, motion blur should
be avoided.

To achieve this, we propose the “jitter camera,” a novel
video camera that samples the space-time volume at different
locations without introducing motion blur. This is done by
instantaneously shifting the detector (e.g., CCD) between
temporal integration periods, rather than continuously
moving the entire video camera during the integration
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1. The optical transfer function of the lens also imposes a limit on
resolution. In this paper, we ignore this limit as it is several orders of
magnitudes above the current resolution of video.

2. Increasing the temporal resolution [19] is not addressed in this paper.
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periods. We have built a jitter camera and developed an
adaptive super-resolution algorithm to handle complex

scenes containing multiple moving objects. By applying the
algorithm to thevideoproducedby the jitter camera,weshow
that resolution can be enhanced significantly for stationary or
slowly moving objects, while it is improved slightly or left

unchanged for objects with fast and complex motions. The
end result is a video that has higher resolution than the
captured one.

2 HOW BAD IS MOTION BLUR FOR

SUPER-RESOLUTION?

The influence of motion blur on super-resolution is well
understood when all input images undergo the same
motion blur [1], [10]. It becomes more complex when the
input images undergo different motion blurs and details that
appear blurred in one image appear sharp in another image.
We address the influence of motion blur for any combina-
tion of blur orientations.

Super-resolution algorithms estimate the high resolution

image by modeling and inverting the imaging process.
Analyzing the influence of motion blur requires a definition
for super-resolution “hardness” or the “invertibility” of the
imaging process. We use a linear model for the imaging

process [1], [7], [9], [13], where the intensity of a pixel in the
input image is presented as a linear combination of the
intensities in the unknown high resolution image:

~yy ¼ A~xxþ~zz; ð1Þ

where ~xx is a vectorization of the unknown discrete high
resolution image,~yy is a vectorization of all the input images,
and the imaging matrix A encapsulates the camera
displacements, blur, and decimation [7]. The random
variable ~zz represents the uncertainty in the measurements
due to noise, quantization error, and model inaccuracies.

Baker and Kanade [1] addressed the invertibility of the
imaging process in a noise-free scenario, where~zz represents
the quantization error. In this case, each quantized input
pixel defines two inequality constraints on the super-
resolution solution. The combination of constraints forms
a volume of solutions that satisfy all quantization constraints.
Baker and Kanade suggest using the volume of solutions as a
measure of uncertainty in the super-resolution solution.

Their paper [1] shows the benefits in measuring the volume
of solutions over the standard matrix conditioning analysis.

We measure the influence of motion blur by the volume
of solutions. To keep the analysis simple, the following
assumptions are made: First, the motion blur in each input
image is induced by a constant velocity motion. Different
input images may have different motion blur orientations.
Second, the optical blur is shift-invariant. Third, the input
images are related geometrically by a 2D translation.
Fourth, the number of input pixels equals the number of
output pixels. Under the last assumption, the dimension-
ality n2 of ~xx equals the dimensionality of ~yy. Since the
uncertainty due to quantization is an n2-dimensional unit
cube, the volume of solutions for a given imaging matrix A
can be computed from the absolute value of its determinant

volðAÞ ¼ 1

jAj

����
����: ð2Þ

In Appendix A, we derive a simplified expression for
jAj as a function of the imaging parameters. This allows for
an efficient computation of volðAÞ, as well as a derivation
of a lower bound on volðAÞ as a function of the extent of
motion blur.

Since the volume of solutions volðAÞ depends on the
image size, which is n2, we define in Appendix A (8) a
function sðAÞ such that

volðAÞ / sðAÞn
2

:

sðAÞ has two desirable properties for analyzing the
influence of motion blur. First, it is independent of the
camera’s optical transfer function and the detector’s
integration function, and normalized to one when there
is no motion blur and the camera displacements are
optimal (Appendix B). Second, volðAÞ is exponential in the
image size whereas sðAÞ is normalized to account for the
image size.

Fig. 2 shows sðAÞ as a function of the lengths of the
motion blur trajectories. Specifically, let ~llj be a vector
describing the motion blur trajectory for the jth input
image: During integration, the projected image moves at a

constant velocity from �~llj
2 to

~llj
2 . Each graph in Fig. 2 shows

the value of sðAÞ as a function of the length of the
four motion blur trajectories fk~ssjkg3j¼0. The different graphs
correspond to different configurations of blur orientations
in four input images. The graphs were computed for
optimal camera displacements (see Appendix B) and
magnification factor 2.

It can be seen that, in all selected motion blur config-
urations, sðAÞ / volðAÞ

1
n2 increases as a function of the

length of the motion blur trajectories fk~lljkg. The thick blue
line is the lower bound of sðAÞ, whose derivation can be
found in Appendix A. This bound is for any configuration
of blur orientations and any camera displacements.

The findings above confirm that, at least for our
assumptions, any motion blur is bad for super-resolution and
the larger the motion blur, the larger the volume of solutions.

Fig. 3a shows super-resolution results of simulations with
and without motion blur. The simulated input images were
obtained by displacing, blurring, and subsampling the
ground truth image. The blurs and displacements were
provided to the super-resolution as input. As can be seen in

978 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 6, JUNE 2005

Fig. 1. Conventional video cameras sample the continuous space-time
volume at regular time intervals and fixed spatial grid locations as shown
in (a). The space-time volume can be sampled differently, for example,
by varying the location of the sampling grid as shown in (b) to increase
the resolution of the video. A moving video only approximates (b) due to
motion blur.



Fig. 3, evenwithmotion blur as small as 3.5 pixels, the super-
resolution result is degraded such that some of the letters are
unreadable. Fig. 3b presents the RMS error in the recon-
structed super-resolution image as a function of the extent of
themotion blur. It can be seen that the RMS error increases as
a function of the motion blur magnitude. This effect is
consistent with the theoretical observations made above.

3 JITTER VIDEO: SAMPLING WITHOUT MOTION

BLUR

Our analysis showed that sampling with minimal motion
blur is important for super-resolution. Little can be done to
prevent motion blur when the camera is moving3 or when
objects in the scene are moving. Therefore, our main goal is
to sample at different spatial locations while avoiding
motion blur in static regions of the image.

The key to avoiding motion blur is synchronous and
instantaneous shifts of the sampling grid between temporal
integration periods, rather than a continuous motion during
the integration periods. In Appendix B, we show that the
volume of solutions can be minimized by properly selecting
the grid displacements. For example, in the case of
four input images, one set of optimal displacements is
achieved by shifting the sampling grid by half a pixel
horizontally and vertically. Implementing these abrupt
shifts by moving a standard video camera with a variable
magnification factor is nontrivial.4 Hence, we propose to
implement the shifts of the sampling grid inside the camera.

Fig. 4 shows two possible ways to shift the sampling grid
instantaneously. Fig. 4a shows a purely mechanical design,
wherethedetector (e.g.,CCD) isshiftedbyactuators tochange
the sampling grid location. If the actuators are fast and are
activated synchronouslywith the reading cycle of the detector,
then the acquired image will have no motion blur due to the
shift of the detector. Fig. 4b shows a mechanical-optical
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3. Small camera shakes can be eliminated by optical lens stabilization
systems, which stabilize the image before it is integrated.

4. A small uniform image displacement can be approximated by rotating
the camera about the X; Y axes. However, the rotation extent depends on
the exact magnification factor of the camera, which is hard to obtain. In
addition, due to camera’s mass, abrupt shifting of the camera is challenging.

Fig. 3. The effect of motion blur on super-resolution with a known
simulated motion blur. (a) The top image is the original ground-truth
image. The middle image is the super-resolution result for four simulated
input images with no motion blur. This image is almost identical to the
ground truth image. The bottom image is a super-resolution result for four
simulated input images with motion blur of 3.5 pixels. Two images with
horizontal blur and two with vertical blur were used. The algorithm used
the known simulated motion blur kernels and the known displacements.
The degradation in the super-resolution result due tomotion blur is clearly
visible. (b) The graph shows the gray level RMS error in the super-
resolution image as a function of motion blur trajectory length.

Fig. 2. We measure the super-resolution “hardness” by the volume of
plausible high-resolution solutions [1]. The volume of solutions is
proportional to sðAÞn

2

, where n2 is the high resolution image size. The
graphs show the value of sðAÞ as a function of the length of the motion-
blur trajectories fkljkg3j¼0. We show a large number of graphs computed
for different configurations of blur orientations. The thick graph (blue
line) is the lower bound of sðAÞ for any combination of motion blur
orientations. In all shown configurations, the motion blur has a significant
influence on sðAÞ and, hence, on the volume of solutions. The increase
in the volume of solutions can explain the increase in reconstruction
error in super-resolution shown in Fig. 3.



design.A flat thinglassplate isused to shift the imageover the
detector. An angular change of a 1mm thick plate by one
degree shifts the image by 5:8�m, which is of the order of a
pixel size. Since the displacement is very small relative to the
focal length, the change of the optical path length resultswith
negligible effect on the focus (the point spread area is much
smaller than the area of a pixel). The mechanical-optical
design shown Fig. 4b has been used for high-resolution still-
imaging, for example, by Pixera [6], where video-related
issues such as motion blur and dynamic scenes do not arise.

An important point to consider in the design of a jitter
camera is the quality of the camera lens. With standard
video cameras, the lens-detector pair is matched to reduce
spatial aliasing in the detector. For a given detector, the
matching lens attenuates the spatial frequencies higher than
the Nyquist frequency of the detector. For a jitter camera,
higher frequencies are useful since they are exploited in the
extraction of the high resolution video. Hence, the selected
lens should match a detector with a higher (the desired)
spatial resolution.

4 THE JITTER CAMERA PROTOTYPE

To test our approach, we have built the jitter camera
prototype shown in Fig. 5. This camera was built using a
standard 16mm television lens, a Point-Grey [17] Dragon-Fly

board camera, and two Physik Instrumente [8] micro-
actuators. The micro-actuators and the board camera were
controlled and synchronized by a Physik Instrumente
Mercury stand-alone controllers (not shown).

The jitter camera is connected to a computer using a
standard firewire interface and, therefore, it appears to be a
regular firewire camera.

We used, in our prototype, two DC-motor actuators,
which enable a frame-rate of approximately eight frames
per second. Newly developed piezoelectric-based actuators
can offer much higher speed than DC-motor based
actuators. Such actuators are already used for camera shake
compensation by Minolta [12], however, they are less
convenient for prototyping at this point in time.

The camera operates as follows:

1. At power up, the actuators are moved to a fixed
home-position.

2. For each sampling position in [(0,0),(0,0.5),(0.5,0.5),
(0.5,0)] pixels do

. Move the actuators to the next sampling position.

. Bring the actuators to a full stop.

. Send a trigger signal to the camera to initiate
frame integration and wait during integration
duration.

. When the frame is ready, the camera sends it to
the computer over the Firewire interface.

3. End loop.
4. Repeat process from step (2).

To evaluate the accuracy of the jitter mechanism, we
captured a sequence of images with the jitter camera,
computed the motion between frames to a subpixel
accuracy [3], and compared the computed motion to the
expected value. The results are shown in Fig. 6. The green
circles show the expected displacements and the red
diamonds show the actual displacements over multiple
cycles. We can see that the accuracy of the jitter mechanism
was better than 0:1 pixel. We can also see that, while some
error is accumulated along the path, the camera accurately
returns to its zero position, thus preventing drift.
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Fig. 4. A jitter video camera shifts the sampling grid accurately and
instantaneously. This can be achieved using micro-actuators, which are
both fast and accurate. The actuator can shift the detector as shown in
(a), or it can be used to operate a simple optical device, such as the tilted
glass plate shown in (b), in order to optically move the image with
respect to the static detector.

Fig. 5. The jitter camera prototype shown with its cover open. The

mechanical micro-actuators are used for shifting the board camera. The

two actuators and the board camera are synchronized such that the

camera is motionless during integration time.

Fig. 6. Accuracy of the jitter mechanism. The detector moves one step at
a time along the path shown by the blue arrows. The green circles show
the expected position of exactly half a pixel displacement and the red
diamonds show the actual position over multiple cycles. We can see that
the accuracy was less than a tenth of a pixel. We can also see that the
jitter mechanism returns very accurately to its zero position, hence,
preventing excessive error accumulation over multiple cycles.



The resolution of the computed high-resolution video
was 1; 280� 960, which has four times the number of pixels
compared to the resolution of the input video, which was
640� 480. This enhancement upgrades an NTSC grade
camera to an HTDV grade camera while maintaining the
depth of field and the frame-rate of the original camera.

5 ADAPTIVE SUPER-RESOLUTION FOR DYNAMIC

SCENES

Given avideo sequence capturedbya jitter camera,wewould
like to compute a high resolution video using super-
resolution. We have chosen iterated-back-projection [9] as
the super-resolution algorithm. Iterated-back-projection was
shown in [4] to produce high quality results and is simple to
implement for videos containing complex scenes. The main
challenge in our implementation is handling multiple
motions and occlusions. Failing to cope with these problems
results in strong artifacts that render the output useless.

To address these problems, we compute the imagemotion
in small blocks and detect blocks suspected of having
multiple motions. The adaptive super-resolution algorithm
maximizes the use of the available data for each block.

5.1 Motion Estimation in the Presence of Aliasing

The estimation of image motion should be robust to
outliers, which are mainly caused by occlusions and
multiple motions within a block. To address this problem,
we use the Tukey M-estimator error function [11]. The
Tukey M-estimator depends on a scale parameter �, the
standard deviation of the gray-scale differences of correctly-
aligned image regions (inlier regions).

Due to the under-sampling of the image, gray-scale
image differences in the inlier regions are dominated by
aliasing and are especially significant near sharp image
edges. Hence, we approximate the standard deviation of the
gray-scale differences � in each block from the standard
deviation of the aliasing �a in the block as � ¼

ffiffiffi
2

p
�a. This

approximation neglects the influence of noise and makes
the simplifying assumption that the aliasing effects in
two aligned blocks are statistically uncorrelated. In the
following, we describe the approximation for the standard
deviation of the aliasing in each block �a, using results on
the statistics of natural images.

Let f be a high resolution image, blurred and decimated
to obtain a low resolution image g:

g ¼ ðf � hÞ #;

where � denotes convolution and # denotes subsampling.
Let s be a perfect rect low pass filter. The aliasing in g is
given by:

ðf � h� f � s � hÞ #¼ f � h � ð� � sÞ # :

The band-pass filter h � ð� � sÞ can, hence, be used to
simulate aliasing. For the motion estimation, we need to
estimate �a, the standard deviation of the response of this
filter to blocks of the unknown high resolution image. We
use the response of this filter to the aliased low resolution
input images to estimate �a. Let �0 be the standard
deviation of the filter response to an input block. Testing
with a large number of images, we found that �a can be
approximated to be a linear function of �0. Similar results
for nonaliased images were shown by Simoncelli [21] for

various band-pass filters at different scales. For blocks of
size 16� 16 pixels, the linear coefficient was in the range
½0:5; 0:7�. In the experiments, we set �a ¼ 0:7�0, which was
sufficient for our purpose.

5.2 Adaptive Data Selection

We use the scale estimate � from the previous section to
differentiate between blocks with a single motion and
blocks that may have multiple motions and occlusions. A
block in which the SSD error exceeds 3� is excluded from
the super-resolution calculation. In order to double the
resolution (both horizontally and vertically), three addi-
tional valid blocks are needed for each block in the current
frame. Depending on the timing of the occlusions, these
additional blocks could be found in previous frames only,
in successive frames only, both, or not at all. We therefore
search for valid blocks in both temporal directions and
select the blocks which are valid and closest in time to the
current frame.

In blocks containing a complex motion, it may happen
that less than four valid blocks are foundwithin the temporal
search window. In this case, although the super-resolution
image is under-constrained, iterated-back-projection pro-
duces reasonable results [4]. Fig. 7 shows an example from
an outdoor video sequence containing multiple moving
objects. On bottom is a visualization of the number of valid
blocks used for each block in this frame. Blocks where less
than four valid blocks were used are darkened.
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Fig. 7. Adaptation of the super-resolution algorithm to moving objects
and occlusions. The image on top shows one frame from a video
sequence of a dynamic scene. The image on bottom is a visualization of
the number of valid blocks, from four frames, used by the algorithm in
each block. We darkened blocks where the algorithm used less than
four valid blocks due to occlusions.



6 EXPERIMENTS

We tested resolution enhancement with our jitter camera
for both static and dynamic scenes. The input images
were obtained from the raw Bayer-pattern samples using
the demosaicing algorithm provided by the camera
manufacturer [17]. The images were then transformed to
the CIE-Lab color space and the super-resolution algo-
rithm [9] was applied to the L-channel only. The low
resolution (a,b)-chroma channels were linearly interpo-
lated and combined with the high resolution L-channel.

6.1 Resolution Tests

The resolution enhancement was evaluated quantitatively
using a standard Kodak test target. The input to the super-
resolution algorithm was four frames from a jitter-camera
video sequence. Fig. 8 shows angular, vertical, and hor-
izontal test patterns. The aliasing effects are clearly seen in
the input images, where the line separation is not clear even
at the lower resolution of 60 lines per inch. In the computed

super-resolution images, the spatial resolution is clearly
enhanced in all angles and it is possible to resolve separate
lines well above 100 lines per inch.

6.2 Color Test

The standard Kodak test target is black andwhite. In order to
check the color performance, we used a test target consisting
of a color image and lines of text of different font sizes. Fig. 9a
and 9b show one out of four different input images taken by
the jitter camera and a magnified part of the image.

The camera we used has a single detector with each pixel

in the detector measuring a single color channel, either red,

green, or blue. In order to obtain the complementary

channels in each pixel, an interpolation algorithm is used.

There is a wide literature on such interpolation algorithms,

typically referred to as ”demosaicing.” The interested reader

may refer to [15] to learn about different demosaicing

algorithms and about color artifacts in demosaiced images.

In our experiments, for the input images, we utilized the best
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Fig. 8. Resolution test using a standard Kodak test target. The left column shows angular, vertical, and horizontal resolution test targets that were
captured by the jitter camera (one of four input images). The right column shows the super-resolution results. Note the strong aliasing in the input
images and the clear separation between lines in the super-resolution result images.



color demosaicing algorithm the Dragonfly camera had to

offer (proprietary “rigorous” algorithm). We can see in Fig. 9

that the input image contains color artifact along edges.

Fig. 9c and 9d show the super-resolution result image and a

magnified part, respectively. The resolution is clearly

enhanced and it is now possible to read all the text lines

that were unreadable in the input images. Moreover, we can

see that the demosaicing artifacts have almost completely

disappeared, while the colors were preserved. This is due to

the fact that the super-resolution was applied only to the

intensity channel while the chromaticity channels were

smoothly interpolated.

6.3 Dynamic Video Tests

Several experiments were conducted to test the system’s

performance in the presence of moving objects and

occlusions. Fig. 10 shows magnified parts of a scene with

mostly static objects. These objects, such as the crossing

pedestrians sign in the first row and the no-parking sign in

the second row, were significantly enhanced, revealing new

details. Fig. 11 shows magnified parts of scenes with static

and dynamic objects. One can see that the adaptive super-

resolution algorithm has increased the resolution of

stationary objects while preserving or increasing the

resolution of moving objects.

7 CONCLUSIONS

Super-resolution algorithms can improve spatial resolution.

However, their performance depends on various factors in

the camera imaging process. We showed that motion blur

causes significant degradation of super-resolution results,

even when the motion blur function is known. The

proposed solution is the jitter camera, a video camera
capable of sampling the space-time volume without
introducing motion blur. Applying a super-resolution
algorithm to jitter camera video sequences significantly
enhances their resolution.

Image detectors are becoming smaller and lighter and
thus require very little force to jitter. With recent advances, it
may be possible to manufacture jitter cameras with the jitter
mechanism embedded inside the detector chip. Jittering can
then be added to regular video cameras as an option that
enables a significant increase of spatial resolution while
keeping other factors such as frame-rate unchanged.

Motion blur is only one factor in the imaging process. By
considering other factors, novel methods for sampling the
space-time volume can be developed, resulting in further
improvements in video resolution. In this paper, for
example, we limited the detector to a regular sampling
lattice and to regular temporal sampling. One interesting
direction can be the use of different lattices and different
temporal samplings. We therefore consider the jitter camera
to be a first step towards a family of novel camera designs
that better sample the space-time volume to improve not
only spatial resolution, but also temporal resolution and
spectral resolution.

APPENDIX A

THE INFLUENCE OF MOTION BLUR ON THE VOLUME

OF SOLUTIONS

The imaging process of the multiple input images is
modeled by a matrix A:

~yy ¼ A~xxþ~zz: ð3Þ
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Fig. 9. Resolution test of combined color and text image. (a) and (b) show one out of four different input images taken by the jitter camera together
with a magnified part of the image. Note that the last line of the text, which is only six pixels high, is completely unreadable; also, note the
demosaicing artifacts in both the text and the image. (c) and (d) show the super-resolution result and a magnified part of it. The resolution is clearly
enhanced and it is now possible to read all the text lines that were unreadable in the input images. Moreover, we can see that the demosaicing
artifacts have almost vanished while the colors were preserved.



~xx is a vectorization of the unknown discrete high resolution

image, ~yy is a vectorization of all the input images, and ~zz is

the uncertainty in measurements. A minimal number of

input images is assumed such that the dimensionality of~yy is

equal to the dimensionality of ~xx and matrix A is square.

The volume of solutions corresponding to a square

imaging matrix A is computed from the absolute value of its

determinant (see (2)):

volðAÞ ¼ 1

jAj

����
����:

In the following, we derive a simplified expression for

the determinant of the imaging matrix A and present the

volume of solutions as a function of the camera displace-

ments, motion blurs, optical transfer function, and the

integration function of the detector.

Let f be the n� n high resolution image (corresponding

to ~xx in (3)) and let fgjgm
2�1

j¼0 be the n
m � n

m input images

(corresponding to ~yy). The imaging process is defined in the

image domain by:

gj ¼ ðf � hjÞ #m þzj; ð4Þ

where � denotes convolution, hj encapsulates the sensor

displacement and motion blur of the jth image and the

optical blur and detector integration of the camera, zj
represents the quantization error, and #m denotes subsam-

pling by a factor of m. In the frequency domain, let

Zj;Gj;Hj; F denote the Fourier transforms of zj;gj;hj; f ,

respectively. The frequencies of the high resolution image

are folded as a result of the subsampling

Gjðu; vÞ¼Zjðu; vÞþ
X

�uu2U;�vv2V
Rect½�n

2;
n
2�ð�uu; �vvÞHjð�uu; �vvÞF ð�uu; �vvÞ; ð5Þ

where U¼fuþ kn
mg

1
k¼�1, V¼fvþ kn

mg
1
k¼�1, and Rect½�n

2;
n
2�ð�uu; �vvÞ

equals 1 when ½� n
2 � �uu; �vv < n

2� and 0 otherwise. This leads to

the following result:
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Fig. 10. Jitter camera super-resolution for scenes of mostly stationary objects. The left column shows the raw video input from the jitter camera and
the right column shows the super-resolution results. (a) and (b) show a static scene. Note the significant resolution enhancement of the pedestrian
on the sign and the fine texture of the tree branches. (c) and (d) show a scene with few moving objects. Note the enhancement of the text on the no-
parking sign and some enhancement of the walking person.



Proposition 1. Let A be the matrix of (3) corresponding to the

imaging process above (4) for m ¼ 2 (four input images).

Define ûu ¼ u� signðuÞ n2 , v̂v ¼ v� signðvÞ n2 , then the

determinant of A is given by: jAj ¼
Q

�n
4�u;v<n

4
j �AAu;vj, where:

�AAu;v¼

H0ðu; vÞ H0ðûu; vÞ H0ðu; v̂vÞ H0ðûu; v̂vÞ
H1ðu; vÞ H1ðûu; vÞ H1ðu; v̂vÞ H1ðûu; v̂vÞ
H2ðu; vÞ H2ðûu; vÞ H2ðu; v̂vÞ H2ðûu; v̂vÞ
H3ðu; vÞ H3ðûu; vÞ H3ðu; v̂vÞ H3ðûu; v̂vÞ

2
664

3
775:

Proof. Let �AA be a matrix describing the imaging process in

the frequency domain

G0ð�n
4;
n
4Þ

..

.

G3ðn4�1;n4�1Þ

2
4

3
5 ¼ �AA

F ð�n
2;
n
2Þ

..

.

F ðn2�1;n2�1Þ

2
4

3
5þ

Z0ð�n
4;
n
4Þ

..

.

Z3ðn4�1;n4�1Þ

2
4

3
5:

From (5), in the case of m ¼ 2, the frequencies
G0ðu; vÞ; . . . ; G3ðu; vÞ are given by linear combinations

of only four frequencies F ð�uu; �vvÞ, �uu 2 fu; ûug; �vv 2 fv; v̂vg up
to the uncertainty Z:

G0ðu;vÞ
G1ðu;vÞ
G2ðu;vÞ
G3ðu;vÞ

2
664

3
775¼

H0ðu;vÞ H0ðûu;vÞ H0ðu;v̂vÞ H0ðûu;v̂vÞ
H1ðu;vÞ H1ðûu;vÞ H1ðu;v̂vÞ H1ðûu;v̂vÞ
H2ðu;vÞ H2ðûu;vÞ H2ðu;v̂vÞ H2ðûu;v̂vÞ
H3ðu;vÞ H3ðûu;vÞ H3ðu;v̂vÞ H3ðûu;v̂vÞ

2
664

3
775

F ðu;vÞ
F ðûu;vÞ
F ðu;v̂vÞ
F ðûu;v̂vÞ

2
664

3
775þ

Z0ðu;vÞ
Z1ðu;vÞ
Z2ðu;vÞ
Z3ðu;vÞ

2
664

3
775:

Hence, the matrix �AA is block diagonal up to a
permutation, with blocks corresponding to �AAu;v,
� n

4 � u; v < n
4. It follows that j �AAj ¼

Q
u;v j �AAu;vj. Since the

Fourier transform preserves the determinant magnitude,

jAj ¼ j �AAj ¼
Q

u;v j �AAu;vj. tu
To analyze the influence of motion blur, we factor the

terms in j �AAu;vj:

Hjða; bÞ ¼ Oða; bÞCða; bÞMjða; bÞDjða; bÞ

with a 2 fu; ûug; b 2 fv; v̂vg. Oða; bÞ is the Fourier transform of

the optical transfer function, Cða; bÞ is the transform of the
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Fig. 11. Jitter camera super-resolution for scenes with dynamic and stationary objects. The left column shows the raw video input from the jitter

camera and the right column shows the super-resolution results. (a) and (b) show a scene with a large stationary object (boat) and a large moving

object (woman’s head). As expected, the resolution enhancement is better for the boat. (c) and (d) show a particularly dynamic scene with many

moving objects. Note the enhancement of the face of the walking women (center) and the kid on the scooter (left).



detector’s integration function, Mjða; bÞ is the transform of
the motion blur point spread function, and Djða; bÞ is the
transform of the sensor displacements �ðx� xj; y� yjÞ.

Let f~lljg3j¼0 be the vectors describing the motion blur path
so that, during integration, the projected image gj moves

at a constant velocity from �~llj
2 to

~llj
2 (measured in the high

resolution coordinate system). The transform of the motion
blur is given by:

Mjða; bÞ ¼ sincðm~ll
T

j ~wwÞ ¼
sinðm~ll

T

j ~wwÞ

�m~ll
T

j ~ww

with ~ww ¼ a; b½ �T .
Let fxj; yjg3j¼0 be the displacements of the input images

fgjg3j¼0, respectively, with x0 ¼ 0; y0 ¼ 0. The Fourier
Transform Djða; bÞ of the displacements �ðx� xj; y� yjÞ is
given by:

Djða; bÞ ¼ e�
2�iðaxjþbyjÞ

n ¼ e�
2�iðuxjþvyjÞ

n e�
2�iðða�uÞxjþðb�vÞyjÞ

n :

Djða; bÞ is expressed as a product of two terms. The first
term is common to all pairs ða; bÞ and, hence, can be
factored out of the determinant. Similarly, the terms
Oða; bÞ; Cða; bÞ are common to all images and can be
factored out of the determinant. It follows that:

j �AAuvj ¼ j �BBuvj
Y

0�j�3

e�
2�iðuxjþvyjÞ

n

Y
a2fu;ûugb2fv;v̂vg

Oða; bÞCða; bÞ; ð6Þ

where

�BBuv ¼
M0ðu;vÞ M0ðûu;vÞ M0ðu;v̂vÞ M0ðûu;v̂vÞ

M1ðu;vÞ M1ðûu;vÞe�i�sðuÞx1 M1ðu;v̂vÞe�i�sðvÞy1 M1ðûu;v̂vÞe�i� sðuÞx1þsðvÞy1ð Þ

M2ðu;vÞ M2ðûu;vÞe�i�sðuÞx2 M2ðu;v̂vÞe�i�sðvÞy2 M2ðûu;v̂vÞe�i� sðuÞx2þsðvÞy2ð Þ

M3ðu;vÞ M3ðûu;vÞe�i�sðuÞx3 M3ðu;v̂vÞe�i�sðvÞy3 M3ðûu;v̂vÞe�i� sðuÞx3þsðvÞy3ð Þ

2
6664

3
7775;ð7Þ

and sðuÞ is an abbreviation for the sign function sðuÞ ¼
signðuÞ.

The influence of motion blur on the volume of solutions is
therefore expressed in the matrices �BBuv. Since the volume of
solutions volðAÞ ¼

�� 1
jAj
�� depends on the image size, we define

sðAÞ ¼
����
�Y

u;v

j �BBuvj
�� 1

n2
����; ð8Þ

so that, according to Proposition 1 and (6),

volðAÞ ¼
���� Y
�n

4�u;v<n
4

j �AAu;vj
����
�1

/
����
�Y

u;v

j �BBuvj
��1���� ¼ sðAÞn

2

: ð9Þ

To conclude, sðAÞ is a relative measure for the volume of
solutions that is independent of the optical blur and
detector’s integration function and is normalized to account
for the image size. The generalization of the above results for
an arbitrary integer magnification factor m is straightfor-
ward and is omitted in order to simplify notations.

The lower bound for sðAÞ was derived using the
following inequality for a k� k matrix P [14]:

jP j �
�
kPk2F
k

�k
2

; ð10Þ

with k � kF as the Frobenius norm. In order to bound sðAÞ,
we define a block-diagonal matrix �BB of size n2 � n2 with
�BBðmu�mþj;mv�mþkÞ¼ �BBuvðj; kÞ. Using (10) on (8):

sðAÞ ¼ j �BBj�
1
n2

��� ��� � k �BBk2F
n2

 !� 1
2

: ð11Þ

The matrix �BB has m2n2 nonzero values, each of the form

eixsincðm~ssTj ~wwkÞ for somex. TheFrobeniusnormof �BB is, hence,

k �BBk2F ¼
Xm2�1

j¼0

X
~ww2C�C

sinc2ðm~ssTj ~wwÞ; ð12Þ

with C ¼ f� 1
2 þ k

ng
n�1
k¼0 . As n goes to infinity, the sums are

replaced by integrals:

lim
n!1

1

n2
j �BBk2F ¼

Xm2�1

j¼0

Z
~ww2 � 1

2;
1
2½ �� � 1

2;
1
2½ �
sinc2ðm~ssTj ~wwÞ: ð13Þ

The integrals were solved using a symbolic math soft-
ware. For a given line magnitude k~ssjk, the maximal values of
the integrals are obtained when~ssj is oriented by 45 degrees.
The lower bound, appearing in Fig. 2, is therefore the value

of (11) using (13) for a 45 degrees oriented blur~ss ¼
ffiffi
2

p

2 ;
ffiffi
2

p

2

h iT
and for a magnification factor m ¼ 2:

sðAÞ � 4

Z
~ww2 �1

2;
1
2½ �� �1

2;
1
2½ �
sinc2ðm~ssTj ~wwÞ

 !�1
2

:

APPENDIX B

OPTIMAL SPATIAL DISPLACEMENTS

We show that, when there is no motion blur (or the
motion blur is common to all images), the four grid
displacements f 0; 0ð Þ 1; 0ð Þ 0; 1ð Þ 1; 1ð Þg (in the high resolu-
tion coordinate system) are optimal for super-resolution in
terms of the volume of solutions. A similar result was
shown in [10] measuring the super-resolution quality
using perturbation theory.

Proposition 2. Consider the imaging process as defined in (4).

Assume the filters fhkg3k¼0 have the same spatial blur, yet

different displacements fxk; ykg3k¼0, i.e., hk ¼ h � �ðx� xk;

y� ykÞ for some filter h. Then, volðAÞ in (2) is minimal for

displacements f 0; 0ð Þ 1; 0ð Þ 0; 1ð Þ 1; 1ð Þg in the coordinate

system of the high resolution image.

Proof. Let H be the Fourier transform of h. From
Proposition 1 and (6) and (7), it is sufficient to prove

the maximality of j �BBu;vj for all frequencies ðu; vÞ. In this
case, since the images share the same spatial blur, the
motion blur can be folded into H and (7) simplifies to:

�BBu;v ¼

1 1 1 1
1 e�i�sðuÞx1 e�i�sðvÞy1 e�i� sðuÞx1þsðvÞy1ð Þ

1 e�i�sðuÞx2 e�i�sðvÞy2 e�i� sðuÞx2þsðvÞy2ð Þ

1 e�i�sðuÞx3 e�i�sðvÞy3 e�i� sðuÞx3þsðvÞy3ð Þ

2
664

3
775:

The rows of �BBu;v have the same norm for all assign-
ments of fðxk; ykÞg. Hence, the determinant is maximized
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when the rows are orthogonal. The rows are orthogonal
if and only if

8k; l;ð1þ e�isðuÞðxl�xkÞ þ e�isðvÞðyl�ykÞ

þ e�isðuÞðxl�xkÞe�isðvÞðyl�ykÞÞ ¼ 0

) 8k; l; ð1þ e�isðuÞðxl�xkÞÞð1þ e�isðvÞðyl�ykÞÞ ¼ 0;

which is satisfied when, for every k; l, either jxl � xkj ¼ 1

or jyl � ykj ¼ 1. This condition is satisfied by the above

displacements f 0; 0ð Þ 1; 0ð Þ 0; 1ð Þ 1; 1ð Þg. tu
Note that there are other displacements that maximize

jAj, for example, 0; 0ð Þ 1; 0ð Þ x; 1ð Þ xþ 1; 1ð Þ for any x 2 R.
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