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Abstract

Video cameras must produce images at a reasonable frame-rate
and with a reasonable depth of field. These requirements im-
pose fundamental physical limits on the spatial resolution of
the image detector. As a result, current cameras produce videos
with a very low resolution. The resolution of videos can be
computationally enhanced by moving the camera and applying
super-resolution reconstruction algorithms. However, a moving
camera introduces motion blur, which limits super-resolution
quality. We analyze this effect and derive a theoretical result
showing that motion blur has a substantial degrading effect on
the performance of super resolution. The conclusion is, that in
order to achieve the highest resolution, motion blur should be
avoided.

Motion blur can be minimized by sampling the space-time vol-
ume of the video in a specific manner. We have developed a
novel camera, called the ”jitter camera,” that achieves this sam-
pling. By applying an adaptive super-resolution algorithm to
the video produced by the jitter camera, we show that resolu-
tion can be notably enhanced for stationary or slowly moving
objects, while it is improved slightly or left unchanged for ob-
jects with fast and complex motions. The end result is a video
that has a significantly higher resolution than the captured one.

1. Why is High-Resolution Video Hard?
Improving the spatial resolution of a video camera is different
from doing so with a still camera. Merely increasing the number
of pixels of the detector reduces the amount of light received by
each pixel, and hence increases the noise. With still images, this
can be overcome by prolonging the exposure time. In the case
of video, however, the exposure time is limited by the desired
frame-rate. The amount of light incident on the detector can also
be increased by widening the aperture, but with a significant re-
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Figure 1: Conventional video cameras sample the continuous
space-time volume at regular time intervals and fixed spatial grid
locations as shown in (a). The space-time volume can be sampled
differently, for example, by varying the location of the sampling
grid as shown in (b) to increase the resolution of the video. A mov-
ing video only approximates (b) due to motion blur.

duction of the depth of field. The spatial resolution of a video
detector is therefore limited by the noise level of the detector,
the frame-rate (temporal resolution) and the required depth of
field1. Our purpose is to make a judicious use of a given detec-
tor, that will allow a substantial increase of the video resolution
by a resolution-enhancement algorithm.

Figure 1 shows a continuous space-time video volume. A slice
of this volume at a given time instance corresponds to the im-
age appearing on the image plane of the camera at this time.
This volume is sampled both spatially and temporally, where
each pixel integrates light over time and space. Conventional
video cameras sample the volume in a simple way, as shown in
Figure 1(a), with a regular 2D grid of pixels integrating over
regular temporal intervals and at fixed spatial locations. An al-
ternative sampling of the space-time volume is shown in Fig-
ure 1(b). The 2D grid of pixels integrates over the same tem-
poral intervals, but at different spatial locations. Given a 2D
image detector, how should we sample the space-time volume
to obtain the highest spatial resolution2?

1The optical transfer function of the lens also imposes a limit on resolution.
In this paper we ignore this limit as it is several orders of magnitudes above the
current resolution of video.

2Increasing the temporal resolution [18] is not addressed in this paper.
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There is a large body of work on resolution enhancement by
varying spatial sampling, commonly known as super-resolution
reconstruction [5, 6, 8, 10, 14, 17]. Super-resolution algorithms
typically assume that a set of displaced images are given as in-
put. With a video camera, this can be achieved by moving the
camera while capturing the video. However, the camera’s mo-
tion introduces motion blur. This is a key point in this paper: in
order to use super-resolution with a conventional video camera,
the camera must move, but when the camera moves, it intro-
duces motion blur which reduces resolution.

It is well known that an accurate estimation of the motion blur
parameters is non-trivial, and requires strong assumptions about
the camera motion during integration [2, 14, 15, 19]. In this pa-
per, we show that even when an accurate estimate of the mo-
tion blur parameters is available, motion blur has a significant
influence on the super-resolution result. We derive a theoret-
ical lower bound, indicating that the expected performance of
any super-resolution reconstruction algorithm deteriorates as a
function of the motion blur magnitude. The conclusion is that,
in order to achieve the highest resolution, motion blur should be
avoided.

To achieve this, we propose the “jitter camera,” a novel
video camera that samples the space-time volume at different
locations without introducing motion blur. This is done by
instantaneously shifting the detector (e.g. CCD) between
temporal integration periods, rather than continuously mov-
ing the entire video camera during the integration periods.
We have built a jitter camera, and developed an adaptive
super-resolution algorithm to handle complex scenes con-
taining multiple moving objects. By applying the algorithm
to the video produced by the jitter camera, we show that
resolution can be enhanced significantly for stationary or
slowly moving objects, while it is improved slightly or left
unchanged for objects with fast and complex motions. The end
result is a video that has higher resolution than the captured one.

2. How Bad is Motion Blur for Super-resolution?
The influence of motion blur on super resolution is well un-
derstood when all input images undergo the same motion blur
[1, 11]. It becomes more complex when the input images un-
dergo different motion blurs, and details that appear blurred in
one image, appear sharp in another image. We address the in-
fluence of motion blur for any combination of blur orientations.

Super-resolution algorithms estimate the high resolution im-
age by modeling and inverting the imaging process. Analyz-
ing the influence of motion blur requires a definition for super-
resolution “hardness” or the “invertibility” of the imaging pro-
cess. We use a linear model for the imaging process [1,8,10,14],
where the intensity of a pixel in the input image is presented as
a linear combination of the intensities in the unknown high res-
olution image:

�y = A�x + �z, (1)
where �x is a vectorization of the unknown discrete high resolu-
tion image, �y is a vectorization of all the input images, and the

imaging matrix A encapsulates the camera displacements, blur
and decimation [8]. The random variable �z represents the un-
certainty in the measurements due to noise, quantization error
and model inaccuracies.

Baker and Kanade [1] addressed the invertibility of the imaging
process in a noise-free scenario, where �z represents the quan-
tization error. In this case, each quantized input pixel defines
two inequality constraints on the super-resolution solution. The
combination of constraints forms a volume of solutions that sat-
isfy all quantization constraints. Baker and Kanade suggest to
use the volume of solutions as a measure of uncertainty in the su-
per resolution solution. Their paper shows the benefits in mea-
suring the volume of solutions over the standard matrix condi-
tioning analysis.

We measure the influence of motion blur by the volume of solu-
tions. To keep the analysis simple, the following assumptions
are made. First, the optical blur and motion blur are shift-
invariant. Second, the input images are related geometrically
by a 2D translation. Third, the number of input pixels equals
the number of output pixels. Under the last assumption, the di-
mensionality n2 of �x equals the dimensionality of �y. Since the
uncertainty due to quantization is an n2-dimensional unit cube,
the volume of solutions for a given imaging matrix A is com-
puted from the absolute value of its determinant

vol(A) =
∣
∣
∣
∣

1
|A|

∣
∣
∣
∣
. (2)

In [3], we derive a simplified expression for vol(A) as a func-
tion of the imaging parameters. We define a function s(A) that
encapsulates the influence of motion blur on the volume of so-
lutions. This function depends only on the motion blur and the
camera displacements, and satisfies:

vol(A) ∝ s(A)n2

s(A) is therefore a relative measure for the volume of solutions
that is independent of the optical blur and detector’s integration
function, and is normalized to account for the image size n2. A
detailed expression for s(A) appears in [3].

We used s(A) to perform a quantitative analysis of the effect
of motion blur on the volume of solutions, as shown in fig-
ure 2. The value of s(A) was computed for 4 input images
undergoing motion blurs caused by constant-velocity motions.
Different input images may have different motion blur orien-
tations. Specifically, let �lj be a vector describing the motion
blur trajectory for the j-th input image: During integration, the

projected image moves at a constant velocity from −�lj
2 to

�lj
2 .

Each graph in figure 2 shows the value of s(A) as a function of
the length of the four motion blur trajectories {‖�lj‖}3

j=0. The
different graphs correspond to different configurations of blur
orientations in four input images. The camera displacements
were taken to be the optimal ones [3], corresponding to the high
resolution grid.
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Figure 2: We measure the super-resolution “hardness” by the vol-
ume of plausible high-resolution solutions [1]. The volume of so-
lutions is proportional to s(A)n2

where n2 is the high resolution
image size. The graphs show the value of s(A) as a function of
the length of the motion-blur trajectories {‖lj‖}3

j=0. We show a
large number of graphs computed for different configurations of
blur orientations. The thick graph (blue line) is the lower bound
of s(A), for any combination of motion blur orientations. In all
shown configurations, the motion blur has a significant influence
on s(A) and hence on the volume of solutions. The increase in the
volume of solutions can explain the increase in reconstruction er-
ror in super-resolution shown in Figure 3.

It can be seen that in all selected motion blur configurations
s(A) ∝ vol(A)

1
n2 increases as a function of the length of the

motion blur trajectories {‖�lj‖}. The thick blue line is the lower
bound of s(A), whose derivation can be found in [3]. This
bound holds for any configuration of blur orientations.

The findings above confirm that, at least for our assumptions,
any motion blur is bad for super-resolution and the larger the
motion blur, the larger the volume of solutions.

Figure 3(a) shows super-resolution results of simulated inputs
with and without motion blur. Motion blur as small as 3.5 pixels
degrades the super-resolution result, such that some of the let-
ters are unreadable. Figure 3(b) presents the RMS error in the
reconstructed super-resolution image as a function of the extent
of the known motion blur. It can be seen that the RMS error in-
creases as a function of the motion blur magnitude. This effect
is consistent with the theoretical observations made above.

3. Jitter Video: Sampling without Motion Blur
Our analysis showed that sampling with minimal motion blur
is important for super-resolution. Little can be done to prevent
motion blur when the camera is moving3 or when objects in
the scene are moving. Therefore, our main goal is to sample at
different spatial locations while avoiding motion blur in static

3Small camera shakes can be eliminated by optical lens stabilization sys-
tems, which stabilize the image before it is integrated.

Ground truth image

Super-resolution output with no motion blur

Super-resolution output with 3.5 pixels motion blur
(a)
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Figure 3: The effect of motion blur on super-resolution with a
known simulated motion blur. (a) The top image is the original
ground-truth image. The middle image is the super-resolution re-
sult for 4 simulated input images with no motion blur. This image
is almost identical to the ground truth image. The bottom image is
a super-resolution result for 4 simulated input images with motion
blur of 3.5 pixels. Two images with horizontal blur and two with
vertical blur were used. The algorithm used the known simulated
motion blur kernels and the known displacements. The degrada-
tion in the super-resolution result due to motion blur is clearly vis-
ible. (b) The graph shows the grey level RMS error in the super-
resolution image as a function of motion blur trajectory length.
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Figure 4: A jitter video camera shifts the sampling grid accu-
rately and instantaneously. This can be achieved using micro-
actuators, which are both fast and accurate. The actuator can shift
the detector as shown in (a), or it can be used to operate a simple
optical device, such as the tilted glass plate shown in (b), in order
to optically move the image with respect to the static detector.

regions of the image.

The key to avoiding motion blur is synchronous and instanta-
neous shifts of the sampling grid between temporal integration
periods, rather than a continuous motion during the integration
periods. In [3] we show that the volume of solutions can be
minimized by properly selecting the grid displacements. For
example, in the case of four input images, one set of optimal
displacements is achieved by shifting the sampling grid by half
a pixel horizontally and vertically. Implementing these abrupt
shifts by moving a standard video camera with a variable mag-
nification factor is non-trivial4. Hence we propose to implement
the shifts of the sampling grid inside the camera.

Figure 4 shows two possible ways to shift the sampling grid in-
stantaneously. Figure 4(a) shows a purely mechanical design,
where the detector (e.g. CCD) is shifted by actuators to change
the sampling grid location. If the actuators are fast and are acti-
vated synchronously with the reading cycle of the detector, then
the acquired image will have no motion blur due to the shift of
the detector. Figure 4(b) shows a mechanical-optical design. A
flat thin glass plate is used to shift the image over the detector.
An angular change of a 1mm thick plate by one degree shifts
the image by 5.8µm, which is of the order of a pixel size. Since
the displacement is very small relative to the focal length, the
change of the optical path length results with negligible effect
on the focus (the point spread area is much smaller than the area
of a pixel). The mechanical-optical design shown Figure 4(b)
has been used for high-resolution still-imaging, for example by
Pixera [7], where video related issues such as motion blur and
dynamic scenes do not arise.

An important point to consider in the design of a jitter camera
is the quality of the camera lens. With standard video cameras,
the lens-detector pair is matched to reduce spatial aliasing in
the detector. For a given detector, the matching lens attenuates

4A small uniform image displacement can be approximated by rotating the
camera about the X, Y axes. However, the rotation extent depends on the exact
magnification factor of the camera, which is hard to obtain. In addition, due to
camera’s mass, abrupt shifting of the camera is challenging.

the spatial frequencies higher than the Nyquist frequency of the
detector. For a jitter camera, higher frequencies are useful since
they are exploited in the extraction of the high resolution video.
Hence, the selected lens should match a detector with a higher
(the desired) spatial resolution.

4. The Jitter Camera Prototype
To test our approach, we have built the jitter camera proto-
type shown in Figure 5. This camera was built using a stan-
dard 16mm television lens, a Point-Grey [16] Dragon-Fly board
camera, and two Physik Instrumente [9] micro-actuators. The
micro-actuators and the board camera were controlled and syn-
chronized by a Physik Instrumente Mercury stand-alone con-
trollers (not shown).

The jitter camera is connected to a computer using a stan-
dard firewire interface, and therefore it appears to be a regular
firewire camera.

We used in our prototype two DC-motor actuators, which en-
able a frame-rate of approximately 8 frames per second. Newly
developed piezoelectric based actuators can offer much higher
speed than DC-motor based actuators. Such actuators are al-
ready used for camera shake compensation by Minolta [13],
however they are less convenient for prototyping at this point
in time.

The camera operates as follows:

1. At power up the actuators are moved to a fixed home-
position.

2. For each sampling position in [(0,0),(0,0.5),(0.5,0.5),
(0.5,0] pixels do

• Move the actuators to the next sampling position.
• Bring the actuators to a full stop.
• Send a trigger signal to the camera to initiate frame

integration and wait during integration duration.
• When the frame is ready, the camera sends it to the

computer over the Firewire interface.
3. End loop

4. Repeat process from step (2).

To evaluate the accuracy of the jitter mechanism we captured a
sequence of images with the jitter camera, computed the motion
between frames to a sub-pixel accuracy [4] and compared the
computed motion to the expected value. The results are shown
in Figure 6. The green circles show the expected displacements,
and the red diamonds show the actual displacements over multi-
ple cycles. We can see that the accuracy of the jitter mechanism
was better than 0.1 pixel. We can also see that while some error
is accumulated along the path, the camera accurately returns to
its zero position, thus preventing drift.

The resolution of the computed high-resolution video was
1280×960, which has four times the number of pixels compared
to the resolution of the input video, which was 640 × 480. This
enhancement upgrades an NTSC grade camera to an HTDV
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Figure 5: The jitter camera prototype shown with its cover open.
The mechanical micro-actuators are used for shifting the board
camera. The two actuators and the board camera are synchronized
such that the camera is motionless during integration time.

grade camera while maintaining the depth of field and the
frame-rate of the original camera.

With the recent advances in micro-electric mechanical systems
(MEMS), it will hopefully be possible to embed the jitter mech-
anism within the detector chip, thus creating a jitter-detector.

5. Adaptive Super-resolution for Dynamic Scenes
Given a video sequence captured by a jitter camera, we would
like to compute a high resolution video using super-resolution.
We have chosen iterated-back-projection [10] as the super-
resolution algorithm. Iterated-back-projection was shown in [5]
to produce high quality results and is simple to implement for
videos containing complex scenes. The main challenge in our
implementation is handling multiple motions and occlusions.
Failing to cope with these problems results in strong artifacts
that render the output useless.

To address these problems, we compute the image motion in
small blocks, and detect blocks suspected of having multiple
motions. The adaptive super-resolution algorithm maximizes
the use of the available data for each block.

5.1 Motion Estimation in the Presence of Aliasing

The estimation of image motion should be robust to outliers,
which are mainly caused by occlusions and multiple motions
within a block. To address this problem, we use the Tukey M-
estimator error function [12]. The Tukey M-estimator depends
on a scale parameter σ, the standard deviation of the gray-scale
differences of correctly-aligned image regions (inlier regions).

Due to the under-sampling of the image, gray-scale image dif-
ferences in the inlier regions are dominated by aliasing, and are
especially significant near sharp image edges. Hence we ap-
proximate the standard deviation of the gray-scale differences

0.0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

X

Y

Expected Position.

Displacement in Pixels.

Actual Position.

Figure 6: Accuracy of the jitter mechanism. The detector moves
one step at a time along the path shown by the blue arrows. The
green circles show the expected position of exactly half a pixel dis-
placement and the red diamonds show the actual position over
multiple cycles. We can see that the accuracy was less than tenth
of a pixel. We can also see that he jitter mechanism returns very
accurately to its zero position, hence prevents excessive error accu-
mulation over multiple cycles. .

σ in each block from the standard deviation of the aliasing σa

in the block, as σ =
√

2σa. This approximation neglects the
influence of noise, and makes the simplifying assumption that
the aliasing effects in two aligned blocks are statistically uncor-
related. In the following we describe the approximation for the
standard deviation of the aliasing in each block σa, using results
on the statistics of natural images.

Let f be a high resolution image, blurred and decimated to ob-
tain a low resolution image g:

g = (f ∗ h) ↓
where ∗ denotes convolution and ↓ denotes subsampling. Let s
be a perfect rect low pass filter. The aliasing in g is given by:

(f ∗ h − f ∗ s ∗ h) ↓= f ∗ h ∗ (δ − s) ↓
The band-pass filter h ∗ (δ − s) can hence be used to simulate
aliasing. For the motion estimation, we need to estimate σa, the
standard deviation of the response of this filter to blocks of the
unknown high resolution image. We use the response of this
filter to the aliased low resolution input images to estimate σa.
Let σ0 be the standard deviation of the filter response to an input
block. Testing with a large number of images, we found that σa

can be approximated to be a linear function of σ0. Similar re-
sults for non-aliased images were shown by Simoncelli [20] for
various band-pass filters at different scales. For blocks of size
16 × 16 pixels the linear coefficient was in the range [0.5, 0.7].
In the experiments, we set σa = 0.7σ0 which was sufficient for
our purpose.

5.2 Adaptive Data Selection

We use the scale estimate σ from the previous section to dif-
ferentiate between blocks with a single motion and blocks that
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Input video frame

Blocks usage map
Figure 7: Adaptation of the super-resolution algorithm to moving
objects and occlusions. The image on top shows one frame from
a video sequence of a dynamic scene. The image on bottom is a
visualization of the number of valid blocks, from four frames, used
by the algorithm in each block. We darkened blocks where the
algorithm used less than four valid blocks due to occlusions.

may have multiple motions and occlusions. A block in which
the SSD error exceeds 3σ is excluded from the super-resolution
calculation. In order to double the resolution (both horizon-
tally and vertically) three additional valid blocks are needed for
each block in the current frame. Depending on the timing of
the occlusions, these additional blocks could be found in previ-
ous frames only, in successive frames only, both, or not at all.
We therefore search for valid blocks in both temporal directions
and select the blocks which are valid and closest in time to the
current frame.

In blocks containing a complex motion, it may happen that less
than four valid blocks are found within the temporal search win-
dow. In this case, although the super-resolution image is under-
constrained, iterated-back-projection produces reasonable re-
sults [5]. Figure 7 shows an example from an outdoor video
sequence containing multiple moving objects. On bottom is a
visualization of the number of valid blocks used for each block
in this frame. Blocks where less than four valid blocks were
used are darkened.

6. Experiments
We tested resolution enhancement with our jitter camera for
both static and dynamic scenes. The input images were obtained

Raw video from jitter camera Super-resolution output

Figure 8: Resolution test using a standard Kodak test tar-
get. The left column shows angular, vertical and horizon-
tal resolution test targets that were captured by the jitter
camera (one of four input images). The right column shows
the super-resolution results. Note the strong aliasing in the
input images and the clear separation between lines in the
super-resolution result images.

from the raw Bayer-pattern samples using the proprietary de-
mosaicing algorithm provided by the camera manufacturer [16].
The images were then transformed to the CIE-Lab color space,
and the super resolution algorithm [10] was applied to the L-
channel only. The low resolution (a,b)-chroma channels were
linearly interpolated and combined with the high resolution L-
channel.

6.1 Resolution Tests
The resolution enhancement was evaluated quantitatively using
a standard Kodak test target. The input to the super-resolution
algorithm was four frames from a jitter-camera video sequence.
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Figure 8 shows angular, vertical and horizontal test patterns. the
aliasing effects are clearly seen in the input images, where the
line separation is not clear even at the lower resolution of 60
lines per inch. In the computed super-resolution images the spa-
tial resolution is clearly enhanced in all angles and it is possible
to resolve separate lines well above 100 lines per inch.

6.2 Dynamic Video Tests

Several experiments were conducted to test the system’s perfor-
mance in the presence of moving objects and occlusions

Figure 9 shows magnified parts of an outdoor and an indoor se-
quences. Static objects, such as the crossing pedestrians sign
in the first row, and the boat in the third row are significantly
enhanced, revealing new details. The second row shows a par-
ticulary dynamic scene with many moving objects. One can see
that the adaptive super-resolution algorithm has increased the
resolution of stationary objects while preserving or increasing
the resolution of moving objects.

7. Conclusions and Future Work
Super-resolution algorithms can improve spatial resolution.
However, their performance depends on various factors in the
camera imaging process. We showed that motion blur causes
significant degradation of super-resolution results, even when
the motion blur function is known. The proposed solution
is the jitter camera, a video camera capable of sampling the
space-time volume without introducing motion blur. Applying
a super-resolution algorithm to jitter camera video sequences
significantly enhances their resolution.

As image detectors are becoming smaller and lighter and thus
require very little force to jitter and with recent advances it may
be possible to manufacture jitter cameras with the jitter mech-
anism embedded inside the detector chip. Jittering can then be
added to regular video cameras as an option that enables a sig-
nificant increase of spatial resolution while keeping other fac-
tors such as frame-rate unchanged.

Motion blur is only one factor in the imaging process. By con-
sidering other factors, novel methods for sampling the space-
time volume can be developed, resulting in further improve-
ments in video resolution. In this paper, for example, we limited
the detector to a regular sampling lattice and to regular tempo-
ral sampling. One interesting direction can be the use of dif-
ferent lattices and different temporal samplings. We therefore
consider the jitter camera to be a first step towards a family of
novel camera designs that better sample the space-time volume
to improve not only spatial resolution, but also temporal resolu-
tion and spectral resolution.
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Raw video from jitter camera Super-resolution output

Figure 9: Jitter camera super-resolution for scenes with dynamic and stationary objects. The left column shows the raw video input from
the jitter camera and the right column shows the super-resolution results. The first row shows a part of a scene with mostly stationary
objects. Note the significant resolution enhancement of the pedestrians on the sign, and the fine texture of the tree branches. The second
row shows a particulary dynamic scene with many moving objects. Note the enhancement of the face of the walking women (center) and
the kid on the scooter (left). The third row shows a scene with a large stationary object (boat) and a large moving object (woman’s head).
As expected, the resolution enhancement is better for the boat.
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