
Design and Evaluation of Feature Detectors

Simon Baker

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

Columbia University

1998

c©1998

Simon Baker

All Rights Reserved

Design and Evaluation of Feature Detectors

Simon Baker

Abstract

Many applications in both image processing and computational vision rely

upon the robust detection of parametric image features and the accurate estimation

of their parameters. In this thesis, I address three fundamental questions related

to the design and evaluation of parametric feature detectors.

Most feature detectors have been designed to detect a single type of feature,

more often than not, the step edge. A large number of other features are also

of interest. Since the task of designing a feature detector is very time consuming,

repeating the design effort for each feature is wasteful. To address this deficiency, in

the first part of this thesis I develop an algorithm that takes as input a description

of a parametric feature and automatically constructs a detector for it.

The development of many feature detectors begins with an ideal model of the

feature. Since image data are noisy, feature detectors must actually detect features

that are almost, but not quite, ideal. Many existing feature detectors can therefore

be regarded as being defined by two components: (1) an ideal feature model, and

(2) a function that measures how far the image data may deviate from ideal and

still be regarded as the feature. For many detectors, little consideration has been

given to the selection of the second of these two components. In the second part of

this thesis, I present a method of selecting the deviation function to maximize the

performance of the general purpose feature detector described in the first part.

Essentially only two methods have actually been used to evaluate feature de-

tectors empirically. The first consists of applying the detectors to a small number

of real images and getting a human to evaluate the outputs. The second method

involves generating a large number of synthetic images and then computing per-

formance metrics from the outputs using knowledge of the way that the synthetic

images were generated. Both of these approaches have their flaws. The first method

is subjective. The second method does not use real images. In the third and final

part of this thesis, I propose a class of evaluation techniques that use a large number

of real images, and yet provide non-subjective performance metrics.

Contents

List of Figures vi

List of Tables viii

Acknowledgments ix

Chapter 1 Introduction 1

Chapter 2 Related Work 5

2.1 Model Matching Feature Detectors 5

2.1.1 Model Matching Step Edge Detectors 6

2.1.2 Other Model Matching Detectors 8

2.1.3 Selection of the Matching Function 8

2.1.4 Dimension Reduction . 10

2.2 Differential Invariant Feature Detectors 10

2.2.1 Surface Fitting Differential Invariant Detectors 11

2.2.2 Filtering Differential Invariant Detectors 12

2.2.3 Differential Invariant Corner Detectors 14

2.3 Optimal Filtering Feature Detectors 15

i

2.3.1 Canny’s Optimality Criteria 16

2.3.2 Deriving the Optimal Filter 18

2.3.3 Other Optimality Criteria 18

2.4 Statistical Feature Detectors . 19

2.5 Evaluation of Feature Detectors . 20

2.5.1 Performance Measures . 20

2.5.2 Evaluation Techniques . 21

2.6 Miscellaneous Issues . 23

2.6.1 Unifying Frameworks . 23

2.6.2 Sensor Modeling and Sub-Pixel Localization 24

2.6.3 Efficient Filtering . 25

2.6.4 Scale and Information Content 26

Chapter 3 Parametric Feature Detection 29

3.1 Introduction . 29

3.2 Parametric Feature Representation 34

3.2.1 Parametric Scene Features 34

3.2.2 Modeling Image Formation and Sensing 35

3.2.3 Parametric Feature Manifolds 37

3.2.4 Parameter Reduction by Normalization 37

3.2.5 Recovering the Normalized Parameters 38

3.2.6 Dimension Reduction . 41

3.2.7 Computation of the Feature Manifolds 42

3.3 Example Features . 42

3.3.1 The Step Edge . 43

ii

3.3.2 The Roof Edge . 47

3.3.3 The Symmetric Line . 49

3.3.4 The Corner . 51

3.3.5 The Circular Disc . 53

3.4 Feature Detection and Parameter Estimation 54

3.4.1 Sampling the Parametric Manifold 54

3.4.2 Search for the Closest Sample Point 57

3.4.3 Further Efficiency Improvements 58

Chapter 4 Experimental Evaluation 60

4.1 Statistical Tests . 60

4.1.1 Feature Detection Robustness 61

4.1.2 Parameter Estimation Accuracy 65

4.2 Subjective Human Comparison . 71

4.2.1 Application to Synthetic Images 72

4.2.2 Application to Scanned Images 73

4.2.3 Application to INRIA Images 77

Chapter 5 Optimal Weighting Functions for Feature Detection 82

5.1 Introduction . 82

5.2 Feature Detection using Weighted L2 Norms 84

5.2.1 Weighted L2 Norms . 85

5.2.2 Parameter Normalization . 87

5.2.3 Dimension Reduction . 88

5.3 Optimality Criteria . 89

iii

5.3.1 Feature Detection Robustness 91

5.3.2 Parameter Estimation Accuracy 93

5.3.3 Combinations of Optimality Criteria 94

5.4 Optimization of the Optimality Criteria 94

5.4.1 Analysis for Linear Manifolds 95

5.4.2 Numerical Optimization . 96

5.4.3 Numerical Results . 98

5.5 Discussion . 102

5.5.1 Other Classes of Matching Functions 103

5.5.2 Relationship with Canny . 105

Chapter 6 Global Measures of Coherence for Detector Evaluation 107

6.1 Introduction . 107

6.2 Global Measures of Coherence . 111

6.2.1 All Edges are Colinear 1: Known θi 113

6.2.2 All Edges are Colinear 2: Unknown θi 115

6.2.3 All Edges Intersect at a Single Point 116

6.2.4 All Edges are Parallel . 117

6.2.5 All Edges Lie on an Ellipse: Unknown θi 119

6.2.6 All Edges Lie on an Ellipse: Known θi 121

6.3 Computing the Global Measures . 121

6.3.1 Correcting for Radial Distortion 122

6.3.2 Efficient Computation using Monte Carlo 123

6.3.3 Dealing with Detector Thresholds 123

6.3.4 Capturing a Large Number of Images 125

iv

6.3.5 Averaging over a Large Number of Images 125

6.4 Experimental Results . 126

6.4.1 GMC 1: All Edges Are Colinear 129

6.4.2 GMC 2: All Edges Intersect at a Single Point 132

6.4.3 GMC 3: All Edges Are Parallel in the Scene 134

6.4.4 GMC 4: All Edges Lie on an Ellipse 135

6.5 Varying Camera Parameters . 138

6.5.1 Varying the Focus Setting 139

6.5.2 Varying the Aperture Setting 140

6.6 Discussion . 143

Chapter 7 Conclusion 146

7.1 Summary of Contributions . 146

7.2 Discussion . 148

7.3 Future Work . 150

7.3.1 Multi-Feature Aggregation 150

7.3.2 Investigation into the Physical Causes of Edges 151

v

List of Figures

3.1 The Step Edge . 45

3.2 The Roof Edge . 48

3.3 The Symmetric Line . 50

3.4 The Corner . 52

3.5 The Circular Disc . 55

4.1 Feature Detection Robustness of Three Step Edge Detectors 63

4.2 Feature Detection Robustness of the Five Example Features. 65

4.3 Orientation Estimation of the Three Step Edge Detectors 66

4.4 Localization Estimation of Two Step Edge Detectors 67

4.5 Estimation of the Base Intensity Level for Two Step Edge Detectors 67

4.6 Estimation of the Intensity Step for Two Step Edge Detectors . . . 68

4.7 Orientation Estimation of Four Features 69

4.8 Localization Estimation of Three Features 69

4.9 Base Intensity Estimation of Three Features 70

4.10 Intensity Step Estimation of Three Features 71

4.11 Application of the Five Feature Detectors to a Synthetic Image . . 72

4.12 Application of the Step Edge and Corner Detectors to “Red and Blue” 74

vi

4.13 Line and Disc Detectors Applied to “Lobster Trap and Fish Tail” . 75

4.14 Step Edge, Corner, and Line Detectors Applied to “Schröder House” 76

4.15 Application of Four Feature Detectors to “INRIA Bulding” 78

4.16 Application of Four Feature Detectors to “INRIA Office” 79

4.17 Application of Four Feature Detectors to “INRIA Tourn” 80

5.1 Optimal Weighting Functions Computed using Powell’s Algorithm . 101

5.2 Comparison of the Optimal Weighted and Euclidean L2 Norms . . . 104

6.1 Example Images Exhibiting the Four Constraints 111

6.2 Global Measure of Coherence 1 - Known Orientation 129

6.3 Global Measure of Coherence 1 - Unknown Orientation 130

6.4 Global Measure of Coherence 2 . 133

6.5 Global Measure of Coherence 3 . 134

6.6 Global Measure of Coherence 4 - 0 Tangency Constraints 135

6.7 Global Measure of Coherence 4 - 1 Tangency Constraint 136

6.8 Global Measure of Coherence 4 - 2 Tangency Constraints 137

6.9 Varying the Focus Setting for the Parametric Manifold Detector . . 139

6.10 Varying the Focus Setting for the Nalwa-Binford Detector 140

6.11 Varying the Focus Setting for the Canny Detector 141

6.12 Varying the Aperture Setting for the Parametric Manifold Detector 142

6.13 Varying the Aperture Setting for the Nalwa-Binford Detector 142

6.14 Varying the Aperture Setting for the Canny Detector 143

vii

List of Tables

3.1 Manifold Sampling Intervals . 56

5.1 Computed Values of the Optimality Criteria for the Step Edge . . . 99

5.2 Computed Values of the Optimality Criteria for the Corner 99

5.3 Computed Values of the Optimality Criteria for the Symmetric Line 99

viii

Acknowledgments

I would like to begin by thanking my dissertation committee: Peter Allen, Terrance

Boult, John Kender, Shree Nayar, and Visvanathan Ramesh. In particular, I thank

Peter and John for their numerous suggestions, questions, and comments at my

thesis proposal that greatly improved both this thesis and my job talks.

I would also like to thank Joseph Traub for inviting me to study at Columbia

and giving me my first exposure to research. I learnt a great deal from Joe during

my first year at the information-based complexity group meetings.

The person I learnt the most from at Columbia was my advisor Shree Nayar.

During my time as a Ph.D. student, I have come to believe that the one thing that

distinguishes successful students from unsuccessful ones is their advisor. I certainly

attribute all of my success, both current and future, to Shree. On my own, I would

simply never have fully developed the skills that I now possess.

Most importantly, I would like to thank my close friends in the department:

Clifford Beshers, Sabah al-Binali, Tiberiu Chelcea, Shu-Wie Chen, Sushil DaSilva,

Samuel Fenster, Tobias Höllerer, Blair MacIntyre, Andrew Miller, Montek Singh,

Gong Su, Michael Theobald, and Kazi Zaman. My time at Columbia would not

have been anywhere nearly as enjoyable or productive without them.

ix

To Mum, Dad, and Sandra

x

1

Chapter 1

Introduction

Feature detection is one of the fundamental tasks in computer vision. It has received

widespread coverage in both the research literature and in vision textbooks such as

[48], [35], and [79]. Some of the major applications of feature detection include:

Stereo: One of the most popular methods of performing correspondence matching

along epipolar lines consists of matching detected edge features.

Object Recognition: Many object recognition algorithms start by detecting edge

or corner features. Some algorithms use the detected features directly to

perform object recognition, whereas others first aggregate the features into

extended contours or groups of features.

Segmentation: Segmentation algorithms frequently begin by detecting edge fea-

tures because these features are indicative of depth discontinuities or object

boundaries in the scene.

Motion: Most structure from motion algorithms rely upon the ability to detect

2

and track corner features in image sequences.

Hough Transform: The conventional Hough transform takes as input a collection

of edge features and aggregates them into extended line segments.

In this thesis, I restrict attention to features that are detected just using

a single window in the image. A prototypical window would be square and of

size 5× 5 pixels. However, the window could be approximately circular, and might

contain anywhere from 4 to 100 pixels. In particular, I explicitly rule out all feature

aggregation and adaptive thresholding algorithms. The most well known example

of such a technique is Canny’s hysteresis [20]. Many such techniques dramatically

improve the performance of all feature detectors. Here, I am solely interested in

how well feature detection can be performed without them.

Once the decision has been made to restrict computation to a fixed size

window, the key step in both the design and evaluation of feature detectors is

characterizing the intensity distributions in the window that constitute the feature.

The development of many, but not all, feature detectors therefore begins with an

ideal model of the feature. Major examples include the model matching detectors

surveyed in Section 2.1 and the optimal filtering detectors covered in Section 2.3.

Most existing feature detectors have been designed to detect a single type of

feature, more often than not, the step edge. A large number of other features are

also of interest, including, lines, corners, and junctions. Since the task of designing

a feature detector is very time consuming, repeating the design effort for each indi-

vidual feature is wasteful. To address this deficiency, in the first part of this thesis

I propose an algorithm that takes as input a description of an arbitrary parametric

feature, and automatically constructs a detector for it. The approach taken is the

3

model matching approach described in Section 2.1. I include comprehensive exper-

imental results that demonstrate: (1) the generality of the algorithm, and (2) that

a step edge detector constructed using my algorithm performs favorably to state of

the art detectors designed specifically for the step edge.

Since image data are noisy, feature detectors must be able to cope with this

noise and correctly detect features that are almost, but not quite, ideal. Many

existing feature detectors can therefore be regarded as actually being defined by

two components: (1) an ideal feature model, and (2) a function that measures how

far the image data may deviate from ideal and still be regarded as an instance

of the feature. This is the case for all of the model matching feature detectors

surveyed in Section 2.1. However, for all of these model matching detectors, little

or no consideration has been given to the selection of the second component in

the definition, namely, the matching function. In the second part of this thesis, I

propose a method of selecting the matching function to maximize the performance

of the general purpose feature detector described in the first part.

Of the various methods of evaluating a feature detector reviewed in Sec-

tion 2.5, only two have been used extensively. The first consists of applying the

feature detector to a small number of real images and having a human evaluate the

outputs. The second method involves generating a large number of synthetic images

and computing standard performance metrics from the outputs using knowledge of

the way that the synthetic images were generated. Both of these approaches have

their flaws. The first method is subjective. The second does not use real images.

It seems exceedingly unlikely that there is a single, simple method of “fairly”

evaluating a feature detector. Even in a field as mature as computer architecture,

4

there is no universally agreed upon way of measuring performance [93]. Instead, the

usual approach is to apply a large number of benchmarks, each of which is designed

to be typical of a certain range of applications. The overall performance on the

benchmarks is then used to compare the different architectures. In the final part of

this thesis, I advocate a similar approach for the evaluation of edge detectors. In

particular, I propose a set of benchmarks for edge detectors specifically designed for

applications requiring precise estimates of the edge orientation and the sub-pixel

localization. Good examples of such applications include stereo matching, industrial

inspection, and the computation of projective invariants. These benchmarks use a

large number of real images, and yet provide non-subjective performance metrics.

The remainder of this thesis is organized as follows. I begin in Chapter 2 with

a survey of feature detection. In the following chapter, I describe the general pur-

pose feature detection algorithm. In Chapter 4, I present the results of an extensive

study into the performance of the detectors constructed using this algorithm. In

Chapter 5, I investigate the selection of the matching function. In particular, I show

how to choose the matching function to maximize the performance of the detectors

constructed using the general purpose feature detection algorithm. In Chapter 6,

I describe my non-subjective benchmarks for edge detector evaluation. Finally, I

conclude in Chapter 7 with a summary of my contributions, a brief discussion, and

a number of suggestions for future work.

5

Chapter 2

Related Work

In this chapter, I review the feature detection literature. In particular, I concentrate

on work performed since 1975. Much of the earlier work is covered by existing

surveys such as those by Davis [26] and Brady [16]. The best sources of information

about developments since 1975 are modern texts such as Pratt [100], Nalwa [79], and

Faugeras [35]. I classify feature detectors into four major types: (1) model matching

detectors, (2) differential invariant detectors, (3) optimal filtering detectors, and

(4) statistical detectors. From Section 2.1 to Section 2.4, I cover each of these four

types of detector in turn. Afterwards, I discuss the evaluation of feature detectors

in Section 2.5 and several other important issues in Section 2.6.

2.1 Model Matching Feature Detectors

Model matching feature detectors, such as [50], [51], [80], and [106], are one of

the predominant types of detector, as categorized by Nalwa [79]. The basis of a

model matching detector is an ideal parametric model of the feature. For example,

6

the ideal model of a step edge would normally include parameters such as the

orientation of the edge and the intensity levels on the two sides of the edge. Given

the feature parameters, the feature model defines the intensity distribution of an

ideal feature. For the step edge, the model parameters define which pixels are at

the upper intensity level and which are at the lower one.

A feature is detected by a model matching feature detector if there are valid

parameter values such that the corresponding ideal feature instance and the image

data are sufficiently “similar.” Exactly how a feature detector determines whether

such parameter values exist is the major decision during the design of a detector.

Some detectors use closed form solutions for the best matching parameters whereas

others use numerical techniques. To measure how similar the feature model and

the image data are, a detector requires a matching function. Sometimes the choice

of the matching function is an explicit part of the feature definition, whereas for

other detectors the choice is simply implicit in the final design of the detector.

2.1.1 Model Matching Step Edge Detectors

The first model matching detector was Hueckel’s step edge detector [50]. The

most important issue for Hueckel was to find a closed form solution for the model

parameters that give the closest match to the image data. He was able to do this,

finding an expression for the best fitting parameters in terms of the projection of

the image data onto a low dimensional subspace. This subspace is spanned by a

set of low order polynomials, and was chosen to reduce high frequency noise.

A number of similar approaches and enhancements followed [50], including

[88], [52], [74], and [46]. O’Gorman’s major contribution in [88] was to improve the

7

efficiency of [50] by using a low dimensional basis of Walsh functions. Hummel [52]

applied the Karhunen-Loéve expansion [89] instead of Hueckel’s ad-hoc dimension

reduction. Further analysis of the application of the Karhunen-Loéve expansion to

feature detection was subsequently performed by Lenz [64]. Morgenthaler [74] gen-

eralized the approach of Hummel to detect step edges superimposed on a low order

polynomial, rather than on a constant function. Finally, Hartley [46] redesigned

the Hueckel edge detector to use a Gaussian weighted L2 norm for the matching

function, as was suggested in the appendix of [51].

Probably the most sophisticated model matching edge detector is the Nalwa-

Binford detector [80]. Nalwa and Binford used a much more realistic edge model

than previous detectors. Their edge model incorporated both sub-pixel localization

and image blur, whereas most previous detectors simply assumed a pure disconti-

nuity passing directly through the center of a pixel. Due to the complexity of their

edge model, Nalwa and Binford were unable to find a closed form solution for the

best fitting parameters. Instead they used a numerical algorithm.

Step edges can occur in 3-D volumetric data as well as in 2-D images. Zucker

and Hummel [122] generalized Hummel’s 2-D step edge detector [52] to detect step

edges in volumetric data. Some of Lenz’s results in [64] concerning the application

of the Karhunen-Loéve expansion are also applicable to 3-D edge models.

Finally, note that the Nevatia-Babu detector [83] can be regarded as a prim-

itive kind of model matching detector. The Nevatia-Babu detector operates by

convolving the image with six edge masks, each oriented in a different direction. If

the response to any of the masks is sufficiently strong, an edge is detected and the

orientation of the mask that caused the strongest response is used as an estimate

8

of the orientation of the detected edge. The six masks can be regarded as a very

simple edge model, and selecting the mask with the strongest response as finding

the best fitting model instance.

2.1.2 Other Model Matching Detectors

Model matching detectors have been proposed for several other types of features.

For example, Hueckel [51] generalized his step edge detector of [50] to detect a

six parameter line in addition to the original four parameter step edge. Another

example is Rohr’s corner and Y-junction detector [106]. In Rohr’s detector, the

model parameters that give the closest match between the feature model and the

image data are found in a two stage process. First, initial estimates are made

based upon the output of applying an edge detector in the immediate vicinity.

These estimates are then used to initialize a numerical, gradient descent algorithm.

2.1.3 Selection of the Matching Function

Although the selection of an appropriate matching function is crucial to the per-

formance of a model matching detector, the issue has never been studied in a sys-

tematic manner. Most existing detectors use the Euclidean L2 norm, often without

any discussion of the decision, including [88], [52], [74], [122], [80], and [106].

Non-uniformly weighted L2 norms have been used in a small number of

detectors. The first use dates back to the work of Hueckel [50]. In the continuous

domain of [50], Hueckel used the weighting function w(x, y) = [1 − (x2 + y2)]1/2,

where (x, y) are coordinates relative to the center of a circular window with unit

radius. The justifications provided for this choice were: (1) the weighting function

9

should be continuous, including at the periphery of the window, and (2) the value

of the weighting function should decrease monotonically with distance from the

center of the window. In [51], the weighting function remains the same to allow

a closed form solution for the best fitting parameters. In the appendix, however,

Hueckel suggests that a Gaussian weighting function may be more appropriate.

Few other detectors actually use non-uniform weighting functions. An excep-

tion is Hartley [46], who followed Hueckel’s suggestion and used a Gaussian weight-

ing function. Lenz [64] concentrates on the Euclidean L2 norm, but extends some of

his results to the uniformly weighted L2 norm in polar coordinates. In Cartesian co-

ordinates, this corresponds to using the weighting function w(x, y) = 1/(x2 +y2)1/2.

Another example of the use of non-uniformly weighted L2 norms is [1]. In this paper,

Abdou and Pratt mention that weighting the pixels so as to reduce the influence of

pixels that are distant from the center pixel improves Pratt’s Figure of Merit [100],

but few details are given. Finally, Paton [92] proposed a number of non-uniform

weighting functions, although he never actually used any of them. These include a

sequence of functions similar to Hueckel’s weighting function, and an annular stop

function that assigns zero weight to the center of the feature window:

w(x, y) =

k if 0 < r2 ≤ x2 + y2 ≤ 1

0 otherwise.
(2.1)

Here, r ∈ (0, 1) is the radius of the inner boundary of the annular stop. A related

approach is that of Parida et al. in [91].

Non-uniformly weighted L2 norms have also been used in a number of dif-

ferential invariant feature detectors that use the surface fitting approach described

in Section 2.2.1. For instance, in [71] both unweighted and Guassian weighted L2

10

norms were used to define the best fitting polynomial surface that is subsequently

differentiated to estimate the differential invariants.

2.1.4 Dimension Reduction

Since weighted L2 norms are derived from underlying Hilbert spaces, it is possible to

apply dimension reduction techniques, such as the Karhunen-Loéve (K-L) expansion

[89] [38], to improve the efficiency of feature detection. The use of the K-L expansion

was first proposed for feature detection by Hummel [52]. Subsequently, the K-L

expansion was studied by Lenz [64], and used in a number of other detectors such

as [122] and [81]. More ad-hoc dimension reduction was incorporated into earlier

detectors, beginning with Hueckel [50], but also including Morgenthaler [74]. The

effect on performance of using a subspace with very low dimension was investigated

empirically by Nevatia in [82]. Nevatia found that using a subspace with too low a

dimension does indeed reduce the performance of a detector.

2.2 Differential Invariant Feature Detectors

The second major class of feature detectors consists of those based upon differen-

tial invariants. Well known examples include the Deriche corner detector [30], the

Haralick step edge detector [44], and the Marr-Hildreth step edge detector [70]. As

indicated by the name, these detectors base their detection decisions upon differ-

ential invariants estimated from the image data. For example, the Deriche detector

is based upon the Hessian determinant, the Haralick detector upon the second

directional derivative, and the Marr-Hildreth detector upon the Laplacian.

11

Essentially, there are just two ways to estimate the differential invariants

required by differential invariant detectors. In the first, a parameterized surface

is fit to the image data. The partial derivatives of this surface are then used as

estimates of the partial derivatives of the underlying image. I describe this first

approach in Section 2.2.1. The second approach uses discrete approximations to

differential filters. I describe this second approach in Section 2.2.1. In Sections 2.2.1

and 2.2.1, I only consider step edge detectors. Afterwards, in Section 2.2.3, I discuss

differential invariant approaches to corner detection.

Finally, note that a small number of papers have focused on how to estimate

the partial derivatives required by differential invariant feature detectors, rather

than on feature detection itself. Such papers include [117], [71], and [41].

2.2.1 Surface Fitting Differential Invariant Detectors

One way to describe the intensity values in a feature window “is to fit a surface to

the data and use the derivatives of the surface as characteristic descriptors” [17].

The major contribution of [17] was to show that a number of early edge detectors

can be regarded as doing exactly this. Examples include the Robert’s cross operator

[105] for which the detection decision is based upon the gradient of the best fitting

plane, and the Prewitt operator [102] for which the decision is based upon the

gradient of the best fitting quadratic surface [79]. Later, Prewitt’s approach was

extended by Morgenthaler and Rosenfeld to detect edges in 3-D volumetric data

[75].

Once a polynomial surface has been fit to the image data, almost any dif-

ferential invariant can be computed, be it the gradient, Laplacian, or higher order

12

invariant. For example, Haralick proposed an edge detector that detects edges at

negatively slopped zero crossings of the second directional derivative, taken in the

direction of the gradient [44]. These zero crossings correspond to local maxima

of the first order directional derivative taken in the direction of the gradient and

are computed from the best fitting cubic surface. In a related paper [43], Haralick

used a surface fitting approach to estimate the zero crossings of the first direc-

tional derivative in the direction that extremizes the second directional derivative.

Haralick argues that these feature points correspond to ridges and valleys.

Surface fitting differential invariant detectors are closely related to the model

matching detectors described in Section 2.1. Both fit a surface to the image data.

The major difference, however, is that, whereas surface fitting differential invariant

detectors base the detection decision upon differential invariants computed from the

image, most model matching detectors base the decision entirely upon the degree of

fit. One common issue is the selection of the function used to measure the degree

of fit between the image data and the surface being fit to it. Just as for model

matching detectors, the unweighted least squares fit is the usual choice. There are

a few exceptions, however. For example, in [71] both unweighted and Guassian

weighted L2 norms were used to define the best fitting surface.

2.2.2 Filtering Differential Invariant Detectors

The other way of computing the partial derivatives of the image is by filtering. As

pointed out by Torre and Poggio [115], the differentiation of a discrete image is an

ill posed problem that needs to be regularized. One way to regularize the problem

is by filtering, or smoothing, the image before differentiation. This filtering step

13

can be regarded as implicitly interpolating the image data to create a continuous

surface. For this reason, there is a close relationship with surface fitting differential

invariant detectors. As pointed out by Faugeras in [35], surface fitting can also be

regarded as another form of regularization

To design a filtering differential invariant detector, decisions must be made

on two major points: (1) the shape of the filter, and (2) the differential invariant.

Perhaps the most popular choices have been the Gaussian filter and the Laplacian.

Laplacian of Gaussian detectors date back to the Marr-Hildreth detector [70]. Since

then, the Laplacian of Gaussian has been studied in great depth. For example, its

efficiency [22] [54], accuracy [11] [54], information content [69] [70], and topological

properties [115] have all been investigated.

Naturally, other choices are possible. For example, Modestino and Fries [72]

investigated least mean square filters for the Laplacian, and Castan et al. [21] used

the Symmetric Exponential Filter with both the gradient and the second directional

derivative in the direction of the gradient. Hashimoto and Sklansky [41] and Weiss

[117] both just considered the problem of computing the partial derivatives, as op-

posed to edge detection per se. Hashimoto and Sklansky [41] considered the Wiener

filter, and Weiss [117] studied filters that preserve the derivatives of polynomials of

a certain degree. A final example of a filtering based differential invariant detector

is the half edge and vertex detector of [39]. Here, Gennert uses a modified direc-

tional derivative of a Gaussian operator to create an edge detector that performs

more robustly at vertices and corners. The major disadvantage, however, is that

the operator must be applied at a large number of different orientations.

14

2.2.3 Differential Invariant Corner Detectors

Whereas much of the literature on edge detection has concentrated on how to

compute the three major differential invariants (the gradient, the Laplacian, and

the second directional derivative in the direction of the gradient), the work on

corner detection has largely focused on the differential invariants themselves [30].

Perhaps the first differential invariant corner detector was the Beaudet detec-

tor [8]. The differential invariant used as the measure of “cornerness” by Beaudet

was the determinant of the Hessian:

DET = IxxIyy − I2
xy (2.2)

The reason for this choice is that the DET operator can be shown to be equivalent

to the product of the Gaussian curvature (κmaxκmin) and a term that is an increasing

function of the magnitude of the gradient:

DET = (κmaxκmin) · (1 + I2
x + I2

y)2. (2.3)

Essentially, corners are detected at points where both the curvature and the con-

trast, or gradient magnitude, are high. A slightly different choice was made by

Kitchen and Rosenfeld [58], that being to use the rate of change of the gradient

direction multiplied by the gradient magnitude, a measure which simplifies to:

K =
IxxI

2
y + IyyI

2
x − 2IxyIxIy

I2
x + I2

y

(2.4)

Torre and Poggio [115] later showed that this expression is also the second direc-

tional derivative in the direction orthogonal to the gradient.

Two corner detectors closely related to the Kitchen-Rosenfeld detector are

the Dreschler-Nagel detector [33] and the Zuniga-Haralick detector [123]. Nagel

15

showed that the Dreschler-Nagel detector and the Kitchen-Rosenfeld detector are

equivalent if the heuristic of nonmaximum suppression along the gradient is applied

to the gradient before multiplying by the gradient magnitude [76]. Shah and Jain

showed that the Zuniga-Haralick detector is the same as the Kitchen-Rosenfeld

detector divided by the magnitude of the gradient [110]. Finally, another corner

detector is the Plessey corner detector [45]. The Plessey detector is based upon

first order invariants of a smoothed image. An explanation of the Plessey detector

in terms of differential geometry was later provided by Nobel [84].

2.3 Optimal Filtering Feature Detectors

In the previous section, I discussed differential invariant approaches to feature de-

tection. For example, one way to detect step edges is to apply the Laplacian

operator and declare edges at its zero crossings [70]. The major goal of the work

surveyed in that section was to compute the differential invariants as accurately as

possible. The development of optimal filtering detectors can be seen as an attempt

to answer the question of whether computing these differential invariants is really

the best way to detect features. Although thresholding the magnitude of the gra-

dient undeniably gives a reasonable edge detector, it is unclear whether this is the

best that can be done, even if the gradient is computed perfectly.

The second method of computing the differential invariants in the previous

section was by filtering. Optimal filtering edge detectors operate by declaring edges

at local “extrema in the output of the convolution of the image with a [filter]” of

an appropriate shape [35]. Then, the key question for optimal filtering detectors is

the shape of filter. Unlike Section 2.2.2, where the goal is to choose the filter to

16

compute a specific invariant as accurately as possible, the goal for optimal filtering

detectors is to choose the shape of the filter to maximize the feature detection

performance. Not surprisingly, the optimal filter typically ends up looking similar

to a derivative operator, however the exact shape may differ somewhat.

To design an optimal filtering detector, there are two major steps: (1) pro-

pose optimality criteria, and (2) optimize these criteria to derive the optimal filter.

Various optimality criteria have been proposed in the literature, however the most

well known and thoroughly studied are the three criteria proposed by Canny in [20].

The remainder of this section is organized as follows. I begin in Section 2.3.1 by

describing Canny’s three optimality criteria. In Section 2.3.2, I discuss the various

ways that these criteria have been combined and the alternative approaches that

have be used to optimize them. Finally, in Section 2.3.3, I discuss some of the other

optimality criteria that have been proposed in the literature.

2.3.1 Canny’s Optimality Criteria

To make his analysis tractable, Canny initially studied edges in 1-D signals. To

extend to 2-D images he rotates the optimal filter so that it is aligned with the

gradient. Before optimality criteria can be proposed, an ideal model is needed for

the feature. Canny was interested in the step edge. He used a perfect discontinuity,

or Heaviside function, as his model of a step edge. In addition to the feature model,

a noise model is also required. Canny assumed zero mean white Gaussian noise.

Optimality criteria should be chosen so that they are closely related to perfor-

mance measures. As discussed in Section 2.5, the three most fundamental elements

of feature detection performance are: (1) the rate of occurrence of false positives,

17

(2) the rate of occurrence of false negatives, and (3) the parameter estimation accu-

racy. Canny’s first two criteria correspond directly to these aspects of performance:

Good Detection: “There should be a low probability of failing to mark real edge

points (ie. false negatives) and low probability of falsely marking non edge

points (ie. false positives)” [12]. Canny argued that both of these criteria are

strongly correlated with the signal to noise ratio (SNR). Therefore, he used

the SNR as his first optimality criterion.

Good Localization: “The points marked by the operator should be as close as

possible to the center of the true edge” [12]. Canny derived an estimate of

the root mean squared (RMS) displacement of an ideal edge perturbed with

independently and identically distributed Gaussian noise, and used it as his

second optimality criterion.

In [20], Canny initially tried to optimize the product of these first two criteria. The

optimal filter is the matched filter, or difference of boxes operator [35]. Unfortu-

nately, this detector is well known to perform quite poorly. In particular, it tends to

produce many local maxima in the vicinity of noisy step edges [35]. Hence, Canny

introduced a third optimality criteria to address this problem:

Few Multiple Responses: For an ideal detector, there should be “only one re-

sponse to a single edge” [12]. Canny derived an estimate for the expected

distance between adjacent edges and used it as his third optimality criterion.

18

2.3.2 Deriving the Optimal Filter

There are various different ways of combining Canny’s three criteria. Canny himself

optimized the product of the first two criteria, while keeping the third one fixed.

As discussed by Faugeras in [35], this method naturally corresponds to the use of

a filter with finite extent. On the other hand, Deriche considers infinite impulse

response (IIR) filters by allowing the width of the Canny filter to tend to infinity

[29]. The result is a filter with a better value for the product of Canny’s first two

optimality criteria [35]. Note that Deriche’s IIR filter can be implemented very

efficiently using recursive filtering [29]. See Section 2.6.3 for more details.

A number of other authors have studied Canny’s three criteria, and variants

thereof. Rather than considering the product of the first two criteria while keeping

the third one fixed, Spacek chose to optimize the product of all three criteria [113].

Later, Petrou and Kittler used Spacek’s approach to derive optimal filters for ramp

edges [97]. Another optimal (IIR) filter is the Sarkar-Boyer detector [109]. Rather

than using Canny’s third criterion, Sarkar and Boyer used a slightly different cri-

terion designed to measure the likelihood of spurious responses to noise. Finally,

Demigny and Kamlé [27] derived discrete versions of Canny’s three criteria and

used them to compare the performance of various step edge detectors.

2.3.3 Other Optimality Criteria

Several other optimality criteria have been proposed. These include the energy in

the vicinity of the edge studied by Shanmugam et al. [111] and by Lunscher [66],

and the Discriminative Signal to Noise Ratio studied by Rao and Ben-Arie [104].

19

2.4 Statistical Feature Detectors

A small number of feature detectors have been proposed that are based upon sta-

tistical techniques. Although the results obtained using these detectors are on the

whole quite poor, statistical feature detectors constitute a significant subclass of

feature detectors. The general approach taken by statistical feature detectors is as

follows. First, the image data is assumed to have been generated by either a feature

process or a non-feature process, corrupted by a noise process. The initial goal of

the statistical feature detector is to estimate the a posteriori probability that the

image data was generated by the feature process. A decision rule is then used to

decide whether to detect the feature or not.

Probably the first statistical feature detector is that of Griffith [40]. The

Griffith detector was designed to detect boundary features, which can be either sim-

ple lines or simple edges. The non-features modeled include homogeneous regions,

skewed lines, and parts of lines. Later, Nahi and Jahanshahi developed an edge de-

tector using a replacement processes to model image formation as the replacement

of a background process with an object process [77]. In [42], Haralick proposed

an edge detector using the F -statistic to test the statistical significance of the dif-

ference between the parameters of the best fitting sloped surfaces in neighboring

pixels. Bovik et al. [14] proposed three different statistical tests for edge detection,

two based upon linear rank sums and one based upon fitting order statistics. Fi-

nally, Huang and Tseng [49] proposed a statistical theory of edge detection based

upon the change-point problem.

20

2.5 Evaluation of Feature Detectors

In the first part of this section, I present the various measures of performance that

have been proposed in the literature, without discussing how, or even whether, they

can actually be evaluated. In the second part, I describe how the measures can be

evaluated. For a slightly different categorization of previous work on the evaluation

of feature detectors, the reader is referred to [47].

2.5.1 Performance Measures

Most of the measures of performance can be placed into one of five categories:

Feature Detection Robustness: The first category consists of measures that at-

tempt to characterize how likely the detector is to miss a feature that appears

in the image (a false negative), and those that attempt to characterize the

likelihood that a detector will produce a spurious response where there is no

corresponding feature in the image (a false positive). Naturally, there is an

inherent trade off between these two measures, as is seen for example in [6].

These two measures are of fundamental importance in most applications and

have been widely studied, including in [36], [1], [80], [103], and [32]

Parameter Estimation Accuracy: Another fundamental class of measures con-

sists of those that assess the accuracy with which the parameters of the feature

(e.g. orientation, sub-pixel localization, and step magnitude) are estimated.

These measures are important for any application that actually uses the fea-

ture parameters. These measures have also been widely studied, including in

[31], [1], [11], [94], and [114].

21

Combinations of Robustness and Parameter Estimation: A third class of

measures consists of those that are simple combinations of the above two

types. Perhaps the most well known example is Pratt’s Figure of Merit [1] [95].

Canny’s optimality criterion can be regarded as another example, combining

a robustness component and a localization accuracy component, with a third

component that penalizes multiple responses to the same edge [20] [27].

Performance of Applications: The fourth class consists of measures that di-

rectly assess the performance of applications. Examples include, the com-

putation of projective invariants [24], object recognition [47], structure from

motion [112], industrial inspection [114], and boundary extraction [56] [90].

Local Measures of Coherence: The fifth and final class consists of measures

that are based upon desirable local properties of the output feature map,

for example, continuation and thinness [57] [95] [121]. Such properties are

particularly important for applications that first aggregate individual features

into groups before performing any subsequent processing.

2.5.2 Evaluation Techniques

If ground truth data existed for a large collection of images, estimating any of the

measures would be straightforward. Unfortunately, none of the methods of gener-

ating ground truth data are entirely satisfactory. Getting a human to mark ground

truth is unsuitable because: (1) it is a tedious task and hence error prone, and

(2) humans can bring higher level processing to bear, and so there is no guarantee

that what is perceived is actually present in the local image data, as is demonstrated

22

by phenomena such as subjective contours [55]. In fact, in a recent paper in which

this approach is taken, Dougherty and Bowyer allowed the human to mask out any

regions for which it was too difficult for the human to say which pixels contain

edges [32]. An alternative approach is to apply a number of detectors and use the

consensus as the ground truth [19]. However, the assumption that the consensus

gives a good estimate of the ground ruth is questionable. There are at least four

ways of estimating the measures in the absence of ground truth:

Mathematical Analysis: If the feature detection algorithm is simple enough, it

is sometimes possible to derive analytical expressions for some of the perfor-

mance measures. For example, Abdou and Pratt [1] analyze the robustness

of several simple edge detectors, Berzins [11] analyzes the localization esti-

mation of a Laplacian edge detector, and Ramesh and Haralick [103] analyze

the robustness and parameter estimation accuracy of two different detectors.

There are two major weaknesses of this approach: (1) it cannot be easily

applied to any detector, and (2) the analysis requires using simplified models

of what is a feature, what is not an feature, and the noise processes.

Statistical Tests: A solution to the first of these two problems is to use numerical

techniques instead of analytical ones. Then, the complexity of the detector

does not cause a problem. A number of papers have performed statistical

tests using synthetically generated data, including, [36], [31], [1], [95], [80],

and [6]. However, these approaches still have the limitation that they use ideal

models of both the signals and the noise. A partial solution, recently proposed

by Cho et al. [23], is to use a statistical technique known as bootstrap.

Bootstrap, although it can be applied to real image data, still makes several

23

strong assumptions about the nature of a feature and the noise processes.

Subjective Human Evaluation: Another possibility is to get a human to ana-

lyze the outputs when applied to either real or synthetic images. Although

nearly all feature detection papers do this, they typically do it in a very in-

formal manner. It is possible to perform such a comparison in a more formal

way, as was done in [36] and [47]. Even when done scientifically, such tech-

niques still have the inherent weakness that they rely upon the subjective

opinion of humans who can bring higher level processing to bear.

Direct Computation from Real Images: Some performance measures do not

rely upon ground truth and can be computed directly from the detector out-

put, for example, the local measures of coherence proposed in [57] and [121].

The major weakness of these approaches is that the output could totally mis-

represent the structure of the scene and still be rated highly. So long as the

local properties are good, the detector will be highly rated.

2.6 Miscellaneous Issues

2.6.1 Unifying Frameworks

A number of authors have attempted to develop unifying frameworks for edge de-

tection. Some of these studies have attempted to show the similarities of specific

detectors. For example, both Rosenfeld [107] and Abramatic [2] studied the Hueckel

[50] and Roberts [105] detectors. They showed that if the Hueckel operator is im-

plemented in a 2×2 window, it turns out to be the same as a variant of the Roberts’

24

cross operator. In [67] and [68], Lunscher and Beddoes presented a unified view of

the Marr-Hildreth detector [70] and the detector of Shanmugam et al. [111].

Other authors have attempted to unify entire classes of detectors. Both

Brooks [17] and Haralick [42] tried to provide a unified view of model matching

and surface fitting differential invariant detectors through the surface fitting step

inherent in both types of detector. Torre and Poggio presented a unified theory of

differential invariant detector through regularization theory [115]. Further, Torre

and Poggio also examined the relationship between Laplacian edge detectors such

as [70] and second directional derivative operators such as [20] and [42].

2.6.2 Sensor Modeling and Sub-Pixel Localization

Most of the previous work on feature detection has assumed that the artifacts in-

troduced by the imaging system are negligible and can be ignored. One exception

is [94]. In this paper, Pedersini et al. are interested in maximizing the sub-pixel

localization accuracy. They claim that to do so, the details of the imaging system

must be taken into consideration. In particular, they model image formation as

non-linear radial distortion, followed by low-pass filtering, and then ideal sampling.

A simpler approach to sub-pixel localization was proposed by Nalwa [78]. Nalwa

simply suggested that the image is sub-sampled. Another example of sensor mod-

eling is [97]. Petrou and Kittler argue that ideal step edges do not occur in real

images. Instead, real edges are actually ramp edges. They follow the approach of

Canny [20] and derive optimal filters for ramp edges, which they claim yield better

performance than filters designed for ideal step edges. Finally, Demigny and Kamlé

[27] derived discrete (ie. pixel based) versions of Canny’s three optimality criteria.

25

They used these criteria to compare the performance of various edge detectors.

2.6.3 Efficient Filtering

There are a number of techniques that can be used to implement 2-D filtering

operations efficiently. See any good image processing text such as [100] for a survey.

Perhaps the most well known and simplest example is separability. If the 2-D filter is

separable (ie. it can be written as the product of two functions each just dependent

on one of the two coordinate variables, as for example the Gaussian can be) it

can be implemented as two 1-D filters in the two coordinate directions. Another

example is processing in the Fourier transform domain, where a convolution can be

implemented as a multiplication. One example of a paper that uses the fast Fourier

transform to implement a filtering operation efficiently is Shanmugam et al. [111].

Another technique, that can often be even more efficient than Fourier do-

main processing, is recursive filtering [100] [35]. Perhaps even more importantly,

recursive filtering can be used to implement certain infinite impulse response (IIR)

filters, which otherwise could only be truncated and approximated as a finite input

response (FIR) filter. Recursive filtering is based upon a recursive relationship be-

tween the filtered image and the input image. The z-transform of such a relationship

is a rational function of z. If the z-transform of the filter also happens to be of this

form, it can be implemented using the recursive relationship. A constant amount

of computation is needed per pixel to implement these recursive relationships. For

example, the infinite Deriche filter [29] can be implemented with 5 additions and

5 multiplications per pixel [35]. Other examples of recursive filtering include the

Modestino and Fries detector [72] and the Sarkar and Boyer detector [109].

26

Another example of an efficient filtering technique is the approach of Chen et

al. [22], a technique that was later refined by Sotak and Boyer [54]. Chen et al. [22]

proposed decomposing the Laplacian of Gaussian operator [70] into the product

of a Gaussian with smaller standard deviation, and a Laplacian of Gaussian with

standard deviation chosen to make up the difference. Chen et al. showed that,

because the Laplacian of the Gaussian is a bandpass filter, it is possible to reduce

the resolution of the image before it is applied. The final computation therefore

consists of four steps: (1) convolve the image with the (separable) Gaussian filter,

(2) reduce the resolution by decimating the convolved image, (3) convolve with the

smaller 2-D Laplacian of Gaussian filter, and (4) restore the full resolution using

a simple bilinear interpolation scheme. It turns out that the complexity of this

algorithm actually decreases as the standard deviation of the Gaussian increases.

2.6.4 Scale and Information Content

Scale has become an important issue in edge detection and has received a great deal

of attention [79] [65]. The notion of the scale of an edge detector dates back to the

Marr-Hildreth detector [70]. In particular, in their Laplacian of Gaussian detector,

the standard deviation of the Guassian is used to control the scale by changing the

amount of blurring. Later, Canny used the same technique to define the scale of

his detector [20]. Moreover, an entire theory of scale space has been developed,

beginning with the work of Witken [118] and then of Koenderink [60]. These initial

papers established the desirable properties of the Gaussian smoothing for scale

space. Koenderink [60] also pointed out that smoothing the image with a Gaussian

is equivalent to solving the heat equation, also known as the diffusion equation.

27

Much later, this fact lead Perona and Malik to propose anisotropic diffusion as a

mechanism to detect edges [96]. Diffusion is discouraged in the direction of large

image gradients, thereby encouraging the formation of a small number of uniform

intensity regions separated by boundaries with large gradient magnitude.

The primary goal of scale space theory, at least as far as feature detection is

concerned, is to combine the outputs of operators at multiple scales in a coherent

manner [79]. A number of attempts have been made at studying the output of

detectors across scales, including, [10], [61], and [30]. Bergholm [10] tracked edges

across scales to obtain high localization accuracy and also to restore junctions.

Korn [61] studied the selection of the appropriate scale at which to apply detectors.

Finally, Deriche [30] studied the affects of scale space smoothing on the localization

of corners and junctions. He proceeded to show how the systematic bias of the

Laplacian of Gaussian can be corrected. A related study, with somewhat different

goals, is that of Berzins [11].

A very important issue related to that of scale is the information content

of edges. One of the major reasons for detecting edges is their supposedly high

information content [70]. The most important question in this context is whether

certain edge maps provide a complete representation of the image, in the sense that

the image could be uniquely recovered from the edge map. As early as the work of

Marr and Hildreth [70], it was conjectured that the zero crossings of the Laplacian

of the Gaussian do provide a complete representation. A number of positive results

have been found in which it has been shown that the zero crossings at multiple

scales are complete for large classes of images [53] [120] [115]. However, recently

counterexamples have been found to the most general statement of the problem

28

by Meyer, as described by Mallat in [69]. In spite of this result, a number of

algorithms have been proposed to invert the edge detection process that work very

well in practice [69] [34].

29

Chapter 3

Parametric Feature Detection

3.1 Introduction

As can be seen from the literature survey in Chapter 2, the most frequently studied

image feature is the step edge. There are several reasons for this: (1) step edges are

very abundant in natural scenes, (2) as discussed in Section 2.6.4, they possess high

information content, and (3) their simple 1-dimensional structure makes analysis

tractable. Nevertheless, the step edge is by no means the only feature of interest. It

is closely followed in significance by other ubiquitous features such as lines, corners,

junctions, and roof edges. Even if one restricts attention to features that can be

defined analytically, this list is still not comprehensive. Moreover, in any given

application, the term “feature” may well take on a meaning that is specific to that

application. For instance, during the inspection or recognition of a manufactured

part, a subpart such as a nut may be the feature of interest. The appearance of

such features will depend upon a number of parameters, for example, orientation,

sub-pixel localization, scale, and degree of blurring. In short, parametric features

30

are too numerous to justify the process of manually deriving a detector for each one.

The major contribution of this chapter is to develop an algorithm that automatically

constructs a feature detector for an arbitrary parametric feature.

To obtain high performance, it is essential to accurately model the features as

they appear in the scene. Therefore, I deliberately choose not to make any simpli-

fications for analytic or efficiency reasons. Instead I use realistic, multi-parameter

feature models. Whereas many step edge models assume that the edge passes di-

rectly through the center of a pixel and is a perfect step discontinuity, I include a

sub-pixel localization parameter and a blurring parameter. These parameters en-

hance the robustness of detection, while at the same time being useful parameters

to recover in their own right. My step edge model has five parameters, namely, the

lower brightness level, the brightness difference across the step, the orientation of

the edge, the sub-pixel localization, and the blurring parameter. The arguments in

favor of highly descriptive feature models apply to other features as well. I use a

five parameter roof edge model, a six parameter line model, a five parameter corner

model, and a six parameter circular disc model.

In most previous work, feature detectors have been designed in the contin-

uous domain based upon continuous feature models. The detectors developed are

only sampled as a final step before their application to discrete images. I argue that

to optimize the performance of a detector fully, careful consideration must be given

to how the sensor converts the continuous radiance function of a feature into its

discrete image. For instance, the aspect ratio of an sensor may significantly affect

the appearance of a feature. Perhaps less obvious is the effect that the shape and

size of the photosensitive elements within a CCD image sensor have on the appear-

31

ance of a feature. My notion of a parametric feature model is a continuous one, but

during detector construction I explicitly model the discretization of the sensor. The

model I use is that of a standard CCD imaging device that integrates the radiance

function over a sub-rectangle of each pixel. The sub-rectangle corresponds to the

pixel photosensitive area, which, in general, is not the entire pixel. In addition to

the sensing discretization, I also model the blurring caused by the optical transfer

function of the lens and aperture. For a discussion of other approaches to sensor

modeling in feature detection, the reader is referred Section 2.6.2.

When combined, a parametric feature model and a sensor model allow one

to predict the pixel intensity values in a window around an ideal feature. All that is

required are the parameters of the feature and the details of the imaging system. If

the pixel intensity values are treated as real numbers, each feature instance can be

regarded as a point in RN , where N is the number of pixels in a window surrounding

the feature. As the feature parameters vary, the point in RN corresponding to the

feature traces out a k-dimensional manifold, where k is the number of feature

parameters. In this setting, feature detection can be posed as finding the closest

point on the feature manifold to the point in RN corresponding to the pixel intensity

values in a novel image window. If the closest manifold point is near enough, the

feature is detected and the exact location of the closest point on the manifold reveals

the parameters of the feature just detected. On the other hand, if the nearest

manifold point is too far away, no feature is detected. This statement of the feature

detection problem was first proposed by Hueckel [50], and was subsequently used

by O’Gorman [88], Hummel [52], Hartley [46], and Nalwa and Binford [80] for the

detection of step edges. Hueckel [51] applied the same formulation to line detection

32

and Rohr [106] used it to detect corners. The same approach generalizes to 3-

dimensional data, as was used by Zucker and Hummel [122] and by Lenz [64]. See

Section 2.1 for more discussion of these so called model-matching feature detectors.

Hueckel [50] and Hummel [52] both argued that to achieve the required effi-

ciency, a closed form solution must be found for the parameters of the closest point

on the manifold. To make their derivations possible, they used simplified feature

models and completely neglected sensing effects. My view of feature detection is

radically different. I believe that most features of interest are inherently complex

visual entities. Hence, I willingly forgo any hope of finding closed-form solutions for

the best-fit parameters. Instead, I discretize the search problem by densely sam-

pling the feature manifold. The closest point on the manifold is then approximated

by its nearest neighbor among the sample points. Typically the sampling will result

in the order of 105 points, which lie in a space of dimension N = 25–100. Further,

the search for the closest manifold point must be repeated for each each pixel in

the image. Nalwa and Binford [80] and Rohr [106] also used more realistic feature

models than Hueckel and Hummel. Likewise, they used numerical algorithms to

find the parameters of their models that best fit the image data.

At first glance, applying a high dimensional search for every pixel in an im-

age seems inefficient to the point of impracticality. However, I will show that this

approach is indeed practical. To obtain the required efficiency, I use a number of

techniques. First, I introduce a simple normalizations that eliminates two of the

parameters and so reduces the dimensionality of the manifold to three or four (for

the five features that I experimented with). This normalization causes no signifi-

cant loss of information or reduction in the signal to noise ratio. Next, I apply the

33

Karhunen-Loéve expansion [89] as a dimension reduction technique, which enables

me to improve the efficiency by projecting the feature manifold into a low dimen-

sional subspace. Dramatic dimension reduction is possible because most features

have significant structure and inherent symmetries. In practice, the dimension of

the subspace required turns out to be in the range 5–15. Dimension reduction was

first used in feature detection by Hueckel [50]. See Section 2.1.4 for a review of the

use of dimension reduction in feature detection.

To perform the search for the closest point on the manifold, I use a coarse-

to-fine algorithm that exploits the local smoothness of the feature manifolds to

find the closest sample point very quickly. Further, the search does not need to

be performed at every pixel. Amongst other techniques, I use a pattern rejection

algorithm [4] [5] to eliminate a vast majority of pixels without even needing to

project fully into the low dimensional subspace. Such a rejection scheme is effective

since most pixels in an image will typically not exhibit the feature of interest. Using

the above efficiency enhancements, the feature detectors take only a few seconds

on a standard single processor workstation when applied to a 512 × 480 image.

The remainder of this chapter is organized as follows. In the next section, I

introduce the notion of a parametric feature and discuss the sensor model. I show

how features may be represented as parametric manifolds, and then describe the ef-

ficiency enhancements achievable through parameter normalization and dimension

reduction. In Section 3.3, I introduce the five example features that I considered,

namely, the step edge, the symmetric line, the corner, the roof edge, and the cir-

cular disc. For each feature, I present the feature model, the result of dimension

reduction, and the feature manifold. In Section 3.4, I describe the detection al-

34

gorithm in detail. In particular, I describe manifold sampling, the coarse-to-fine

search, and the use of rejection techniques. In the following chapter, I present

experimental results obtained for the five example features, including comparisons

with a Canny-like operator [20] and the Nalwa-Binford [80] detector.

3.2 Parametric Feature Representation

I begin this section by first introducing the notion of a parametric scene feature.

I then describe my model of the imaging system, and how this model leads to

imaged features being represented as parametric manifolds. Finally, I describe the

parameter normalization and dimension reduction techniques that I used to make

the manifold representation more compact and to enhance efficiency.

3.2.1 Parametric Scene Features

By a scene feature, I mean a geometric or photometric phenomenon in the scene

that produces spatial radiance variations which can aid in visual perception. It is

known that irradiance on the image plane is proportional to scene radiance [48]. I

assume that the continuous scene feature can be parameterized and can therefore

be written as the continuous irradiance function F c(x, y; qc) where (x, y) ∈ Sc are

points within a bounded feature window Sc on the image plane, and qc are the

parameters of the scene feature. In the case of a step edge, qc would include the

edge orientation and the brightness values on the two sides of the edge. In the case

of a corner, qc would include the orientation of the corner, the angle subtended by

the corner, and the brightness values inside and outside the corner. To fully specify

35

a feature, one must provide the feature irradiance function F c(x, y; qc), the feature

window Sc, and the ranges of the parameters qc.

3.2.2 Modeling Image Formation and Sensing

Most previous work on feature detection has implicitly assumed that the artifacts

introduced by the imaging system are negligible and can be ignored. See Sec-

tion 2.6.2 for a discussion of the use of sensor models in feature detection. An

additional reason for ignoring sensor artifacts is that they can be quite complex

and nonlinear in nature. Hence, modeling such effects can often make the deriva-

tion of a detector far more cumbersome. For reasons that will become clear shortly,

modeling both linear and non-linear sensor effects does not involve any extra diffi-

culty in my detection algorithm. Hence, I make the feature models as realistic as

possible by explicitly modeling image formation and sensing effects.

The first such effect is blurring of the feature irradiance function. If the

scene feature lies outside the focused plane of the imaging system, its image will be

defocused. Further, the finite size of the lens aperture causes the optical transfer

function of the imaging system to be band-limited in its spatial resolution. Finally,

the feature itself, even before imaging, may be somewhat blurred. For instance,

a real step edge may not be a perfect step, but instead somewhat rounded. The

magnitude of these effects varies spatially across the image plane. In particular,

the level of defocus will depend upon the depth of the feature in the scene, and

the degree of blurring will depend upon the nature of the geometric or photometric

phenomenon causing the feature. Hence, I develop an approach that can handle

spatially varying blur. The defocus factor can be approximated by a pillbox function

36

[13], the optical transfer function by the square of the first-order Bessel function

of the first kind [13], and the blurring due to imperfections in the feature by a

Gaussian [60]. I combine all three effects in a single blurring factor that is assumed

for simplicity to be a 2-D Gaussian:

g(x, y; σ) =
1

2πσ2
exp(−1

2
· x

2 + y2

σ2
). (3.1)

The continuous irradiance function on the sensor plane is converted by a CCD

sensor into a discrete image through two processes. First, the light flux falling on

each sensor element is averaged, or integrated. If the pixels are rectangular [7] [85],

the averaging function is simply the rectangular function [15]:

a(x, y) =
1

wx wy
2Π(

1

wx
x,

1

wy
y) (3.2)

where wx and wy are the x and y dimensions of the pixel. Second, the pixels are

sampled. The final discrete image of a feature can therefore be written as:

F (n,m; q) = F c(x, y; qc) ∗ g(x, y) ∗ a(x, y)|x=n,y=m (3.3)

where ∗ is the 2-D convolution operator, q = qc∪{σ} is the vector of discrete feature

parameters which includes the spatially varying blur parameter σ, and (n,m) ∈ S

are pixel coordinates in a discrete approximation to the feature window Sc.

It is important to note that the blurring, averaging, and sampling functions

vary from sensor to sensor. Above, I have assumed the pixels and the sampling are

rectangular. In practice, these functions should be selected based on the details of

the actual sensor used. In general, a model of the imaging system is a functional

that takes the continuous irradiance function F c(x, y; qc) as input and maps it to

a discrete function F (n,m; q).

37

3.2.3 Parametric Feature Manifolds

If N is the total number of pixels in the discrete feature window S, then each

feature instance F (n,m; q) can be regarded as a point in RN . Suppose the feature

has k parameters; ie. dim(q)=k. Then, as these parameters vary over their ranges,

the corresponding feature instances trace out a k-parameter manifold in RN . The

feature can therefore be represented as a parametric manifold in RN . Constructing

this manifold is straightforward using Equation (3.3). It just requires the feature

model F c(x, y; qc), the range of the blur parameter σ, and the details of the sensor.

In this setting, feature detection can be posed as finding the closest point on

the feature manifold to the point in RN corresponding to a novel candidate window

in the image. If the closest manifold point is near enough, the feature is detected

and the exact location of the closest point on the manifold reveals the parameters

of the feature just detected. On the other hand, if the nearest manifold point is too

far away, no feature is detected.

Performing this task directly using the feature manifold is impractical for

reasons of efficiency due to the high dimensionality of the manifold k and the

space that it lies in N . In the following sections, I present two techniques that

dramatically reduce the dimensionality of the manifold and the space that it lies in,

thereby making the feature manifold a viable representation for feature detection.

3.2.4 Parameter Reduction by Normalization

The first efficiency enhancement is a normalization. For each feature instance

F (n,m; q), compute the coordinate mean µ(q)= 1
N

∑
(n,m)∈S F (n,m; q) and the

total coordinate variance ν2(q) =
∑

(n,m)∈S [F (n,m; q)− µ(q)]2. The following

38

brightness normalization is then applied:

F (n,m; q) =
1

ν(q)
[F (n,m; q) − µ(q)] . (3.4)

This simple normalization proves to be very valuable. For all of the features consid-

ered, it reduces the dimensionality of the manifold by two. This occurs because the

normalized feature F (n,m; q) turns out to be approximately independent of two of

the brightness parameters in q. In the case of the step edge, the normalized feature

is invariant to the brightness values on either side of the step; just the values of µ

and ν change with the brightness parameters.

There are three important points to note about this normalization: (1) it

does not alter the signal to noise ratio, (2) the normalization must be applied both

to the feature instances during the construction of the feature manifold and also

to the image data during feature detection, and (3) once a normalized feature has

been detected, the coordinate mean µ and total variance ν can be used to recover

the parameters eliminated during normalization. In the next section, I describe

how this inversion can be performed.

3.2.5 Recovering the Normalized Parameters

The brightness normalization described in the previous section can be used to elim-

inate two of the parameters. I now describe how to recover the normalized pa-

rameters. The computation requires as input, the coordinate mean µ and total

variance ν computed during normalization, and the unnormalized parameters es-

timated from the parameters of the closest point on the manifold. For the step

edge, line, corner, and circular disc, the two normalized parameters are the base

39

intensity A and the intensity step B. For the roof edge, they are the peak intensity

A and the intensity gradient M . See Section 3.3 for a complete description of the

five example features. Although I describe the recovery technique in terms of A

and B, the same approach works for the roof edge by replacing B with M .

In the continuous domain, and if the parameters q − {A,B} are fixed, it is

easy to see that, for all of the features considered in Section 3.3, the coordinate

mean µ and total variance ν are linear functions of A and B:

µ = c11 · A+ c12 ·B (3.5)

ν = c21 · A+ c22 ·B (3.6)

where cij = cij(q−{A,B}) are coefficients that just depend upon the unnormalized

parameters. After allowing for the discretization performed by the CCD sensor,

these relationships will not be exactly linear, however the deviation from linearity

can be neglected. If the coefficients cij are known, these equations can be used to

recover the normalized parameters because they can be inverted to give:

A =
c22

∆
· µ − c12

∆
· ν (3.7)

B = −c21

∆
· µ +

c11

∆
· ν (3.8)

where ∆ = c11 · c22 − c12 · c21 is the determinant of the matrix (cij).

The coefficients cij = cij(q − {A,B}) can be easily precomputed during

the construction of the manifold. For each vector of unnormalized parameters

q− {A,B} used to sample the manifold, the feature is evaluated for A = 0, B = 1

and then normalized as described in Section 3.2.4 to give mean µ1 and total variance

ν1. Repeating for A = 1, B = 1, gives mean µ2 and total variance ν2. Finally, the

40

coefficients can be computed using:

c11 = µ2 − µ1 (3.9)

c12 = µ1 (3.10)

c21 = ν2 − ν1 (3.11)

c22 = ν1. (3.12)

The coefficients cij are stored in a lookup table indexed by q − {A,B}. As soon

as the parameters q−{A,B} have been recovered from the closest manifold point,

the coefficients cij can be easily found. Then, A and B can be recovered using

Equations (3.7) and (3.8).

I tested the accuracy of normalization inversion for each of the five features

considered in Section 3.3. After computing the coefficients cij for every manifold

sample point using the method described above, I randomly generated a sequence

of ideal feature instances. The normalized parameters A and B of the feature were

generated uniformly at random in the interval [0, 1]. To generate the unnormalized

parameters, a point on the manifold was chosen uniformly at random and its un-

normalized parameters used. Then I generated the ideal feature using the feature

and sensor models described above. After normalizing the feature, I used Equa-

tions (3.7) and (3.8) to recover A and B. The results showed that the normalization

inversion works almost completely without error. The worst performance across all

five features, and over every feature instance generated, gave an error of less that

0.02%. The average error was an order of magnitude lower.

41

3.2.6 Dimension Reduction

For several reasons, such as feature symmetries and high correlation between fea-

ture instances with similar parameter values, it is possible to represent the feature

manifold in a low dimensional subspace of RN without significant loss of informa-

tion. This idea was first explored by Hummel [52] and later by Lenz [64]. See

Section 2.1.4 for a discussion of the use of dimension reduction in feature detection.

If correlation between feature instances is the preferred measure of similarity, the

Karhunen-Loéve (K-L) expansion [38] [89] yields the optimal subspace.

The covariance matrix C = Eq[(F −Eq[F])(F −Eq[F])T] represents the cor-

relation between the pixels in the different feature instances. Since the normalized

feature instances F are N-dimensional vectors, C is a symmetric N × N matrix.

The optimal subspace is then computed by solving the eigenvalue problem:

C e = λ e. (3.13)

The result is a set of eigenvalues {λj | j = 1, 2, ..., N } where λ1 ≥ λ2 ≥

..... ≥ λN ≥ 0, and a corresponding set of orthonormal eigenvectors { ej | j =

1, 2, ..., N }. Due to the inherent structure and symmetries of most parametric fea-

tures, the first few eigenvalues tend to be significantly larger than the remaining

ones. Hence, the feature manifolds can be represented in a low dimensional sub-

space spanned by the most prominent eigenvectors. If the first d eigenvectors are

used, a measure of the information discarded is the K-L residual defined by:

R(d) =
N∑

j=d+1

λj. (3.14)

To give an idea of the data compression possible, a step edge manifold in a 49-D

space can be represented in a 3-D subspace with K-L residual of less than 10%.

42

Moving to an 8-D subspace reduces the residual to less than 2%.

3.2.7 Computation of the Feature Manifolds

The parametric feature manifold is constructed by projecting all of the normalized

feature instances into the K-L subspace. This just requires the dot product of each

feature instance with the eigenvectors that serve as a basis for the subspace. Since

such a parameterized feature manifold is easy to compute for any feature, it serves

as a generic tool for designing feature detectors. Further, the dramatic dimension

reduction produced by the K-L expansion, together with the parameter elimination

achieved through the brightness normalization described in Section 3.2.4, allows

features to be represented compactly and detected efficiently.

3.3 Example Features

I now illustrate the parametric manifold representations of my five example fea-

tures. For each feature, I provide a definition of the feature irradiance function, list

its parameters, and present the results of applying parameter normalization and

dimension reduction. Note that the features I have chosen are merely examples

that happen to be important in machine vision. The techniques themselves are not

restricted to intensity images and can also be applied to detect features found in

the output of almost any type of sensor.

43

3.3.1 The Step Edge

The first example feature is the step edge. Parametric models of step edges date

back to the work of Hueckel [50]. Since then, the edge has been studied in more

depth than any other visual feature. See Chapter 2 for a comprehensive review

of the feature detection literature. Figures 3.1(a) and 3.1(b) show isometric and

plan views of the step edge model that I used. This model is a generalization of

the models used in [50], [52], and [64]. It is closest to the one used by Nalwa and

Binford [80] in terms of the number and type of parameters, but differs slightly in

its treatment of smoothing and blurring effects. The basis for my 2-D step edge

model is the 1-D unit step function:

u(t) =

1 if t ≥ 0

0 if t < 0.
(3.15)

A 1-D step with lower intensity level A and upper intensity level A + B can be

written as A+ B · u(t). To extend this model to 2-D, I assume that the step edge

is of constant cross-section and step size along its length, is oriented at an angle

θ to the y-axis, and lies at a distance ρ from the origin. Then, as is shown in

Figure 3.1(b), the signed distance of a point (x, y) ∈ Sc from the step is given by:

d = y · cos θ − x · sin θ − ρ. (3.16)

So, an ideal 2-D step edge is given by A+B ·u(d). After incorporating the sensing

and image formation models proposed in Section 3.2.2, the final model is:

F SE(n,m;A,B, θ, ρ, σ) = [A+B · u(d)] ∗ g(x, y; σ) ∗ a(x, y)|x=n,y=m (3.17)

where d is given by Equation (3.16). As can be seen, the step edge model has

five parameters, namely, the orientation angle θ, the sub-pixel localization ρ, the

44

blurring parameter σ, and the brightness values A and B.

To complete the definition, the ranges of the parameters need to be speci-

fied. I measure distances in units of the distance between two adjacent pixels and

angles in degrees. Then, the orientation parameter θ is drawn from [0◦, 360◦], the

localization parameter ρ is restricted to lie in [−
√

2
2
,
√

2
2

] since any edge must pass

closer than a distance
√

2
2

from the center of at least one pixel in the image, and the

blurring parameter σ is drawn from [0.3, 1.5]. As described in [80], substantially

larger values of σ could be used but represent an edge at a much higher scale. Such

cases require the use of a larger image window. The intensity parameters A and

B are free to take any value. This is because of the parameter normalization de-

scribed in Section 3.2.4; the structure of a normalized step edge is independent of

A and B and is just determined by the other three parameters θ, ρ, and σ. Given a

normalized step edge, the values of A and B can be recovered from the coordinate

mean µ and total variance ν2 using the method described in Section 3.2.5.

The results of applying the Karhunen-Loéve expansion are displayed in Fig-

ures 3.1(c) and 3.1(d). For these figures, I chose to use a feature window S with 49

pixels. In my implementation, any size and shape window can be used. Moreover,

to avoid the unnecessary non-linearities induced by a square window, I used a disc

shaped one. In Figure 3.1(c), I display the eight most prominent eigenvectors, or-

dered by their eigenvalues. The similarity between the first four eigenvectors and

the ones derived analytically by Hummel in [52] is immediate. Notice, however,

that while the eigenvectors of [52] are radially symmetric, the ones in Figure 3.1(c)

are not. This is to be expected since the introduction of the parameters ρ and σ

breaks the radial symmetry of Hummel’s edge model. While the eigenvectors in

45

x

y

I

A

A+B

y

x

z

θ

ρ

A

A+B

(a) Step edge model (b) Plan view

"se.man"

-0.5
0

0.5
-0.5

0

0.5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(e) Step edge parametric manifold

ρ

θ

(d) Decay of the K-L residue(c) First 8 eigenvectors

1 2 3 4

5 6 7 8
0

0.2

0.4

0.6

0.8

1

2 4 6 88 10 12 14 16 18 20

"step_edge_disc9x9.eval"
1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10 12 14 16 18 20

Sc

Figure 3.1: The step edge model includes two constant intensity regions of brightness
A and A + B. Its orientation and sub-pixel localization are given by the parameters θ
and ρ respectively. The fifth parameter (not shown) is the blur parameter σ. The decay
of the K-L residual shows that 90% of the edge image content is preserved by the first
three eigenvectors and 98% by the first eight eigenvectors. The step edge manifold is
parameterized by orientation and sub-pixel localization for a fixed blurring value and is
displayed in a 3-D subspace constructed using the first three K-L eigenvectors.

46

[52] are optimal for the edge model used there, Figure 3.1(c) shows that they are

not optimal for my, more realistic, edge model. Also, note the resemblance of the

first two eigenvectors to the first-order spatial derivative operators that constitute

the basis of many simple edge detectors, such as the Sobel operator [102].

In Figure 3.1(d), the decay of the Karhunen-Loéve residual is plotted as a

function of the number of eigenvectors. As can be seen, the first two eigenvec-

tors capture about 80% of the information. To reduce the residual to 10% three

eigenvectors are needed, and to reduce it further to 2% eight eigenvectors must be

used. These results represent a compression factor in the range 5-15. As a result,

the efficiency of feature detection is greatly enhanced. In [52], Hummel derives the

result that the eigenvalues for his continuous step edge model should decay like

1/n2. The results in Figure 3.1(d) are consistent with this prediction. By plotting

λn against n on logarithmic scales and fitting a straight line to the curve, I found

that the eigenvalues initially decay like 1/n2. However, because I am working in

RN rather than the infinite dimensional continuous domain considered in [52], the

rate of decay increases for larger n.

The step edge manifold is displayed in Figure 3.1(e). Naturally, I only display

a projection of it into a 3-D subspace. The subspace chosen is the one spanned

by the three most prominent eigenvectors. Also, for clarity I only display a two

parameter slice through the manifold, keeping σ constant while varying θ and ρ.

As mentioned earlier, the first three eigenvectors capture more than 90% of the

information. This is reflected in Figure 3.1(e), where most points on the manifold

are seen to lie close to unit distance from the origin. Finally, note that the four

apparent singularities of the manifold are simply artifacts of the projection into the

47

3-D subspace. If it was possible to visualize a higher dimensional projection, these

apparent singularities would disappear.

3.3.2 The Roof Edge

Unlike the step edge, the roof edge has not been studied much in the past despite

having been acknowledged as a pertinent feature [79]. The only difference between

the two edge models is that the step discontinuity in the step edge is replaced by a

uniform intensity slope in the roof edge, as is shown in Figure 3.2(a). An algebraic

definition is obtained by replacing A + B · u(d) with A −M · d · u(d), where A is

the upper intensity level of the roof, and M is the gradient of the slope. The result

is a five parameter model:

FRE(n,m;A,M, θ, ρ, σ) = [A−M · d · u(d)] ∗ g(x, y; σ) ∗ a(x, y)|x=n,y=m (3.18)

where u(d) and d are as defined for the step edge. The parameter ranges that I

used for the roof edge are: θ ∈ [0◦, 360◦], ρ ∈ [−
√

2
2
,
√

2
2

], and σ ∈ [0.4, 1.0]. The

range of σ is less than that for the step edge since blur has more effect on the roof

edge for the same size window. Increasing the size of the window would allow a

larger range for σ. The parameters A and M are free to take any value. As for the

step edge, the structure of the normalized roof edge is independent of A and M ,

and their values can be recovered from the normalization coefficients µ and ν. See

Section 3.2.5 for the details of how to invert the parameter normalization.

The results of applying the Karhunen-Loéve expansion, presented in Fig-

ures 3.2(c) and 3.2(d), are similar to those for the step edge. In fact, the first two

eigenvectors are almost exactly the same as those for the step edge, at least up to a

48

(a) Roof edge model (b) Plan view

x

y

I

A

y

x

z

θ

ρ

A

A-d⋅M

"re2.man"

-0.5
0

0.5
-0.5

0

0.5

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

(e) Roof edge parametric manifold

ρθ

(c) First 8 eigenvectors (d) Decay of the K-L residue

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

"roof_edge_disc9x9.eval"
1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10 12 14 16 18 20

1 2 3 4

5 6 7 8

Sc

Figure 3.2: The roof edge has a region of constant intensity A on one side of the edge
and a uniform intensity slope of gradient M on the other. Both parameters A and M

are removed by the parameter normalization. The orientation parameter θ, the sub-pixel
localization parameter ρ, and the blur parameter σ are similar to those used in the step
edge. After the first two eigenvectors, the K-L residual decays marginally faster for the
roof edge than for the step edge. The displayed slice through the roof edge manifold is
parameterized by orientation and intrapixel displacement for a fixed blurring value.

49

sign change. The K-L residual decays slightly faster for the roof edge, as might be

expected since the roof edge more closely resembles a constant intensity region than

the step edge. (The residual of a constant intensity region would decay immediately

to zero.) For the roof edge, three eigenvectors are also needed to capture 90% of

the information, but only five eigenvectors for 98%. The parametric manifold for

the roof edge is displayed in Figure 3.2(e). The significant difference in appear-

ance compared to the step edge manifold is due to the difference between the third

eigenvectors of the two features. The projection onto the first two eigenvectors is

similar; it is approximately a circle in both cases.

3.3.3 The Symmetric Line

A line can be thought of as a pair of parallel step edges separated by a short

distance w, the width of the line [51]. The line model which I used is illustrated in

Figure 3.3(a). I assume that the step edges are both of the same magnitude and so

the line is symmetric. It is possible to generalize this model to lines with different

intensities on the two sides of the line by adding one more parameter [51]. The

symmetric line model that I used has six parameters and is given by:

FL(n,m;A,B, θ, ρ, w, σ) = [A+ B · u(d+ w/2)−B · u(d− w/2)]

∗ g(x, y; σ) ∗ a(x, y)|x=n,y=m. (3.19)

The ranges of the parameters ρ and σ are exactly the same as for the roof edge:

ρ ∈ [−
√

2
2
,
√

2
2

] and σ ∈ [0.4, 1.0]. Given the symmetry of the line model, the range

of the orientation parameter can be halved to θ ∈ [0◦, 180◦]. The width of the line

is restricted to w ∈ [1.0, 3.5]. The brightness parameters A and B are free to take

50

(a) Line model (b) Plan view

"l.man"

-0.5

0

0.5
-0.5

0

0.5
-1

-0.5

0

0.5

1

(e) Line parametric manifold

ρ

θ

x

y

I

A A
A+B

y

x

z

θ

ρ-w/2

A

w

A

A+B

(c) First 8 eigenvectors (d) Decay of the K-L residue

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

"line_disc11x11.eval"
1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10 12 14 16 18 20

1 2 3 4

5 6 7 8

Sc

Figure 3.3: The line is of width w, has intensity A+B on the line itself, and has regions
of intensity A on either side of the line. In addition, there is an orientation parameter
θ, a sub-pixel localization parameter ρ, and a blur parameter σ. Eight eigenvectors are
need to capture 90% of the information and twenty-two eigenvectors for 98%. By this
measure, the line is a more complex feature than either of the edges. The line manifold
is displayed for fixed values of σ and w and has the structure of a Möbius band.

51

any value, just as for both edge models. They can be eliminated by applying the

normalization described in Section 3.2.4, and recovered from µ and ν using exactly

the same algorithm as for the step edge.

The result of applying the Karhunen-Loéve expansion is a little different

from the results for the previous features. Most significant is the lower rate of

decay in the residual, as seen in Figure 3.3(d). To reduce the residual to 10% eight

eigenvectors are required, and to reduce it to 2% twenty-two must be used. By this

measure, the line is a considerably more complex feature than either of the edges.

However, the data compression is still large, and in the range 3-5. Finally, note

that the line manifold in Figure 3.3(e) has the structure of a Möbius band. This

fact follows from the following symmetry in the line model:

FL(n,m;A,B, θ + 180◦, ρ, w, σ) = FL(n,m;A,B, θ,−ρ, w, σ). (3.20)

3.3.4 The Corner

The corner is a common and important feature [84]. Most existing corner detectors

are based upon differential invariant based measures of curvature [30], but Rohr

[106] recently proposed a parametric model matching approach to corner detection.

The simplest way to think about a corner is as the intersection of two non-parallel

step edges. In my corner model, shown in Figure 3.4(a), θ1 is the angle one of these

edges makes with the y-axis, and θ2 the angle subtended by the corner. That is, the

corner lies at the intersection of its bounding edges at angles θ1 and 180◦+ θ1 + θ2.

This situation is illustrated in Figure 3.4(b). Algebraically, the intersection can be

expressed as the product of two unit step functions. The final corner model has

52

"c4.man"

-0.5
0

0.5
-0.5

0

0.5-1

-0.5

0

0.5

1

x

y

I

A

B

y

x

A

A+B

θ
θ

1
2

(a) Corner model (b) Plan view

(e) Corner parametric manifold

θ1

2θ

(d) Decay of the K-L residue

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

"corner_disc11x11.eval"
1.0

0.8

0.6

0.4

0.2

2 4 6 8 10 12 14 16 18 20

1 2 3 4

5 6 7 8

(c) First 8 eigenvectors

Sc

Figure 3.4: The corner is described by the intensity values A+ B inside and A outside
the corner, the angles θ1 and θ2 made by its edges, and the blur parameter σ. Seven
eigenvectors are needed to preserve 90% of the information and fifteen eigenvectors for
98%. The corner manifold is shown for a fixed value of σ.

53

five parameters and is written as:

FC(n,m;A,B, θ1, θ2, σ) = [A+B · u(d(θ1)) · u(d(180◦ + θ1 + θ2))]

∗ g(x, y; σ) ∗ a(x, y)|x=n,y=m (3.21)

where d(θ) = y · cos θ − x · sin θ. The parameter ranges are: θ1 ∈ [0◦, 360◦],

θ2 ∈ [30◦, 120◦], and σ ∈ [0.4, 1.0]. Again, parameter normalization eliminates the

parameters A and B. The decay of the K-L residual, shown in Figure 3.4(d), is

similar to that of the line. In this case, seven eigenvectors reduce the residual to

below 10%, and fifteen eigenvectors are needed to reduce it to less than 2%. The

corner manifold is displayed for fixed σ in Figure 3.4(e).

3.3.5 The Circular Disc

My final example feature, the circular disc, is illustrated in Figures 3.5(a) and

3.5(b). Its parameters are its radius r, the direction θ that the center P of the

disc makes with the y axis, the sub-pixel localization ρ, and the level of blurring

σ. The intensity values inside and outside the disc are A+ B and A, respectively.

Algebraically, the circular disc can be expressed as:

FCD(n,m;A,B, θ, ρ, r, σ) = [A+B · u(r − d(x, y))] ∗ g(x, y; σ) ∗ a(x, y)|x=n,y=m

(3.22)

where d(x, y) =
√

(x+ [r + ρ] sin θ)2 + (y − [r + ρ] cos θ)2 is the distance of (x, y)

from the point P = (−[r + ρ] sin θ, [r + ρ] cos θ). The parameter ranges are: θ ∈

[0◦, 360◦], ρ ∈ [−
√

2
2
,
√

2
2

], r ∈ [3.0, 12.0], and σ ∈ [0.4, 1.0]. Again, parameter

normalization removes the effects of A and B. The rate of decay of the K-L residual

in Figure 3.5(d) is slightly slower than that of the step edge. In this case, four

54

eigenvectors are needed to reduce the residual to 10%, and eleven eigenvectors to

reduce it below 2%. The first eight eigenvectors are shown in Figure 3.5(c) and the

feature manifold is displayed in Figure 3.5(e).

3.4 Feature Detection and Parameter Estimation

In Section 3.2, I introduced parametric manifolds as a representation for arbitrary

parametric features. I also showed how this representation can be made much more

compact through parameter normalization and dimension reduction. I now explain

how feature detection is actually performed using the feature manifold. The first

step consists of sampling the manifold.

3.4.1 Sampling the Parametric Manifold

After two parameters have been eliminated by applying the parameter normal-

ization described in Section 3.2.4, the feature manifold is typically parameterized

by k = 3–4 parameters. To sample the manifold, I first sample each parameter

separately, and at equally spaced intervals across its range. Then, I sample the

manifold at the cartesian product of these points; ie. I sample the manifold on a

k-dimensional grid. One question remains unanswered: how densely should each

individual parameter be sampled?

The answer to this question depends upon how much varying each parameter

affects the feature. If changing a particular parameter causes the feature to vary

rapidly, it should be sampled densely to capture the complete variation in the

feature. On the other hand, if changing a parameter results in only a small change

55

(a) Circular disc model (b) Plan view

(e) Circular disc parametric manifold

θ
ρ

"a.man"

-0.5
0

0.5
-0.5

0

0.5

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

(c) First 8 eigenvectors (d) Decay of the K-L residue

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

"arc_disc11x11.eval"

x

y

I

A

B

x

θ

ρ

A

A+B

r

P

z

1.0

0.8

0.6

0.4

0.2

2 4 6 8 10 12 14 16 18 20

1 2 3 4

5 6 7 8

S

y

c

Figure 3.5: The circular disc is described by the intensity parameters A and B, the radius
r of the disc, the angle θ subtended by the center of the disc, the sub-pixel localization ρ,
and the blur parameter σ. Four eigenvectors are needed to preserve 90% of the information
and eleven eigenvectors for 98%. The manifold is displayed for fixed values of σ and r.

56

Table 3.1: Automatically generated sampling intervals for the five example features.
These sampling intervals were generated by attempting to ensure that the distance be-
tween each pair of neighboring sample points is the same, while at the same time limiting
the total to 50,000 sample points. The results can also be used to assess the importance
of each parameter to the feature. The most important parameters are the ones with the
smallest sampling intervals.

Feature Step Edge Roof Edge Line Corner Circular Disc

No. Sample Points 49500 45300 41040 45650 41328

∆θ 2.007 ∆θ 0.796 ∆θ 2.532 ∆θ 2.171 ∆θ 2.928

∆ρ 0.082 ∆ρ 0.081 ∆ρ 0.106 ∆θ 2.930 ∆ρ 0.144

∆σ 0.136 ∆σ 0.161 ∆σ 0.376 ∆σ 0.122 ∆σ 0.174

∆w 0.218 ∆r 2.282

1

2

o oo

o

oo

in the feature, there is little point in sampling it densely since the noise inherent in

the image will fundamentally limit how accurately that parameter can be estimated

anyway. As a rough guideline, the distance between between neighboring samples

should be of the same order of magnitude as the average change caused by noise.

In the absence of an accurate estimate of the noise level, I first decide how

many sample points can be afforded, for either time or space complexity reasons.

Then, I sample the manifold as densely as possible with approximately that number

of sample points. Table 3.1 contains the output of an algorithm that first estimates

the average rate of change of the feature location with respect to each parameter,

and then uses these estimates to derive sampling intervals. The input to the al-

gorithm was the request to generate manifold samplings containing approximately

50,000 sample points. The output is displayed in a separate column for each feature

and consists of the sampling interval determined for each parameter.

57

3.4.2 Search for the Closest Sample Point

Once the manifold has been sampled, feature detection can be performed by finding

the closest sample point to the point corresponding to the pixel intensity values in

a novel image window. If the closest sample point is near enough, the feature is

detected and the parameters of the sample point can be used as estimates of the

parameters of the feature just detected. On the other hand, if the closest sample

point is too far away, the feature is not detected.

Finding the nearest neighbor amongst a fixed set of points to a given novel

point is a well studied problem that was first posed by Knuth [59]. A recent paper by

Yanilos [119] contains a comprehensive survey of algorithms developed since then.

The task of finding the closest sample point on the manifold has more structure than

the general nearest neighbor problem since the sample points lie on the manifold.

Rather than using any of the general purpose algorithms, I take advantage of the

locally smooth nature of the feature manifolds and use a less general but faster

search technique. In particular, I used a 4-level heuristic coarse-to-fine search. It

does not guarantee finding the closest sample point for pathological manifolds, but

through statistical tests I found that it performs very well in practice. For each

of the five manifolds sampled using the intervals in Figure 3.1, the coarse-to-fine

search results in a speed-up of about 50-100 times over linear search, with average

error less than the spacing between neighboring samples.

The coarse-to-fine search is both conceptually simple as well as very easy to

implement. The manifold is sampled several times, giving a sequence of grids, from

a very coarse grid with few points up to the finest grid containing the most points.

The finest grid consists of the sample points given by the intervals in Figure 3.1.

58

The search begins by finding the closest point on the coarsest grid using a brute

force linear search. This does not take long since the coarsest grid does not contain

many points. The search then moves to the next finest grid. This grid is searched

locally in the region of the result of the previous level. This search is also a linear

brute force search. Again, it does not take long since it is only a local search and on

a relatively coarse grid. This approach is repeated for each grid in turn, reducing

the size of the local search at each step, until the finest grid is reached. The result

of the local search on the finest grid is output as the final result.

3.4.3 Further Efficiency Improvements

On a 1993 DEC Alpha 3600 workstation with no additional hardware, the coarse-to-

fine search for a 3 parameter manifold sampled at 50,000 points in a 10-D subspace

takes approximately 1 milli-second. So, applying the detector to every pixel in a

512× 480 image takes around 4 minutes. This figure is by no means the best that

can be achieved in terms of efficiency:

Pattern Rejection: The coarse-to-fine search does not need to be applied at every

pixel in the image. This observation is almost as old as edge detection itself

and is explicitly mentioned in [50]. Combining a variety of techniques, I have

already reduced the time to process a 512×480 image to less than a minute. I

first threshold on the total coordinate variance ν2 computed during parameter

normalization. Avoiding feature windows with small total variance in this way

is similar to the use of the interest operator [73] to assess the reliability of

potential stereo correspondence matches. Next, I threshold on the distance

of the input from the K-L subspace. Since the distance from the subspace

59

is approximately a lower bound on the distance from the manifold, the pixel

can be eliminated if the input is too far from the subspace. Finally, using the

pattern rejection techniques in [4] and[5], it is even possible to eliminate most

of the cost of computing the distance to the K-L subspace.

Parallel Implementation: Feature detection is inherently a parallelizable task

because a detector can be applied to each pixel independently. An implemen-

tation on a multi-processor workstation could easily cut the times mentioned

above by a factor of 3-4, or more. Moreover, it is reasonable to expect con-

tinuing performance increases for the individual processors, thereby further

improving the efficiency. It is safe to expect that, within a few years, a stan-

dard workstation will be able to apply these detectors in close to real-time.

60

Chapter 4

Experimental Evaluation

In this chapter, I present the results of an experimental evaluation of the feature

detector developed in Chapter 3. Of the four evaluation methodologies described in

Section 2.5.2, I applied two: (1) statistical tests on synthetically generated data, the

results of which are presented in Section 4.1, and (2) subjective human evaluation,

the results of which are presented in Section 4.2. Later in this thesis, I propose

a class of benchmarks for the evaluation of edge detectors that can be computed

directly from the output of the detector. In Chapter 6, I include the results obtained

by my step edge detector on these benchmarks.

4.1 Statistical Tests

As I described in Section 2.5.1, there are a large number of different performance

measures that can be estimated using statistical tests. Here, I just consider the

two most fundamental: (1) feature detection robustness (ie. the rates of occurrence

of false positives and false negatives) in Section 4.1.1, and (2) the parameter esti-

61

mation accuracy in Section 4.1.2. In both cases, I compare the step edge detector

developed in the previous chapter with a Canny-like operator [20] and the Nalwa-

Binford [80] detector. In doing so, the aim is to demonstrate that the parametric

manifold step edge detector performs comparably to these well known and highly

regarded detectors. I also compare the performance of the parametric manifold

technique across the five example features. The goal of this second comparison is

to demonstrate the generality of the algorithm by showing that the performance is

similar for all five features. In the remainder of this section, I largely follow the

expermental approach taken by Nalwa and Binford in [80].

4.1.1 Feature Detection Robustness

The statistical test for feature detection robustness consists of two phases. In the

first one, I generate a large number of ideal features, add zero-mean Gaussian noise

to them, and then apply the detectors. Whenever a detector fails to detect a feature,

I increment a count of false negatives. The second phase consists of generating a

large number of windows that do not contain the feature, adding noise, and again

applying the detectors. Whenever a detector responds erroneously and mistakenly

detects a feature, I increment a count of false positives.

Although the basic idea behind the comparison is simple enough, there are a

number of difficult decisions that need to be made. The first problem arises because

each detector is based upon its own model of a feature. My step edge model and

the Nalwa-Binford model are similar, but the Canny-like operator is based upon

a differential invariant rather than a parametric model. Since I took great care

modeling both image formation and the features themselves, I used my feature

62

models in all of the tests. Doing so slightly biases the comparison with Canny and

Nalwa-Binford in favor of my step edge detector. However, since my goal is only to

demonstrate that the detectors perform similarly, this decision is not as important

as it would be if my aim was to claim superiority.

For fairness, I changed some of the details of my feature models. Both the

Canny and Nalwa-Binford detectors assume a constant amount of blur, so I fixed

the value of σ in my step edge model to be 0.6 pixels. Secondly, the Nalwa-Binford

detector is based upon a square 5× 5 window, as is the Canny-like operator in the

implementation1 that I used. Hence, I used a square window containing N = 25

pixels for the comparison with Canny and Nalwa-Binford, that is as opposed to the

N = 49 pixel disc-shaped window used in Figure 3.1.

Another difficult issue is the lack of a model for a window of data not con-

taining a feature [79]. I resolve this issue, as was done in [80], by taking a constant

intensity window as the characteristic non-feature. During my investigation into

the selection of optimal weighting functions in Chapter 5, I generalize this notion

of what is not a feature. The finally difficulty is the need to be able to measure

the amount of noise in a consistent way across all five features. I define the S.N.R.

of an arbitrary feature to be 2×ν
σnoise

, where ν2 is the coordinate total variance of the

feature instance defined in Section 3.2.4, and σnoise is the standard deviation of the

added Gaussian noise. The reason for this definition is that, for a step edge with

no blur in a window where half of the pixels are on each side of the edge, the value

1I used an implementation of the Canny operator provided by Geoff West of Curtin Univer-
sity, Western Australia. This implementation is publically available on the Web from the URL
http://www.cs.curtin.edu.au/∼geoff/. Geoff West’s implementation only computes the Gaussian
smoothed gradient, which I simply threshold to detect edges. For simplicity, I do not find the
zero crossing of the second directional derivative. Neither do I perform hysteresis [20] since it uses
information derived from neighboring windows, something I explicitly outlawed in this thesis.

63

0

20

40

60

80

100

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 F

al
se

 N
eg

at
iv

es

Percentage of False Positives

Parametric Manifold
Canny

Nalwa-Binford

Figure 4.1: A comparison of the feature detection robustness for the Canny, Nalwa-
Binford, and parametric manifold step edge detectors for S.N.R. = 1.0. I plot false
positives against false negatives. For each detector, the result is a curve parameterized
by the threshold inherent in that detector. The closer a curve lies to the origin, the better
the performance. It can be seen that the Canny detector and the parametric manifold
detector perform comparably, with the parametric manifold algorithm doing marginally
better. The results for the Nalwa-Binford detector are consistent with those presented in
[80], but are of a fundamentally different nature. See the text for further discussion.

of this expression is the same as the definition used in [80].

In Figure 4.1, I compare the feature detection robustness of the Canny,

Nalwa-Binford, and parametric manifold step edge detectors for S.N.R. 1.0. Inher-

ent in each detector is a threshold. The Canny operator thresholds on the gradient

magnitude, the Nalwa-Binford detector thresholds on the estimated step size, and

the parametric manifold detector thresholds on the distance from the manifold.

As the threshold is varied, for a fixed level of noise, the relative number of false

positives and false negatives changes. So, I plot a curve of false positives against

64

false negatives parameterized by the appropriate threshold. The closer a curve lies

to the origin in Figure 4.1, the better the performance. Hence, my detector and

the Canny detector perform comparably, with my algorithm doing slightly better.

The results for the Nalwa-Binford detector are consistent with those pre-

sented in [80]. I did not use step 2)’ of the algorithm. The percentage of false

positives for the Nalwa-Binford detector never exceeds about 32%. This is in agree-

ment with Figure 8 of [80]. Secondly, for S.N.R. of 1.0 the number of false negatives

in Figure 4.1 never drops below about 56%, whereas in Figure 9 of [80] its lowest

level is 77%. These two numerical results are slightly different because: (1) I use

a different model to generate the ideal step edges, and (b) my definition of S.N.R.

yields a slightly lower value than the definition in [80] due to blurred and off-center

edges. Comparing the results with those in Figure 9 of [80], it can be seen that

the curve in Figure 4.1 corresponds to a curve somewhere between S.N.R. 1.0 and

2.0. The reason that the Nalwa-Binford detector performs qualitatively differently

to the Canny and parametric manifold detectors is its inherent conservatism, as

enforced by steps 4) and 5) of the algorithm. See page 704 of [80].

In Figure 4.2, I compare the feature detection robustness of the five example

features introduced in Chapter 3. In the figure, the curves are all plotted for S.N.R.

1.0 and for a disc shaped window containing 61 pixels. It can be seen immediately

that the performance for the step edge and the circular disc is marginally superior

to that for the other three features, but four of the five features perform similarly.

The roof edge is somewhat more noise sensitive than the other four. One method

of reducing the noise sensitivity is to use a slightly larger window. If the window

size is increased to a disc containing 89 pixels, the performance is greatly enhanced.

65

0

20

40

60

80

100

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 F

al
se

 N
eg

at
iv

es

Percentage of False Positives

Step Edge
Roof Edge

Symmetric Line
Corner

Circular Disc

Figure 4.2: A comparison of the feature detection robustness for the five example features
of Chapter 3. All of the results are for S.N.R. = 1.0 and for a disc shaped window
containing 61 pixels. It can be seen that the step edge and circular disc are slightly less
noise sensitive than the other features and that the roof edge is the most noise sensitive.

Naturally, the performance for all five feature also improves rapidly with S.N.R.

4.1.2 Parameter Estimation Accuracy

Assessing the parameter estimation accuracy of a feature detector is relatively

straightforward when compared to how difficult it is for the feature detection ro-

bustness. Again, I follow the approach taken in [80]. Conducting the experiments

consists of generating a large number of ideal features, adding a known amount of

zero-mean white Gaussian noise, applying the detectors, and finally measuring the

accuracy of the estimated parameters. The question of which models should be

used to generate the features is still problematic. For the same reasons as above, I

66

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35

R
M

S
 E

rr
or

 in
 O

rie
nt

at
io

n
A

ng
le

 T
he

ta

Signal to Noise Ratio

Canny
Nalwa-Binford

Parametric Manifold

Figure 4.3: A comparison of the orientation estimation accuracy for the three step edge
detectors. I took synthesized step edges, added noise to them, and then applied the
three detectors. I plot the R.M.S. error in the orientation estimate against the S.N.R. At
all noise levels, the parametric manifold detector slightly outperforms both the Nalwa-
Binford and Canny detectors.

used my feature models with the same modifications for fairness.

Figures 4.3–4.6 contain the results of the comparison of my step edge detector

with the Canny and Nalwa-Binford detectors. In each of the four figures, I plot the

R.M.S. error in the estimate of one of the parameters against the S.N.R. Figure 4.3

contains the results for the orientation parameter θ. Since the implementation of

the Canny detector that I used does not provide estimates of the other parameters

(the sub-pixel localization ρ, the base intensity level A, and the intensity step B),

the other three figures only contain comparisons with the Nalwa-Binford detec-

tor. In terms of orientation estimation, the parametric manifold detector performs

slightly better than the other detectors. For the sub-pixel localization the perfor-

67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

R
M

S
 E

rr
or

 in
 L

oc
al

iz
at

io
n

R
ho

Signal to Noise Ratio

Nalwa-Binford
Parametric Manifold

Figure 4.4: A comparison of the localization estimation accuracy for the Nalwa-Binford
and parametric manifold step edge detectors. Both detectors perform similarly.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

R
M

S
 E

rr
or

 in
 B

as
e

P
ar

am
et

er
 A

Signal to Noise Ratio

Parametric Manifold
Nalwa-Binford

Figure 4.5: A comparison of the base intensity estimation accuracy for the Nalwa-Binford
and parametric manifold step edge detectors. The Nalwa-Binford performs better than
the parametric manifold detector for high noise levels.

68

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35

R
M

S
 E

rr
or

 in
 S

te
p

P
ar

am
et

er
 B

Signal to Noise Ratio

Parametric Manifold
Nalwa-Binford

Figure 4.6: A comparison of the step intensity estimation accuracy for the Nalwa-Binford
and parametric manifold step edge detectors. The Nalwa-Binford performs better than
the parametric manifold detector for high noise levels.

mance is about the same, but for the estimation of the two brightness parameters

the Nalwa-Binford is slightly better. The fact that the Nalwa-Binford detector does

somewhat better than the parametric manifold detector when estimating the inten-

sity parameters suggests that it may be possible to improve on the algorithm used

to recover the normalized parameters described in Section 3.2.5. Finally, note that

the results for the Nalwa-Binford detector are consistent with those presented in

[80], after allowing for the slightly different feature models and definition of S.N.R.

Next, I compare the performance of four of my five example features. The

results for the circular disc are almost identical to the step edge and so are omit-

ted for clarity. Since all of the feature models have an orientation parameter, in

Figure 4.7, I plot the R.M.S. error in the orientation estimate against the S.N.R.

69

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

R
M

S
 E

rr
or

 in
 O

rie
nt

at
io

n
A

ng
le

 T
he

ta

Signal to Noise Ratio

Step Edge
Roof Edge

Symmetric Line
Corner

Figure 4.7: A comparison of the orientation estimation accuracy for the step edge, the
roof edge, the symmetric line, and the corner. All four features perform similarly.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

R
M

S
 E

rr
or

 in
 L

oc
al

iz
at

io
n

P
ar

am
et

er
 R

ho

Signal to Noise Ratio

Step Edge
Roof Edge

Symmetric Line

Figure 4.8: A comparison of the localization estimation accuracy for the step edge, the
roof edge, and the symmetric line. The line performs the best, followed by the step edge,
with the roof edge performing by far the worst.

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

R
M

S
 E

rr
or

 in
 B

as
e

In
te

ns
ity

 P
ar

am
et

er
 A

Signal to Noise Ratio

Step Edge
Symmetric Line

Corner

Figure 4.9: A comparison of the base intensity estimation accuracy for the step edge,
the symmetric line, and the corner. All three features perform similarly.

As can be seen, all of the features perform similarly, with the symmetric line doing

the best, followed closely by the step edge and the roof edge. Only for the corner

is the orientation estimation accuracy somewhat worse than for the other features.

In Figure 4.8, a similar graph is plotted for the localization estimation accuracy of

the three features that have this parameter. Here, there is a dramatic variation in

the performance across the three features, with the symmetric line doing the best

followed by the step edge. The roof edge does very poorly. The good performance

of the line can be explained by the fact that its localization estimate can be re-

garded as the average of the estimates for the two step edges it is composed of. In

Figures 4.9 and 4.10, I plot the estimation accuracy for the base and step intensity

levels. The results for the roof edge are omitted since the intensity levels have a

different meaning. The results are quite similar for all three features, with one

71

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35

R
M

S
 E

rr
or

 in
 S

te
p

In
te

ns
ity

 P
ar

am
et

er
 B

Signal to Noise Ratio

Step Edge
Symmetric Line

Corner

Figure 4.10: A comparison of the intensity step estimation accuracy for the step edge,
the symmetric line, and the corner. The symmetric line performs worse than the other
two features, since, for thin lines, very few of the pixels are at the upper intensity level.

major exception. The estimation of the intensity step for the line is significantly

worse than for the step edge and the corner. The explanation of this fact is that,

for thin lines, very few of the pixels are at the upper intensity level.

4.2 Subjective Human Comparison

The most frequently used evaluation technique consists of applying the detectors to

a number of real or synthetic images, and then presenting the output to a human for

their subjective evaluation. The advantage of using synthetic images is that there

can be little argument as to which features should be detected in the images. The

disadvantage is that artificial noise processes need to be assumed to generate the

images. Typically, there is no way to justify that the noise added is representative of

72

(a) Noisy synthetic image (b) Step edges (c) Roof edges

(d) Lines (e) Corners (f) Circular discs

Figure 4.11: The results of applying the five feature detectors to a noisy synthetic
image. The five different features are detected and discriminated in an image using the
same algorithm. The only difference between the detectors is the parametric model of
the feature used to build the detector.

the noise actually found in real images. Here, I present results on synthetic images

in Section 4.2.1, on images scanned from [86] in Section 4.2.2, and on images taken

from the INRIA image database in Section 4.2.3.

4.2.1 Application to Synthetic Images

In Figures 4.11(b)–(f), I display the results of applying my five example detectors to

the noisy synthetic image in Figure 4.11(a). The synthetic image is of size 128×128

pixels and contains a irregular pentagon (intensity 175 grey levels), a circular disc

(radius 8.5 pixels, intensity 206 grey levels), a line (width 2.3 pixels, intensity

73

153 grey levels), and a roof edge (slope 4 grey levels per pixel). The background

intensity is 110 grey levels. The image was first blurred with a Guassian (σ = 0.6

pixels) and then white zero-mean Gaussian noise (σ = 4.0 grey levels) added.

The results shown in Figures 4.11(b)–(f) are obtained by simply thresholding

the distance to the feature manifold. At pixels where two or more feature detectors

register the presence of a feature, only the one with the closest manifold is detected.

As can be seen, the five features are detected and discriminated very well. The only

slight confusion is the false detection of circular discs close to one of the corners of

the pentagon. This effect is also seen in the real images in the following section.

The reason is quite simply that even after only a moderate amount of blurring,

corners and circular discs appear very similar.

4.2.2 Application to Scanned Images

In Figures 4.12(b)–(d), 4.13(b)–(d), and 4.14(b)–(d), I present some of the results

obtained by applying my example feature detectors to the three greyscale images

in Figures 4.12(a), 4.13(a), and 4.14(a). The original images were all scanned from

[86] using an Envisions 6600S scanner at 200dpi. (Note that the image formation

process for a scanner is somewhat different to that for a camera. Hence, the image

formation model described in Section 3.2.2 should be regarded as only an approx-

imation. The feature detection performance would be further enhanced if a more

accurate image formation model were used.) Feature detection was accomplished

by simply thresholding on the distance from the feature manifold. No further post-

processing or sophisticated thresholding techniques were applied. One slight change

was made to the raw feature maps for clarity of presentation. To make the detected

74

(a) Original image (b) Step edges (blue) & corners (red)

(c) Distance to step edge manifold (d) Distance to corner manifold

Figure 4.12: Results of step edge and corner detection for a 711 × 661 pixel image of
“Red and Blue,” by Gerrit Rietveld, circa 1918, scanned from [86]. The raw unthresholded
detector outputs in (c) and (d) reflect high accuracy in both detection and localization.
Note also that that these results reflect the similarly between the definition of a corner and
a step edge as the angle subtended by the corner nears 180◦. In (b), simple thresholds
were used to find the dominant feature (if any) at each pixel. Some corners remain
undetected because their angles are less than the 30◦ minimum that I imposed in the
definition of a corner in Section 3.3.4.

75

(a) Original image (b) Lines (green) and discs (yellow)

(c) Distance to line manifold (d) Distance to disc manifold

Figure 4.13: Results of line and disc detection for a 796 × 679 pixel image of “Lobster
Trap and Fish Tail,” by Alexander Calder, 1939, scanned from [86]. Though many of
the lines in the image are faint, thin, and incomplete, the line detector does a good job
extracting them. In (b), simple thresholds were used to find the dominant feature at each
pixel. Again, (c) and (d) indicate considerable similarity between the feature definitions.
In this case, a thick line and a disc with a large radius are similar in appearance.

76

(a) Original image (b) Distance to step edge manifold

(c) Distance to corner manifold (d) Distance to line manifold

Figure 4.14: Results of step edge, corner, and line detection for a 564× 611 pixel image
of “Schröder House,” by Gerrit Rietveld, 1924, scanned from [86]. These results convey
the richness of information obtained when multiple feature detectors are applied to an
image, as well as the similarities in some of the feature definitions for extreme parameter
values. The outputs (b), (c), and (d), together with the parameter estimates, could serve
as the basis for a multi-feature relaxation scheme. See Section 7.3.1 for more discussion.

77

corners in Figure 4.12(b) more visible on the printed page, I first applied a non-

maximum suppression algorithm to localize the corners, and then replaced each

detected corner with a 5× 5 disc of highlighted pixels.

The outputs of the step edge and corner detectors in Figures 4.12(b)–(d),

and the line and circular disc detectors in Figures 4.13(b)–(d) are consistent with

the structures of the input images. The results of the step edge, corner, and line

detectors in Figure 4.14(b)–(d) are included to convey the richness of information

obtained when multiple detectors are applied to an image. The distances from sev-

eral feature manifolds, together with estimates of the feature parameters, could be

very valuable in reinforcing or inhibiting the existence of other features at neigh-

boring pixels. Further discussion of this point is contained in Section 7.3.1.

4.2.3 Application to INRIA Images

In Figures 4.15, 4.16, and 4.17, I present the results of applying the step edge,

corner, line, and circular disc detectors to three images taken from the INRIA im-

age database, located at ftp://krakatoa.inria.fr/pub/IMAGES ROBOTVIS/. The

detected edges are overlaid in blue, the detected corners in red, the detected lines

in green, and the detected circular discs in yellow. As above, feature detection was

accomplished by simply thresholding on the distance from the feature manifold,

with no further post-processing applied except for clarity of presentation. As be-

fore, the detected corners are replaced with a 5 × 5 disc so they can be seen. As

can be seen, the detected features capture the structure of the images well. Again,

note that much more information is available to subsequent processing than that

actually shown in the three figures. This information includes the distances to the

78

Figure 4.15: The results of applying the step edge, corner, line, and circular disc detectors
to the 900 × 900 pixel image “INRIA Bulding.” Step edges are overlaid in blue, corners
in red, lines in green, and circular discs in yellow.

79

Figure 4.16: The results of applying the step edge, corner, line, and circular disc detectors
to the 512× 512 pixel image “INRIA Office.” Step edges are overlaid in blue, corners in
red, lines in green, and circular discs in yellow.

80

Figure 4.17: The results of applying the step edge, corner, line, and circular disc detectors
to the 512× 512 pixel image “INRIA Tourn.” Step edges are overlaid in blue, corners in
red, lines in green, and circular discs in yellow.

81

four feature manifolds, and estimates of all the feature parameters.

82

Chapter 5

Optimal Weighting Functions for

Feature Detection

5.1 Introduction

In Chapter 3, I proposed a general purpose feature detection algorithm that uses the

model matching approach described in Section 2.1. A feature is detected by a model

matching detector if there exist valid parameter values such that the image data

and the ideal feature instance with those parameters are sufficiently “similar.” To

measure the degree of similarity, a matching function is required. For convenience, I

simply used the Euclidean L2 norm as the matching function, without any discussion

of the decision. In this chapter, I show how the matching function can be selected

to maximize the performance of the detector.

To the best of my knowledge, the selection of the matching function for a

model matching feature detector has never before been studied in a systematic

manner. In fact, most detectors simply use the Euclidean L2 norm. Other model

83

matching feature detectors have used weighted L2 norms, but in all cases the weight-

ing function was chosen in an ad-hoc manner. See Section 2.1.3 for a survey of the

use of weighted L2 norms in feature detection. In this chapter, I restrict attention

to the class of weighted L2 norms as possible matching function, and investigate

the choice of the weighting function. In studying this question, I am effectively

trying to decide how to weight the contributions of the image data over the fea-

ture window. As will be seen, some pixels provide more reliable information than

others. For instance, when estimating the parameters of a corner, the center pixels

provide little reliable information while the pixels on the periphery are vital for

high performance. On the other hand, the center pixels are the most important

when estimating the sub-pixel localization of a step edge.

The approach that I take in this chapter consists of first proposing optimality

criteria and then optimizing the criteria to derive optimal weighting functions.

Optimality criteria should ideally be chosen so that they are closely related to

performance. The three most important elements of feature detection performance

are: (1) the rate of occurrence of false positives, (2) the rate of occurrence of false

negatives, and (3) the parameter estimation accuracy. A perfect detector would

produce no false positive, no false negatives, and have zero parameter estimation

error. See Section 2.5.1 for a more detailed discussion of performance measures for

feature detectors. In this chapter, I propose separate optimality criteria for each of

these three key aspects of performance. I then show how they can be combined to

form optimality criteria that are more appropriate for specific applications.

Once I have decided upon my optimality criteria, I first investigate analytic

solutions for the optimal weighting functions. In particular, I derive the optimal

84

weighting function for parameter estimation accuracy, under the approximating as-

sumption that the feature manifold is linear. The other optimality criteria are all

highly nonlinear and no analytic solution appears possible. Instead, I propose a

numerical optimization algorithm that can be used to find the optimal weighting

functions. This optimization algorithm can be used for any of the optimality cri-

teria and for arbitrary parametric features. I include the results of applying this

algorithm for three of the features studied in Chapter 3.

The remainder of this chapter is organized as follows. I begin in Section 5.2

by describing how weighted L2 norms can be used as the matching function. In

particular, I show how the feature detection algorithm proposed in Chapter 3 can

be extended to use an arbitrarily weighted L2 norm. In Section 5.3, I introduce

my optimality criteria and in Section 5.4 show how they can be optimized. First,

I present my analytical results. Afterwards, I describe the numerical optimization

algorithm, and present the results of applying it to three of features studied in

Chapter 3. I conclude this chapter with a discussion of a number of important

issues for the design and evaluation of optimal feature detectors.

5.2 Feature Detection using Weighted L2 Norms

In this section, I describe how the general purpose feature detection algorithm that

I proposed in Chapter 3 can be extended to use a weighted L2 norm, without any

significant loss of efficiency. The key step of the algorithm is finding the feature

parameters q that minimize the distance from the point on the manifold with those

parameters to the vector of image data. The algorithm to find the parameters

consists of three substeps:

85

1. Apply the parameter normalization described in Section 3.2.4 to eliminate

two of the intensity parameters from q.

2. As described in Section 3.2.6, use the Karhunen-Loéve expansion to reduce

the dimension of space that the normalized feature manifold lies in.

3. Find the closest point on the normalized feature manifold in the low dimen-

sional subspace using the coarse-to-fine search described in Section 3.4.2.

Using a weighted L2 norm poses no additional difficulty for the coarse-to-fine search.

Therefore, after introducing weighted L2 norms, I describe how parameter normal-

ization and dimension reduction can be performed using a weighted L2 norm.

5.2.1 Weighted L2 Norms

Both the feature detection robustness and the parameter estimation accuracy of

the algorithm in Chapter 3 depend upon the function used to measure the distance

from the vector of input image data to the feature manifold. If a different function

is used, not only will the distance to the manifold change, but also the closest point

will be perturbed. Hence, both the features detected and their parameters will

depend upon the choice of the matching function. I now introduce weighted L2

norms as a class of possible matching functions to choose from.

Every measure w on the pixels leads to a different L2 norm, denoted by either

L2(w) or ‖ · ‖w [25]. A measure is defined by the weight w = w(n,m) ≥ 0 that it

assigns to each of the pixels (n,m) ∈ S. If v1 = (v1(n,m)) and v2 = (v2(n,m)) are

two vectors of pixel intensity values, their weighted inner product is:

〈v1,v2〉w =
∑

(n,m)∈S
w(n,m) · v1(n,m) · v2(n,m) (5.1)

86

and the L2(w) norm of v1 is:

‖v1‖w =
√
〈v1,v1〉w. (5.2)

Strictly speaking, for Equation (5.1) to define an inner product rather than a semi-

inner product, it is also required that w(n,m) > 0 for all (n,m) ∈ S. This is a

minor technical point that can be ignored since feature detection does not require

the definiteness property of the resulting distance function. The Euclidean L2 norm,

denoted by ‖ · ‖, is distinguished as the weighted L2 norm for which the measure of

each pixel is 1.0. Closely related to the Euclidean L2 norm is the sum of squared

differences, or SSD. The SSD of two vectors v1 and v2 is the square of the Euclidean

L2 norm of their difference; ie. it is ‖v1 − v2‖2.

Any weighted L2(w) norm can be used to measure the distance between the

vector of image data I(a, b) = (I(a + n, b + m)) and the ideal feature instance

F(q) = (F (n,m; q)) using:

‖F(q)− I(a, b) ‖w =

 ∑
(n,m)∈S

w(n,m) · [F (n,m; q)− I(a+ n, b+m)]2
1/2

. (5.3)

Feature detection could be based upon the distance between the vector of image

data and the closest ideal feature instance on the manifold. However, since comput-

ing the square of an L2 norm is easier than computing the L2 norm itself, and since

the square root function is monotonic, in Chapter 3 feature detection is equivalently

based upon the square of the distance to the closest point on the manifold. Using

a weighted L2 norm, this squared distance is given by:

min
q
‖F(q)− I(a, b) ‖2

w = min
q

∑
(n,m)∈S

w(n,m) · [F (n,m; q)− I(a+ n, b+m)]2 .

(5.4)

87

Once a feature has been detected, its parameters are estimated using the parameter

values that actually minimize the expression in Equation (5.4).

5.2.2 Parameter Normalization

In Section 3.2.4, a simple normalization was applied that reduces the number of

parameters on the feature manifold and hence the amount of computation required.

For each feature instance, the mean coordinate µ(q) = 1
N

∑
(n,m)∈S F (n,m; q) and

the total coordinate variance ν2(q) =
∑

(n,m)∈S[F (n,m; q) − µ(q)]2 are computed.

Then, the feature instance is normalized:

F (n,m; q) =
1

ν(q)
[F (n,m; q) − µ(q)] . (5.5)

For most features, this simple normalization reduces the number of parameters

by two because F (n,m; q) turns out to be approximately independent of two of

the brightness parameters in q. These two parameters can be ignored during the

construction of the manifold and recovered once a feature has been detected. See

Section 3.2.5 for a description of how to recover the normalized parameters.

If the “all one” vector c ∈ RN is defined by c = (1, 1, . . . , 1) and ĉ = c/‖c‖,

then Equation (5.5) may be rewritten as:

F (n,m; q) =
F (n,m; q) − 〈F (n,m; q), ĉ〉 ĉ
‖F (n,m; q) − 〈F (n,m; q), ĉ〉 ĉ‖ (5.6)

where ‖ · ‖ is the Euclidean L2 norm and 〈 · , · 〉 is the Euclidean inner product.

When using a weighted L2 norm, normalization can be performed exactly as in

Equation (5.6) except that the weighted inner product and weighted L2 norm should

be used in place of their Euclidean equivalents.

88

5.2.3 Dimension Reduction

In the coarse-to-fine search of Section 3.4.2, it is vitally important that the matching

function can be evaluated efficiently. Examining Equation (5.3), it can be seen that

4·N−1 arithmetic operations are needed to evaluate ‖F (n,m; q)−I(a+n, b+m)‖2
w.

In the Euclidean case, this computation is an SSD which can be performed using

only 3 ·N − 1 arithmetic operations. In Chapter 3, the Karhunen-Loéve expansion

is applied as a dimension reduction technique to reduce the cost of evaluating the

SSD even further. I now describe how dimension reduction can be performed when

a weighted L2 norm is being used.

Applying dimension reduction when using a non-uniformly weighted L2 norm

is performed as follows. If {ej | j = 1, 2, . . . , N} is an orthonormal basis, with

respect to the underlying inner product 〈·, ·〉w, then:

‖F (n,m; q)−I(a+n, b+m)‖2
w =

N∑
j=1

[
〈F (n,m; q), ej〉w − 〈I(a+ n, b+m), ej〉w

]2
.

(5.7)

After a suitable change of basis vectors, dimension reduction corresponds to dis-

carding a number of the basis vectors, without loss of generality the last few, and re-

stricting attention to the low dimensional subspace spanned by {ej | j = 1, 2, . . . , d},

where d is the dimension of the low dimensional subspace. Hence, after applying

dimension reduction it is possible to approximate:

‖F (n,m; q)−I(a+n, b+m)‖2
w ≈

d∑
j=1

[
〈F (n,m; q), ej〉w − 〈I(a+ n, b+m), ej〉w

]2
.

(5.8)

Since 〈a, ej〉w is the jth component of the vector a in the low dimensional subspace,

it follows that the square of the weighted L2 norm can be estimated with an SSD

89

in the low dimensional subspace. This result assumes the use of an orthonormal

basis, but orthonormality can easily be obtained using Gram-Schmidt [101]. So, the

weighted L2 norm can be computed with exactly the same cost as the Euclidean

L2 norm: ie. using 3 · d − 1 arithmetic operations. Hence, the only additional

computation cost of using a non-uniformly weighted L2 norm is that incurred during

parameter normalization and projection into the low dimensional subspace. The

coarse-to-fine search incurs the same computational cost.

The equivalent of the Karhunen-Loéve expansion for a weighted L2 norm

is performed as follows. The N × N weighted covariance matrix C = (Cnm,rs) is

computed using:

Cnm,rs = Eq

[
G(n,m; q) · w(r, s) ·G(r, s; q)

]
(5.9)

where E[·] is the expectation operator and G(n,m; q) = F (n,m; q)−Eq[F (n,m; q)].

Then, the d eigenvectors of C with the largest eigenvalues are used as the basis

{ej | j = 1, 2, . . . , d} for the low dimensional subspace.

5.3 Optimality Criteria

A number of optimality criteria for feature detectors have been studied in the

literature. The most well known are the three criteria proposed by Canny in [20]:

Good Detection: “There should be a low probability of failing to mark real edge

points (ie. false negatives) and low probability of falsely marking non-edge

points (ie. false positives)” [12]. Canny argued that both of these criteria are

strongly correlated with the signal to noise ratio (SNR). Hence, he used the

SNR as his first optimality criterion.

90

Good Localization: “The points marked by the operator should be as close as

possible to the center of the true edge” [12]. Canny derived an estimate of

the root mean squared (RMS) displacement of an ideal edge perturbed with

independently and identically distributed Gaussian noise, and used it as his

second optimality criterion.

Few Multiple Responses: For an ideal detector, there should be “only one re-

sponse to a single edge” [12]. Canny derived an estimate for the expected

distance between adjacent edges and used it as his third optimality criterion.

Besides Canny, a number of other authors have studied his three criteria, and

variants thereof, combining them in various ways. See, for example, [12], [113], [28],

[29], [109], and [97]. Other optimality criteria that have been considered include the

energy in the vicinity of the edge [111] [66] [67] [68] and the Discriminative Signal

to Noise Ratio [104]. See Section 2.3 for more discussion of optimal edge detection.

All of the above optimality criteria were developed for feature detectors based

on filtering rather than for the model matching detectors considered in this the-

sis. In the remainder of this section, I propose three optimality criteria that are

more appropriate for model matching detectors. In Section 5.3.1, I consider “Good

Detection” and derive estimates of the probability of a false positive and the prob-

ability of a false negative. I use the term feature detection robustness to refer to

these two optimality criteria together. In Section 5.3.2, I consider parameter esti-

mation accuracy, a generalization of the “Good Localization” criterion to include

all of the feature parameters. In Section 5.3.3, I discuss how these three optimality

criteria can be combined. I do not consider the “Few Multiple Responses” criterion

in this paper since its introduction in [20] was for technical reasons, rather than

91

because it is a fundamental element of feature detection performance.

5.3.1 Feature Detection Robustness

Feature detection is not robust, both when the detector misses features (false neg-

atives), and when the detector mistakenly detects features that are not present

(false positives). Evaluating the robustness of a feature detector is known to be

difficult, amongst other reasons because of the lack of a characteristic model of a

“non-feature” [80] [103]. Canny avoided this problem when defining his optimality

criteria by using the signal to noise ratio, which he claimed to be correlated with

robustness. Both Nalwa and Binford [80] and Ramesh and Haralick [103] simply

used a constant intensity vector as their characteristic non-feature.

To derive my optimality criteria for robustness, I assume that, in addition

to a parametric model of the feature F c(x, y; qc), there is also a parametric model

of the non-feature NF c(x, y; nqc). A suitable non-feature for the step edge might

be a constant gradient slope with three parameters:

NF c
SE (x, y;A, g, θ) = A+ g · (y · cos θ − x · sin θ) (5.10)

where A is the intensity value of the center pixel, g is the gradient of the slope, and

θ is the angle which the direction of steepest ascent makes with the positive y-axis.

The discretized non-feature model NF SE (n,m; nq) is then defined in the same way

that the discretized feature model was in Equation (3.3):

NF SE (n,m; nq) = NF c
SE (x, y;A, g, θ) ∗ g(x, y; σ) ∗ a(x, y)|x=n,y=m. (5.11)

Suppose that there is an ideal feature instance with parameters q in the

scene. If this feature is projected onto a window surrounding the pixel (a, b) in the

92

image I, the vector of image data I(a, b) = (I(a + n, b + m)) should differ from

F(q) = (F (n,m; q)) only because of the noise introduced by the imaging process.

If the noise is modeled by the additive random vector η = (η(n,m)), it follows that:

I(a+ n, b+m) = F (n,m; q) + η(n,m). (5.12)

Assume that pixel (a, b) is mistakenly classified as a non-feature if I(a, b) is closer

to the non-feature manifold than it is to the feature manifold, ie. if:

min
nq
‖ I(a, b)−NF(nq) ‖2

w < min
q
‖ I(a, b)− F(q) ‖2

w. (5.13)

I therefore estimate the probability of a false negative for a feature in the scene

with parameters q to be:

P�(FN | q) = P�

[
min
nq′
‖F(q) + η −NF(nq′)‖2

w < min
q′
‖F(q) + η −F(q′)‖2

w

]
.

(5.14)

Now, P�(FN | q) is still a function of the parameters q. Hence, I allow the designer

of the feature detector to supply a probability distribution P(q) to specify the a

priori likelihood of a feature with parameters q appearing in the scene. Given η

and P(q), I propose the following as my optimality criterion for false negatives:

FN =
∫

P(q) P�(FN | q) dq. (5.15)

Similarly, by reversing the roles of the feature and the non-feature, I propose the

following as my optimality criterion for false positives:

FP =
∫

P(nq) P�(FP | nq) dnq (5.16)

where:

P�(FP |nq) = P�

[
min

q′
‖F(nq) + η − F(q′)‖2

w < min
nq′
‖F(nq) + η −NF(nq′)‖2

w

]
(5.17)

93

and P(nq) is a probability distribution that specifies the a priori likelihood of the

occurrence of a non-feature in the scene with parameters nq.

5.3.2 Parameter Estimation Accuracy

Parameter estimation is inaccurate when the closest point on the manifold is per-

turbed from its correct position. Again, suppose that there is an ideal feature

instance with parameters q in the scene. If this feature is projected onto a window

surrounding pixel (a, b) in image I, the vector of image data I(a, b) will differ from

F(q) because of the noise introduced in the imaging process. If the imaging noise

is again modeled with the additive random vector η = (η(n,m)), it follows that

I(a+n, b+m) = F (n,m; q) + η(n,m). Then, if the closest point on the manifold

to I(a, b) is F(q + ∆q), the error in estimating the parameters will be:

∆q = ∆q(η) = arg min
q′
‖F(q) + η − F(q′)‖2

w − q. (5.18)

Here, the error in estimating parameter qi is ∆qi = ∆qi(η). To obtain a measure

that is independent of the noise added, but not the distribution of the noise, I

average over the noise distribution by taking the root mean squared error:

RMS�[∆qi(η)] =
√

E�[(∆qi(η))2]. (5.19)

Again, RMS�[∆qi(η)] is still a function of the parameters q. Hence, I propose the

following as my optimality criterion for the estimation of parameter qi:

PEqi =
[∫

P(q) (RMS�[∆qi(η)])2 dq
]1/2

(5.20)

where P(q) is the designer supplied probability distribution specifying the a priori

likelihood of a feature appearing in the scene with parameters q.

94

5.3.3 Combinations of Optimality Criteria

In addition to the probability of a false positive FP, the probability of a false

negative FN, and the parameter estimation accuracy PEqi, it is straightforward to

combine these three optimality criteria to form others. One example is the feature

detection robustness:

FDR =
√

FP×FN, (5.21)

another example is the combined parameter estimation accuracy:

CPE =

 |q|∏
i=1

PEqi

1/|q|

, (5.22)

and a final example is the overall feature detection performance:

ODP = FDR×CPE. (5.23)

Other combinations are possible and could also be optimized using the numerical

algorithm that I will propose in Section 5.4.2. One example is FDRp ×CPE1−p,

where p ∈ [0, 1] is a number that can be used to adjust the relative importance

of feature detection robustness and parameter estimation accuracy. The value of p

can be selected based upon the requirements of a specific application.

5.4 Optimization of the Optimality Criteria

I now describe how the optimality criteria just proposed can actually be optimized.

I begin in Section 5.4.1 by discussing an analytical solution for the parameter es-

timation accuracy criterion under the approximating assumption that the feature

manifolds are linear. In Section 5.4.2, I describe a numerical algorithm that can be

95

used to optimize the other criteria. Finally, in Section 5.4.3, I present the results

obtained applying this algorithm for three of the features studied in Chapter 3.

5.4.1 Analysis for Linear Manifolds

Analyzing the optimality criteria proposed in Section 5.3 is, in general, very diffi-

cult because the feature manifolds are nonlinear. Moreover, the feature detection

robustness criteria are nonlinear functions of the manifolds due to the min(·, ·) func-

tions that they contain. It turns out, however, that it is possible to derive optimal

weighting functions for the parameter estimation accuracy criteria PEqi under the

assumption that the feature manifolds can be approximated by their first order

Taylor expansions. This assumption is particularly reasonable when the noise level

is not too high. For linear manifolds, finding the closest point on the manifold is

simply a weighted least squares problem. So, finding the optimal weighting function

corresponds to selecting the weighting function that gives the best linear unbiased

estimate of the solution to a weighted least squares problem [63] [99]. The answer

to this problem was found by Aitken in [3]. The optimal weighting function is:

w(n,m) =
1

Var�[η(n,m)]
(5.24)

where Var�[η(n,m)] = E�[η2(n,m)] − E�[η(n,m)]2 is the variance of the noise η

in pixel (n,m). This result assumes that the noise in each pixel in independent.

It is possible to generalize this result to the non-independent case, but it requires

that the weighting function w(n,m) be replaced with a positive definite quadratic

form. The optimal choice for the positive definite quadratic form is the inverse

of the covariance matrix of the noise [99]. See Section 5.5.1 for a discussion of

the use of positive definite quadratic forms in feature detection. Finally, note that

96

Equation (5.24) implies that under the linear manifold assumption, if the noise η

is independently and identically distributed across the pixels, then the Euclidean

L2 norm is optimal for parameter estimation accuracy.

5.4.2 Numerical Optimization

As mentioned above, analytically optimizing my optimality criteria is very difficult.

The use of realistic multi-parameter feature models, combined with a nonlinear sens-

ing model, leads to very complicated expressions for the discretized feature models

F (n,m; q). After taking into account both parameter normalization and dimension

reduction, the optimality criteria become extremely complex. Even Canny resorted

to a numerical algorithm to optimize his relatively simple optimality criterion for

arbitrary features [20]. Here, I follow the same approach.

If there are N pixels in the discrete feature window S, the optimization is

N − 1 dimensional rather than N dimensional because the optimality criteria are

unchanged if the weighting function is multiplied by a positive constant. Since

N is typically in the range 25–100, to make the problem more tractable I assume

that the weighting function is rotationally symmetric; i.e. it is only a function of

the distance from the center of the window. Such an assumption is particularly

reasonable if there is no a priori knowledge about the likely orientation of features

in the image. I also assume that the weighting function can be approximated by a

low order polynomial in the distance from the center of the window. I found that

a degree 5 polynomial was sufficient, and that the best way to parameterize this

polynomial is in terms of the value of the polynomial at equally spaced distances

from the center of the feature window. The radius of the feature window in my

97

experiments was 4 pixels. Hence, I parameterized the polynomial in terms of its

value at distance 0, 1, 2, 3, 4 pixels from the center of the window. The result is a 5

dimensional optimization which proved to be tractable, even for the most complex

optimality criteria. For larger window sizes, a 4–5 degree polynomial should still

be sufficient, so a larger spacing between the parameterization points can be used.

I decided to use an optimization algorithm that does not evaluate the partial

derivatives of the optimality criterion. The partial derivatives are so complicated

that probably the only way to estimate them would be numerically anyway. I

implemented Powell’s Method directly from Chapter 10.5 of [101]. Powell’s Method

works by repeatedly performing 1-dimensional optimizations though the current

best estimate of the minimum. Each 1-dimensional optimization is performed using

Brent’s Method, which iteratively samples the optimality criterion 3 times, performs

a parabolic fit, and then replaces one of the sample points with the minimum of

the parabola [101]. After each application of Brent’s Method, the best estimate

of the minimum is updated and a new direction is chosen. The key decision in

Powell’s Method is how to choose and update the set of directions in which the

1-dimensional optimizations are performed. I used the technique suggested in [101]

of starting with the basis vectors and “discarding the direction of largest decrease.”

As noted several times, my criteria are very complex; even evaluating them

can be time-consuming. Using Monte Carlo integration to perform the averaging

over the parameter space and the noise distribution, it takes approximately 1–2

minutes to evaluate any of the optimality criteria at a single sample point. Typi-

cally, Powell’s Method samples the optimality criteria a few hundred times resulting

in an overall running time of a few hours, normally around 12 hours. This length

98

of time is reasonable because it is offline computation performed during the design

of a feature detector. In fact, it is exceedingly short compared to the usual length

of time that it takes to design a feature detector.

5.4.3 Numerical Results

I applied Powell’s algorithm to three of the features considered in Chapter 3, namely,

the step edge, the corner, and the symmetric line. Some of the optimality criteria

require non-feature models as well as feature models. I used the constant gradient

slope defined in Equation (5.10) as the non-feature for the step edge and the step

edge itself as the non-feature for both the corner and the symmetric line. The

optimality criteria also require probability distributions to be provided for the fea-

ture parameters and the noise. I assumed that P(q) and P(nq) are both uniformly

distributed. The noise η was chosen to be Gaussian and independently distributed

across the pixels, with signal to noise ratio 2.0, using the definition of signal to

noise ratio for arbitrary features proposed in Section 4.1.1.

The results of applying Powell’s algorithm to the three features are displayed

in Tables 5.1–5.3. In each table, I present the numerical value of the optimality

criteria both for the Euclidean L2 norm and for the optimal L2 norm. There are a

number of points that should be noted:

• The parameter estimation accuracy results for the non-normalized param-

eters (ie. all parameters except A and B) are in close agreement with the

analysis in Section 5.4.1. There I showed that the Euclidean L2 norm would

be optimal if the manifolds were linear. Locally the manifolds are approxi-

mately linear. Therefore it is no surprise that the optimal weighted L2 norm

99

Table 5.1: Computed values of the optimality criteria for the step edge.

PEA PEB PEθ PEρ PEσ CPE FDR ODP
Euclidean 0.261 0.438 6.982 0.441 0.509 0.709 0.390 0.825
Optimal 0.234 0.372 6.957 0.438 0.507 0.706 0.376 0.822

Table 5.2: Computed values of the optimality criteria for the corner.

PEA PEB PEθ1 PEθ2 PEσ CPE FDR ODP
Euclidean 0.120 0.519 10.448 17.813 0.288 1.274 0.234 0.897
Optimal 0.112 0.459 10.398 17.738 0.287 1.251 0.221 0.854

Table 5.3: Computed values of the optimality criteria for the symmetric line.

PEA PEB PEθ PEρ PEσ PEw CPE FDR ODP
Euclidean 0.276 0.690 4.510 0.216 0.355 0.992 0.635 0.00358 0.00681
Optimal 0.223 0.654 4.500 0.215 0.354 0.989 0.632 0.00238 0.00475

is only marginally better than the Euclidean L2 norm. On the other hand, an

improvement of 10-20% is possible for the normalized parameters A and B.

• For feature detection robustness some improvement is possible over the Eu-

clidean L2 norm. For the step edge and corner it is only around 5%, but

for the symmetric line an improvement of around 35% is possible. For the

overall detection performance, almost no improvement is possible for the step

edge, a 5% improvement is possible for the corner, and a 30% improvement

is possible for the symmetric line.

• Finally, note that estimating the step parameter B is harder than estimating

the base parameter A. This effect is particularly noticeable for the line and

the corner where the upper intensity region occupies a much smaller part

of the feature window. In a similar vein, note that both the angle θ and the

100

subpixel localization ρ of the line are easier to estimate than the corresponding

parameters for the step edge. The intuitive reason for this fact is that the

line can be regarded as two parallel step edges separated by the width of the

line w. The estimates of θ and ρ for the line can be thought of as averages of

the estimates for the two step edges. Therefore they are less noise sensitive.

In Figure 5.1, I display 3–D plots of several of the optimal weighting func-

tions. The optimal weighting function for the parameter estimation accuracy of the

sub-pixel localization ρ of the step edge is presented in Figure 5.1(a). The overall

form of this optimal weighting function is as expected. Intuitively, the center-most

pixels are the most important when estimating sub-pixel localization [20]. Hence,

it is to be expected that they should be given more weight. The results in Fig-

ure 5.1(c) for the combined parameter estimation accuracy of the corner are also in

agreement with intuition. Here, the central pixels do not change much as the pa-

rameters of the corner vary. This effect is particularly true for the two angles θ1 and

θ2. So, one would not expect the central pixels to be as heavily weighted as those

on the periphery of the window. The optimal weighting function for the combined

parameter estimation accuracy of the symmetric line, displayed in Figure 5.1(e), is

neither a monotonically increasing nor decreasing function of the distance from the

center of the window. The intuitive reason for this effect is that the central pixels

need to be heavily weighted to estimate the sub-pixel localization and the width of

the line, whereas the peripheral pixels also need to be heavily weighted to estimate

the orientation and the intensity parameters.

In Figures 5.1(b), (d), and (f), I display optimal weighting functions for

feature detection robustness and overall detection performance. Providing intuitive

101

-4
-3 -2

-1 0 1
2 3 -4

-3
-2

-1
0

1
2

3
0.45

0.5

0.55

0.6

0.65

-4
-3 -2

-1 0 1
2 3 -4

-3
-2

-1
0

1
2

3

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

(a) PEρ for the Step Edge (b) FDR for the Step Edge

-4
-3 -2

-1 0 1
2 3 -4

-3
-2

-1
0

1
2

3
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-4
-3 -2

-1 0 1
2 3 -4

-3
-2

-1
0

1
2

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) CPE for the Corner (d) ODP for the Corner

-4
-3 -2

-1 0 1
2 3 -4

-3
-2

-1
0

1
2

3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

-4
-3 -2

-1 0 1
2 3 -4

-3
-2

-1
0

1
2

3

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(e) CPE for the Symmetric Line (f) FDR for the Symmetric Line

Figure 5.1: A selection of optimal weighting functions computed by applying Powell’s
algorithm to the optimality criteria proposed in Section 5.3.

102

explanations for the shape of these optimal weighting functions is more difficult than

for parameter estimation accuracy. At first glance, the fact that these weighting

function are not monotonic functions of the distance from the center of the window

may appear strange. The explanation is straightforward however. The robustness

criteria can be thought of as trying to maximize the discriminability of the feature

and its corresponding non-feature. The difference between each feature and the

“nearest” non-feature is usually not a monotonic function of the distance from the

center of the window. Hence, it is no surprise that the optimal weighting functions

are also not monotonic functions of the distance from the center of the window.

5.5 Discussion

In this chapter, I investigated the choice of the matching function for the model

matching detector described in Chapter 3. In particular, I restricted attention

to weighted L2 norms and presented a general framework for the selection of the

weighting function. I proposed optimality criteria for the three key aspects of

feature detection performance: the probability of a false positive, the probability

of a false negative, and the parameter estimation accuracy. I also showed how to

combine these three optimality criteria to form ones more appropriate for specific

applications. Finally, I derived an approximate expression for the optimal weighting

function for parameter estimation accuracy, and proposed a numerical algorithm

for the optimization of the other criteria.

It turns out that the optimal weighted L2 norms are only slight improvements

over the Euclidean L2 norm. The improvement in the optimality criteria was typi-

cally around 5%, and was always less than about 30%. So, the Euclidean L2 norm is

103

close to optimal, both for parameter estimation accuracy and for feature detection

robustness. This conclusion, however, is highly dependent upon the assumptions

made about the noise; ie. that it is independently and identically distributed across

the pixels. This noise model is undoubtedly simplistic, but it is unclear how to

derive a noise model that is more realistic of the noise present in real images.

A related difficulty is how to evaluate the optimal weighting functions. One

possibility would be to conduct statistical tests on synthetic data, similar to those

performed in Section 4.1. I decided not to conduct these tests, since little useful

information would be obtained: the tests are just too closely related to the optimal-

ity criteria. Another possibility is to look at experimental results on real images.

As is demonstrated by Figure 5.2, doing so can be difficult. In this figure there

are a number of points where the Euclidean L2 norm appears to be superior to the

optimal weighted L2 norm and a number of points where it does worse. It is hard

to conclude which detector performs better by simply looking at the edge map. I

surveyed the literature (see Section 2.5), but could not find any appropriate ways of

evaluating the optimal weighting functions. In the next chapter, I propose a collec-

tion of benchmarks for non-subjectively evaluating edge detectors. Beforehand, I

briefly discuss two additional issues arising from the work presented in this chapter.

5.5.1 Other Classes of Matching Functions

An immediate question that arises from this chapter is whether it is possible to

generalize the class of matching functions considered. The two major reasons for

restricting attention to weighted L2 norms were: (1) weighted L2 norms have been

used in a number of model matching detectors (see Section 2.1.3), and (2) the

104

(a) (b)

Figure 5.2: Detected step edges when using (a) the Euclidean L2 norm and (b) the
optimal weighted L2 norm for overall detection performance. The results shown are for
the lower right hand part of the image “INRIA Office” displayed in Figure 4.16. The
results demonstrate how difficult it is to compare weighting functions on real image data.
The red circles highlight points where the optimal weighted L2 norm does better, and the
green circles highlight points where the Euclidean L2 norm does better.

feature detector described in Chapter 3 can be easily extended to use an arbitrarily

weighted L2 norm. A natural extension of this chapter is to consider the class

of positive definite quadratic forms. It is straightforward to extend the detector

described in Chapter 3 to use a quadratic form, however the number of parameters

in the optimization will grow from N , the number of pixels, to roughly N2/2.

Another issue that would need to be addressed is the noise model used in the

optimality criteria. To take full advantage of the additional cross terms in the

quadratic form, the noise model would have to be generalized to model correlation

105

of the noise across the pixels.

5.5.2 Relationship with Canny

I now discuss the relationship between the approach described in this chapter and

the optimal filtering approach to edge detection best exemplified by [20]. Taking

Equation (5.4) and replacing unnormalized vectors with their normalized counter-

parts, it can be seen that the model matching approach to feature detection is based

upon finding the parameters q that minimize:

∑
(n,m)∈S

w(n,m) ·
[
F (n,m; q)− I(a+ n, b+m)

]2
. (5.25)

Since the vectors are normalized, this expression simplifies to:

2 −
∑

(n,m)∈S
w(n,m) · F (n,m; q) · I(a+ n, b+m). (5.26)

So, model matching feature detectors can be thought of as choosing q to maximize:

∑
(n,m)∈S

w(n,m) · F (n,m; q) · I(a+ n, b+m). (5.27)

In this chapter, I studied the selection of the weighting function w(n,m) to optimize

feature detection performance.

On the other hand, Canny [20] studied the selection of the filter f(x) that

optimizes the performance of a 1-D step edge detector that declares edges at local

maxima of: ∫ +W

−W
I(a+ x) · f(−x) dx (5.28)

where I(x) is the continuous 1-D input image and W is the width of the 1-D feature

window. If this continuous 1-D setting is translated into the discrete 2-D setting

106

used in this thesis, the expression in Equation (5.28) becomes:

∑
(n,m)∈S

fθ(n,m) · I(a+ n, b+m) (5.29)

where fθ(n,m) is f(x) rotated by an angle θ and discretized. Comparing Equa-

tions (5.27) and (5.29), the following similarities and differences become apparent.

The major similarity is the form of the expression that is maximized. In both

cases, it is a discrete convolution. In model matching the data is convolved with

wnm · F (n,m; q) and in optimal filtering it is convolved with fθ(n,m). A second

similarity is the relationship between the selection of an optimal weighting function

and the selection of a optimal convolution filter. Interestingly, selecting a uniform

weighting function, which is almost optimal, corresponds to choosing a matched

filter, which is optimal for the first two components of Canny’s criterion.

The major difference is the domain over which the maximum is taken. In

model matching it is over all of the parameters, whereas in optimal filtering it is

just over the location of the edge. So, if there is a sub-pixel localization parameter,

model matching implicitly performs the same local non-maximum suppression that

the Canny detector does. If there is a rotation parameter, model matching also

optimizes over it. There is no equivalent in [20] because the formulation is entirely 1-

D. Note, however, that steerable filters provide a way of optimizing over the rotation

parameter [37]. A final difference is the normalization of the image data. Like most

other model matching detectors, the algorithm in Chapter 3 uses normalized data,

whereas optimal filtering approaches typically use the raw pixel values.

107

Chapter 6

Global Measures of Coherence for

Edge Detector Evaluation

6.1 Introduction

Assessing the performance of an edge detector is an important, yet difficult, task.

Of the four evaluation methodologies described in Section 2.5.2, the only one that

has actually been used by a significant number of authors is subjective human eval-

uation. In particular, [47] contains a survey of recent articles on edge detection.

None of the twenty-one papers considered used any other method of performance

evaluation. Subjective human comparison consists of simply applying the detec-

tors to a small number of images and then displaying the output edge maps for

evaluation by a human. Although the limitations of such an approach are widely

acknowledged, none of the the other techniques that have been proposed in the

literature have either been universally accepted or frequently used.

One of the major reasons that authors have not used any of the other eval-

108

uation techniques is the difficulty of doing so. Applying any of the other methods

typically involves extensive effort by the author. Another major obstacle is obtain-

ing the results for other detectors, without which the results are often meaningless.

So, a researcher who wishes to evaluate a new detector must, not only implement

and conduct the tests on their own detector, but implement several other detectors

and conduct the tests on those detectors as well. For a performance evaluation

technique to be widely used, it must be both straightforward to use and the results

for a large number of other detectors must be made available.

It seems exceedingly unlikely that there is a single, simple method of “fairly”

evaluating an edge detector. Even in a field as mature as computer architecture,

there is no universally agreed upon way of measuring performance [93]. Instead,

the usual approach is to apply a large number of simple benchmark tests, each of

which is designed to be typical of a range applications. The overall performance

on the benchmarks is then used to compare the architectures. The results on

any specific benchmark are not assumed to generalize to the other benchmarks,

or to applications that the benchmark is unrepresentative of. However, if enough

benchmarks are applied, the overall results are accepted as indicative of the general

performance one could expect on a novel application.

In this chapter, I advocate a similar approach for the evaluation of edge

detectors. In particular, I propose a set of benchmarks designed specifically for ap-

plications requiring precise sub-pixel localization and orientation estimation. Good

examples of such applications include the Hough transform, stereo matching, struc-

ture from motion, and the computation of projective invariants. More generally,

these benchmarks provide useful information for any application in which vision

109

is used in a quantitative manner, or as a measurement tool. The benchmarks are

less representative of more qualitative tasks such as object recognition, segmenta-

tion, and edge grouping. Other evaluation techniques have been proposed that are

somewhat more suited to such tasks, including [32], [47], [121], and [57]. My bench-

marks are meant to supplement, not replace, these existing techniques. Note that

several new evaluation techniques for quantitative applications, such as structure

from motion [112] and industrial inspection [114], have been proposed recently.

Each of my benchmarks is based upon a constraint on the edges in the scene,

for example, that they are colinear. To capture the benchmark images, I carefully

create a scene for which the constraint holds. An example scene where all the edges

are colinear can be constructed by placing a convex polygonal object with constant

albedo lambertian faces in front of a perfectly black background. If an image of

such a scene is cropped so that only one surface normal discontinuity is visible, all

of the edges will be colinear. Each benchmark consists of a large number of images

of the scene captured by varying the viewing and illumination directions. Because

the images are captured in a controlled environment, it is simple to sample the

set of images very widely by varying the viewing pose, the illumination conditions,

and the reflectance properties of the objects. Although it would also be possible

to sample the space of images just as widely using synthetic images, these images

would not take into acccount the sources of noise that corrupt real images.

After applying the edge detector, I estimate the degree to which the con-

straint holds in the output edge map and use it as the measure of edge detection

performance. For the colinearity constraint just described, each detected edge can

be used to estimate the projective geometric representation of the line that all of the

110

detected edges should lie on. I estimate the variances of the three components of the

line from the positions and orientations of the detected edges. I then average these

variances in a simple way and use the result as the performance measure. Since

such performance measures are functions of how well the detected edges satisfy the

scene constraint, I refer to them as global measures of edge map coherence.

Computing the global measures of coherence from the output edge maps

is relatively straightforward, although there are a few caveats that are discussed

in Section 6.3. I have written the required code to compute four different global

measures of coherence, together with several variants of them. All of the programs

and benchmark images are available online on the World Wide Web. To use any of

the benchmarks is very easy. Quite simply, all a user has to do is download the code

and associated images, modify their edge detector to output the detected edges in

the correct format, and then run a script with the name of their edge detector. In

all, at most 2-3 hours is required to conduct the tests for a new detector. All of

the results for the detectors that I tested are also available online to allow a user

to immediately compare their results with a large number of other detectors.

I begin the remainder of this chapter in Section 6.2 by presenting the four

global measures of coherence in detail. For each one, I first describe the scene

constraint that it is based upon, and then define the measure itself. In Section 6.3,

I describe the details of how the edge map is actually sampled to compute the global

measures of coherence. In Section 6.4, I present experimental results obtained by

applying the benchmarks to four well known edge detectors, as well as the step edge

detector developed in Chapter 3. Next, in Section 6.5, I show how global measures

of coherence can be used to investigate how quickly edge detector performance

111

(a) (b)

(c) (d)

Figure 6.1: Cropped regions exhibiting the four constraints: (a) all of the edges are
colinear, (b) all of the edges intersect at a single point, (c) all of the edges are parallel in
the scene, and (d) all of the edges lie on an ellipse.

degrades as various camera parameters are varied. Finally, in Section 6.6, I discuss

the strengths and weaknesses of global measures of coherence.

6.2 Global Measures of Coherence

In this section, I introduce my four global measures of coherence. Each measure

is derived from a constraint on the edges in the scene. These four constraints are

illustrated in the cropped regions of Figure 6.1: in (a) all of the edges are colinear,

in (b) all of the edges intersect at a single point, in (c) all of the edges are parallel

in the scene, and in (d) all of the edges lie on an ellipse.

112

Given a cropped image for which one of these constraints holds, the cor-

responding global measure of coherence is computed as follows. First, the edge

detector is applied. Suppose the output is a set of edges:

E = {ei = (xi, yi, θi) | i = 1, . . . , n}, (6.1)

where n is the number of edges. Suppose the ith edge ei = (xi, yi, θi) passes through

the image point (xi, yi), and the normal to this edge make an angle θi with the

positive y–axis, as is shown in Figure 3.1(b). Then, given an appropriate number

of edges from E, certain quantities are estimated that should be constant if the

constraint held exactly. For example, given two edges in the cropped region of

Figure 6.1(b) that are not approximately parallel, the coordinates of their point of

intersection are estimated. If the edge map E were perfect, the point of intersection

would be the same for all such pairs of edges. Each global measure of coherence is

defined to be a monotonically increasing function of the variances of the quantities

that would be constant if the edge map were perfect. The global measures of

coherence are computed by sampling E to estimate this function of the variances.

In the rest of this section, I describe each of the four constraints in turn.

For each one, I define the corresponding global measure of coherence. Two of the

measures also have variants that do not require knowledge of the orientations of the

edges θi. In these cases, I also provide definitions for the alternative measures. In

the following section, I discuss the exact details of how the edge map E is actually

sampled to estimate the global measures of coherence.

113

6.2.1 All Edges are Colinear 1: Known θi

The first constraint is that all of the edges are colinear. Such a scene can be

constructed by placing a convex polygonal object with constant albedo lambertian

faces in front of a perfectly black background. If an image of such a scene is cropped

so that only one depth or surface normal discontinuity is visible, all of the edges

will be colinear. See Figure 6.1(a) for an example image of such a scene. The fact

that colinear edges in the scene are projected onto colinear edges in the image relies

upon the implicit assumption that the camera is linear. In Section 6.3.1, I describe

how simple nonlinear effects such as radial distortion can be compensated for.

Given just one of the detected edges ei = (xi, yi, θi) ∈ E, it is possible to

estimate the line that of all the edges lie on. In the projective geometric notation

of [35], the vector representation of this line is:

Li ≡
(
l1i , l

2
i , l

3
i

)T
= (xi, yi, 1)T ∧ (xi + cos θi, yi + sin θi, 1)T

= (− sin θi, cos θi, xi sin θi − yi cos θi)
T . (6.2)

A minor difficulty that needs to be addressed at this point is that equality is only

defined up to a constant multiplicative factor in projective spaces [35]. There are

two aspects to this problem:

Sign of Li: Adding 180◦ to θi does not change the line, but reverses the sign of

Li. Enforcing θi ∈ [0, 180◦) so that l1i is always negative does not solve

this problem. Then, a small perturbation to the line, say from θi = 0.1◦ to

θi = 179.9◦, results in a large change in l2i , from approximately +1.0 to −1.0.

To solve this problem, I choose θi to be whichever of θi or θi + 180◦ makes

l3i ≥ 0. This can also cause a problem when the line almost passes through

114

the origin. Then, a small perturbation to the line can result in a large change

in both l1i and l2i . I avoid this situation by making sure that the correct line

does not pass close to the origin in any of the benchmark images.

Scale of Li: Multiplying Li by a positive scalar does not change the line. The

natural way to restrict the scale of a line vector, that is known not to be

the line at infinity, is to require (l1i)
2

+ (l2i)
2

= 1.0. As can be seen from

Equation (6.2), this is already the case.

As the basis for my first global measure of coherence, I would like to use the sum of

the variances of the three line coordinates l1i , l
2
i , and l3i . A natural question, however,

is: how should the three components of this sum be weighted? A somewhat related

question is whether the global measure of coherence is independent of the choice of

units for xi and yi. The answer to the second of these questions is straightforward:

the estimate of l3i does depend upon the choice of units for xi and yi, whereas the

choice does not affect the variances of l1i and l2i .

Since the natural use of Li is to test whether a point x = (x, y, 1)T lies on

the line using xT · Li = 0, a sensible choice for the ratio of the weights in the sum

is (Ex)2 : (Ey)2 : 1, where Ex denotes the expected value of |x| and Ey denotes the

expected value of |y|. To avoid any dependence on the distance units, I define the

first global measure of coherence as follows:

GMC1 =
1

Ex · Ey
[
(Ex)2 · σ2(l1) + (Ey)2 · σ2(l2) + σ2(l3)

]
(6.3)

where for k = 1, 2, 3:

σ2(lk) =
1

n

n∑
i=1

lki − 1

n

n∑
j=1

lkj

2

(6.4)

115

is the variance of the kth coordinate of Li. There are a number of ways that Ex

and Ey could be estimated, but for simplicity I use:

Ex =
1

n

n∑
i=1

|xi| (6.5)

and similarly for Ey.

6.2.2 All Edges are Colinear 2: Unknown θi

A variant of the first global measure of coherence can be estimated without using

the angle θi. Suppose ei = (xi, yi, θi) ∈ E and ej = (xj , yj, θj) ∈ E are two detected

edges. The line that passes through them can be estimated using:

Lij ≡
(
l1ij , l

2
ij, l

3
ij

)T
= (xi, yi, 1)T ∧ (xj , yj, 1)T

= (yi − yj, xj − yj, xi · yj − xj · yi)T. (6.6)

Note that Lij must be normalized so that l3ij ≥ 0 and
(
l1ij
)2

+
(
l2ij
)2

= 1.0. Then,

Equation (6.3) can be used again to re-estimate the first global measure of coher-

ence, but the way the variances were computed in Equation (6.4) must be modified.

If the two edges that are used to compute Lij are very close to each other, the esti-

mate of Lij will be unnecessarily noisy. Hence, I only allow edges to contribute to

the variance of Lij if they are more than 5 pixels apart. In particular, consider the

set of edge index pairs:

P1 =
{

(i, j) | i < j and
√

(xi − xj)2 + (yi − yj)2 > 5 pixels
}
. (6.7)

Then, I estimate the variance of the kth coordinate of Lij using:

σ2(lk) =
1

|P1|
∑

(i,j)∈P1

lkij − 1

|P1|
∑

(l,m)∈P1

lklm

2

(6.8)

rather than Equation (6.4).

116

6.2.3 All Edges Intersect at a Single Point

My second constraint is that all of the edges intersect at a single point. Such a

scene can be constructed exactly as before, by placing a convex polygonal object

with constant albedo lambertian faces in front of a perfectly black background. If

an image of such a scene is cropped so that only the neighborhood of one of the

vertices is visible, all of the edges should intersect at the image of the vertex. See

Figure 6.1(b) for an example image of such a scene. Again, the fact that edges that

intersect at a single point in the scene are projected onto edges that intersect at a

single point in the image relies upon the assumption that the camera is linear.

Given two of the edges ei = (xi, yi, θi), ej = (xj , yj, θj) ∈ E that are not

parallel, it is possible to estimate the point where all of the edges intersect. If

Li = (l1i , l
2
i , l

3
i)

T
and Lj =

(
l1j , l

2
j , l

3
j

)T
are the vector representations of the lines

passing through the two edges, they intersect at the point:

Pij ≡
(
p1
ij, p

2
ij , p

3
ij

)T
=

(
l1i , l

2
i , l

3
i

)T
∧
(
l1j , l

2
j , l

3
j

)T
. (6.9)

Again, since equality is only defined up to a constant multiplicative factor, this

expression for the point of intersection needs to be normalized. In this case, nor-

malization is easy. Since the lines Li and Lj are not parallel, p3
ij 6= 0. So, Pij can

be divided by its third coordinate to give the normalized point of intersection:

Pij ≡
(
p1
ij, p

2
ij, 1

)T
=

(
p1
ij

p3
ij

,
p2
ij

p3
ij

, 1

)T

. (6.10)

Just as before, I would like to use the sum of the variances of p1
ij and p2

ij as the

basis for my second global measure of coherence. The same two questions arise

of: (1) how to weight the two components in the sum, and (2) how to avoid any

dependence on the units of x and y. In addition, a pair of edges should contribute

117

to the variance only if they are sufficiently far away from parallel. Hence, I define

the second global measure of coherence to be:

GMC2 =
1

(Ex)2
σ2(p1) +

1

(Ey)2
σ2(p2) (6.11)

where for k = 1, 2:

σ2(pk) =
1

|P2|
∑

(i,j)∈P2

pkij − 1

|P2|
∑

(l,m)∈P2

pklm

2

(6.12)

is the variance of the kth coordinate of Pij,

P2 = {(i, j) : |θi − θj| > 15◦}, (6.13)

is the set of edge index pairs which are not too close to parallel, and Ex and Ey

are defined in the same way as before.

6.2.4 All Edges are Parallel

My third constraint is that all of the edges are parallel in the scene. Such a scene

can be constructed by placing a lambertian cuboid with constant albedo faces in

front of a perfectly black background. An image of such an object is then cropped so

that only one set of parallel edges is visible. See Figure 6.1(c) for an example image

of such an scene. Unlike the previous two constraints, parallel edges in the scene do

not always remain parallel in an image because of perspective foreshortening effects.

However, if the camera is linear, parallel edges in the scene are projected onto edges

that intersect at a single point in the image, known as the vanishing point. This

constraint is unique amongst the four that I consider in that the constraint on the

edges in the scene leads to a different constraint in the image.

118

Since the image constraint is the same as in the previous section, I begin in

the same way by estimating the intersection of two lines passing through two edges

ei = (xi, yi, θi), ej = (xj , yj, θj) ∈ E. If Li = (l1i , l
2
i , l

3
i)

T
and Lj =

(
l1j , l

2
j , l

3
j

)T
are

the vector representations of the two lines, they intersect at the vanishing point:

Vij ≡
(
v1
ij, v

2
ij , v

3
ij

)T
=

(
l1i , l

2
i , l

3
i

)T
∧
(
l1j , l

2
j , l

3
j

)T
. (6.14)

The vanishing point Vij may or may not lie at infinity, so v3
ij may or may not equal 0.

If Vij does lie at infinity, which is approximately the case in the benchmark images,

the only useful information is the angle that it makes with the x-axis:

φij = arctan

(
v2
ij

v1
ij

)
. (6.15)

I would like to use the variance of φij as the third global measure of coherence.

The questions of weighting and distance units are not an issue here, but the cyclic

range of the arctan function is somewhat problematic; a vanishing point at one end

of the range can easily be perturbed by noise to lie at the other end. The solution

I adopted is to use the range [−90◦, 90◦], making sure that the correct vanishing

point never lies close to either 90◦ or −90◦ in any of the benchmark images. Finally,

I define my third global measure of coherence to be:

GMC3 =
1

(180◦)2
· 1

|P3|
∑

(i,j)∈P3

φij − 1

|P3|
∑

(l,m)∈P3

φlm

2

(6.16)

where

P3 = {(i, j) : |li3 − lj3| > 20 pixels} (6.17)

and li3 = xi sin θi − yi cos θi is the third line coordinate. Since li3 is the closest

distance in pixels from the origin of the image to the line through the edge, P3

excludes any edge pairs that might lie on the same line in the image.

119

6.2.5 All Edges Lie on an Ellipse: Unknown θi

The fourth and final constraint is that all of the edges lie on an ellipse. Such

a scene can be constructed by cutting off a constant albedo lambertian circular

cylinder with a plane and then placing it in front of a perfectly black background.

An image of the cylinder is cropped so that the sides of the cylinder are not visible

and the only edges that can be seen are on the ellipse. An example of such as

scene is presented in Figure 6.1(d). Again, the fact that edges lying on an ellipse in

the scene are projected onto edges lying on an ellipse in the image relies upon the

implicit assumption that the camera is linear. See Section 6.3.1 for a description of

how nonlinear effects such as radial distortion can be compensated for.

In this section, I derive the fourth global measure of coherence, assuming

that the orientation of the edge is unknown. In the next section, I describe two

variants that use the orientation information. An ellipse is defined by the equation:

xTAx = 0 (6.18)

where x = (x, y, 1)T is a homogeneous vector of image coordinates, and:

A =

a11

1
2
a12

1
2
a13

1
2
a12 a22

1
2
a23

1
2
a13

1
2
a23 a33

 (6.19)

is a 3 × 3 symmetric matrix, as usual only defined up to a scale factor [35]. So,

the matrix A has just five independent parameters. The fact that the ith edge

ei = (xi, yi, θi) ∈ E lies on the ellipse provides one constraint on A:

(xi, yi, 1)A(xi, yi, 1)T = 0. (6.20)

120

Since this constraint is linear in the six unknowns (a11, a12, a13, a22, a23, and a33),

the ellipse can be recovered using Gauss-Jordan elimination [101] if the locations

of five edges on the ellipse are known. Since the vector of ellipse parameters is

only determined up to a scale factor, the problem that appeared in Section 6.2.1 of

setting the sign and scale of the vector of parameters also arises here. I solve this

problem by enforcing a33 = 1.0 to define the sign and scale, while using benchmark

images for which the ellipse does not pass close to the origin to ensure that the sign

of a33 cannot be accidentally changed by a small perturbation to the edges.

As the basis for the fourth global measure of coherence, I would like to use

the sum of the variances of the estimates of the five ellipse parameters that are free;

ie. all of them except a33. Again, the questions of how to weight the sum and avoid

any dependence upon the units of x and y are important. Since Equation (6.18)

can be used to determine whether an image point x = (x, y, 1)T lies on the ellipse,

I define the fourth and final global measure of coherence to be:

GMC4 = (Ex)4σ2(a11) + (Ex)2σ2(a13) +

(Ey)4σ2(a22) + (Ey)2σ2(a23) + (Ex)2(Ey)2σ2(a12) (6.21)

where σ2(aij) is the variance of the estimate of ellipse parameter aij. For example,

the weight for σ2(a11) is Ex raised to the fourth power because the term involving

a11 in Equation (6.18) is a11 · x2. Since it takes five edges to estimate the ellipse

parameters, the variances of the ellipse parameters aij are all computed over the

set of quintuples of edges, no pair of which are closer than 30 pixels apart.

121

6.2.6 All Edges Lie on an Ellipse: Known θi

If the orientation of each edge is known, it is possible to estimate the ellipse param-

eters using just three edges. Each edge ei = (xi, yi, θi) ∈ E provides two constraints

on the parameters. The first one is (xi, yi, 1)A(xi, yi, 1)T = 0, as above. The second

one is that the tangent to the ellipse must have orientation θi at the image point

(xi, yi, 1)T. Differentiating Equation (6.18), setting dy
dx

= tan θ, and reorganizing

gives the tangency constraint:

[2xia11 + a13 + yia12] cos(θi) + [2yia22 + a23 + xia12] sin(θi) = 0. (6.22)

So, given three edges, three ellipse constraints and two tangency constraints can be

used to estimate the ellipse parameters. The second variant of the fourth measure of

coherence is then exactly as given above, but with the variance now being computed

across all triples of edges, no pair of which are closer than 50 pixels apart.

Finally, I also considered a third variant of the fourth global measure of

coherence computed using four edges, no pair of which are closer than 40 pixels

apart. For this final variant, four ellipse constraints and one tangency constraint

are used to estimate the ellipse parameters.

6.3 Computing the Global Measures

In this section, I describe how I actually compute the global measures of coherence.

In particular, there are several details that I omitted to mention in the previous

section. First, all of the measures rely upon the assumption that the camera is

linear. In Section 6.3.1, I describe how the nonlinear effects of radial distortion

can be corrected. Second, computing several of the measures in the obvious way is

122

intractable, because doing so leads to Θ(n3) or slower algorithms. In Section 6.3.2,

I show how Monte Carlo algorithms can be used to find good estimates of the

measures in a reasonable amount of time. Third, most detectors have various

thresholds that need to be set. In Section 6.3.3, I show how one of these thresholds

can be left unset. The performance of the detector is then characterized by a curve

parameterized by this free threshold. Fourth, to obtain a reliable estimate of the

measures, a large number of images need to be used. In Section 6.3.4, I describe

how these images are captured, and in Section 6.3.5 how the results are averaged.

6.3.1 Correcting for Radial Distortion

My four global measures of coherence are based upon constraints on the edges

in the scene, for example that they are parallel. Converting such constraints into

corresponding constraints on the edges detected in an image requires the assumption

that the camera is linear. For example, parallel edges in the scene become edges

which intersect at a single point, the vanishing point, only if the camera is linear.

An ideal pinhole camera should be linear, however, the use of a lens may introduce

various nonlinear distortions, the two major types being radial and tangential [87].

Both types of distortion can be modeled, but in practice the tangential component

is negligible, and only the radial distortion is actually compensated for [116]. I

applied Tsai’s algorithm [116] to estimate the radial distortion, but found it also

to be negligible (κ1 ≈ −2.0 × 10−6 pixels−2) for the focal length that I used. So, I

assumed the camera to be linear for the experiments described in Sections 6.4 and

6.5. If a shorter focal length was ever needed, Tsai’s algorithm could easily be used

to compensate for any noticeable radial distortion. Finally, note that measures

123

similar to my global measures of coherence have actually been used in the past to

perform camera calibration for the radial distortion [9] [18].

6.3.2 Efficient Computation using Monte Carlo

Since the number of detected edges is usually at most n = 103, it is possible to com-

pute the first three measures by simply enumerating all pairs of edges. The fourth

measure, however, requires all quintuples of edges on the ellipse to be enumerated.

Doing so will, in general, be intractable. So, to compute the fourth measure I use a

Monte Carlo algorithm [101]. Quite simply, I sample the set of quintuples of edges

randomly a fixed number of times, typically around 1000 times. I then compute

the variance over the samples and use it as an estimate of the variance over the the

entire set of quintuples. The same approach can naturally be used for the other

two variants of the fourth global measure of coherence.

6.3.3 Dealing with Detector Thresholds

Nearly all edge detectors have various thresholds that need to be set. For example,

gradient based detectors (see Section 2.2) threshold on the magnitude of the gradi-

ent, and model-matching detectors (see Section 2.1) threshold on the degree of fit.

The value of any performance metric, including my global measures of coherence,

will depend upon the settings of these thresholds. In this section, I describe how one

of these thresholds can be left unset. The performance of each edge detector is then

characterized by a curve parameterized by the free threshold. In [32], Dougherty

and Bowyer used a generalization of this technique to allow more than one thresh-

old to be left unspecified. Such a generalization could also be used for my global

124

measures of coherence, however most edge detectors that do not include any form

of feature aggregation or adaptive thresholding typically only have one threshold

anyway. All of the detectors that I experimented on had just one threshold.

Given an image and a threshold setting, a certain number of edges will be

detected. As the threshold is varied, more or less edges will be detected, depending

on which way the threshold operates. For any particular threshold setting, it is

possible to compute the global measures of coherence. So, if the threshold is changed

so that more edges are detected, the global measures of coherence will also change,

in all likelihood getting worse. So, by varying the threshold, a curve can be plotted

of the number of edges detected against the global measure of coherence. For any

specific number of edges, the smaller the measure the better. So, two detectors can

be compared without setting their thresholds by plotting these curves. The closer

the curve lies to the abscissa, the better the performance.

Because the global measures of coherence are all simple combinations of the

variances of certain quantities, these curves can be computed easily without actually

thresholding. Each edge detector is rewritten so that the detected edges are sorted

by the quantity that is finally thresholded. The edges are output in this order. The

program that computes the global measure of coherence can then keep a running

estimate of the variances that compose the measure. As each edge is read in, the

number of edges detected is incremented, the variances updated, and the global

measure of coherence computed. It is then trivial to output a point on the curve;

ie. a pair consisting of the number of edges and the global measure of coherence.

125

6.3.4 Capturing a Large Number of Images

To get a robust estimate of a performance measure, it is important to use a large

number of images. The easiest way to capture these images for my benchmarks

was by varying the illumination and camera geometry. In particular, I fixed the

position of the light, used a turntable to rotate the object to five different angles,

and independently moved the camera to fifteen different points in space with a six

degree of freedom robot. The result was seventy-five images of each object under

widely varying conditions. Some of these images contain more than one region that

could be cropped for the benchmark. For example, in the image of the cube in

Figure 6.1(a) there are three different extended surface normal discontinuity edges

that could be cropped. Including all possible regions that are reasonably sized

results in each of the benchmarks containing between seventy-five and two hundred

images. This number of images is sufficient to give robust estimates of the global

measures of coherence, although more images could easily have been captured by

sampling the viewing and illumination conditions more densely.

6.3.5 Averaging over a Large Number of Images

For each cropped benchmark image, I compute a curve of the number of detected

edges against the global measure of coherence, as described in Section 6.3.3. Natu-

rally, the next question is how does one average these curves over the seventy-five

to two hundred images that comprise the benchmark. One possibility would be

to compute the average value of the measure for each setting of the number of

image. The problem with this approach is that because the images comprising the

benchmark are all different sizes, the point at which the detectors enter phase three

126

is different for each curve. Hence, all information beyond the size of the small-

est image would be lost. Another possibility might be to average the values of the

measure for different settings of the thresholded parameter. However, this approach

would make it difficult to compare the detectors because the threshold parameters

all have different meanings.

So, what I do is the following. For each possible value of the global measure of

coherence, I sum up the number of edges than can be used in each of the benchmark

images and still obtain that global measure of coherence. Afterwards, I divide the

sum by the number of images in the benchmark. The result is a curve of the global

measure of coherence against the average number of edges that can be used while

still obtaining that measure of coherence. One minor problem with this approach

is that sometimes the global measure of coherence is not quite a monotonically

increasing function of the number of edges. I resolve this problem by counting the

number of edge measure pairs on the curves for which the measure is below the

level currently being evaluated, even if for a smaller number of edges the measure

is above the current level.

6.4 Experimental Results

In this section, I present experimental results obtained by applying the benchmarks

to five edge detectors. The first two are the Canny-like operator and the Nalwa-

Binford detector that were considered in Chapter 4. The third is the step edge

detector developed in Chapter 3. The final two are the Roberts’ cross operator

[105] and the Sobel operator [98], both of which are described in texts such as

[79] and [100]. The Canny and Nalwa-Binford detectors are relatively modern and

127

highly regarded. The Roberts’ cross and Sobel operators were amongst the first

few edge detectors proposed, and are regarded as relatively poor detectors.

The main reason for selecting two relatively poor detectors was to demon-

strate the range of performance that can be expected using the global measures of

performance. For a measure of performance to be useful, there must be a marked

difference between the performance of the best and worst detectors. One criticism

that could be made of several recent performance evaluation papers such as [47] is

that by only testing supposedly good detectors, the full range of performance was

never completely sampled. The results presented in [47] show that the detectors

perform fairly similarly. It is then unclear whether this is because the detectors

are similar in quality, or whether the evaluation methodology is incapable of ever

widely separating good detectors from bad ones. The goal of this experimental

section is to demonstrate that a large range of different performance levels can be

obtained using the global measures of coherence, not that any specific detector is

superior to the others. Naturally, it is expected that the Roberts’ cross and Sobel

detectors will perform noticeable worse than the other three detectors.

As described in the introduction to this chapter, the global measures of

coherence are specifically designed to be representative of tasks requiring precise

sub-pixel localization and orientation estimation; ie. good parameter estimation

accuracy. For this reason, two of the detectors considered (the Nalwa-Binford

detector and my step edge detector) come with sub-pixel estimates of the location

of the edge. The other three provide no sub-pixel estimation. By comparing the

relative performance of the five detectors across the four measures, it will be possible

to see for which measures estimating the location of the edge accurately is vitally

128

important, and for which measures only estimating the orientation is important.

As described in Sections 2.5 and 4.1, besides parameter estimation accuracy,

there is one other fundamental measure of edge detection performance, namely,

feature detection robustness; ie. the rates of occurrence of false positives and false

negatives. If a detector generates spurious false positives randomly located in the

image, the global measures of coherence will be very poor, as they should be. On

the other hand, if a detector generates false positives close to the correct location,

for example when a detector produces “thick” edges, the performance will degrade

more slowly. In order to alleviate this problem, all five detectors were extended

with the same non-maximum suppression step. Quite simply, any edges for which

there is a more prominent edge in the direction normal to it were removed.

If a detector fails to detect some of the edges and produces false negatives,

the global measures of coherence will unfortunately not be adversely affected. This

failure to penalize false negatives is one of the weaknesses of the global measures of

coherence, however there is a way to tell if a detector is missing a large number of

edges. As will be seen later in this section, the graphs of the measures against the

average number of edges used to estimate them increase dramatically at a certain

point. This point corresponds to when the detector starts detecting spurious false

positives all over the image. For a detector with non-maximum suppression, the

point at which this occurs is a measure of the total number of correct edges detected

before the detector began to detect false positives. For a detector that produces a

large number of false negatives, this phenomenon will occur at a smaller number of

edges than it would otherwise. So, it is possible to use the global measures to spot

detectors that are generating a larger number of false positive.

129

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 1

 -
 K

no
w

n
O

rie
nt

at
io

n

Average Number of Edges Used

Canny
Nalwa-Binford

Sobel
Roberts’ Cross

Parametric Manifold

Figure 6.2: The results for the known orientation variant of the first global measure
of coherence. The parametric manifold detector does the best. The Nalwa-Binford and
Canny detectors perform slightly worse, followed by the Sobel detector. The Robert’s
cross performs by far the worst. The Nalwa-Binford detector suffers from a higher degree
of false negatives than the others, as can be seen by the slow, early transition to the third
rapid growth phase. These results are consistent with those in Figure 4.1 and in [80].

In the remainder of this section, I present the results obtained for the five

detectors on the four global measures of coherence and their variants. I begin with

the global measure of coherence for colinear edges.

6.4.1 GMC 1: All Edges Are Colinear

I present the results for the first global measure of coherence in Figures 6.2 and 6.3.

Figure 6.2 contains the results for the first variant assuming known orientation,

and Figure 6.3 contains the results for the second variant assuming unknown θi.

The benchmark used consists of 150 cropped images of the depth discontinuities of

the cube in Figure 6.1(a). Similar results were obtained using the surface normal

130

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 50 100 150 200 250

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 1

 -
 U

nk
no

w
n

O
rie

nt
at

io
n

Average Number of Edges Used

Canny
Nalwa-Binford

Sobel
Roberts’ Cross

Parametric Manifold

Figure 6.3: The results for the second, unknown orientation variant of the first global
measure of coherence. The parametric manifold and Nalwa-Binford detectors perform
significantly better than the other three detectors. These results demonstrate the clear
distinction between the two detectors which provide subpixel localization (the Nalwa-
Binford and parametric manifold detectors) and those that don’t (the Sobel, Roberts’
cross, and Canny detectors). Hence, this second variant of the first global measure of
coherence is largely a measure of subpixel localization accuracy.

discontinuities but are not shown.

The way to interpret these results is as follows. Each curve can be divided

into three phases. In the first phase where only a small number of edges are being

used, the curves start at zero and then rapidly grow to a relatively stable value.

The first phase is largely unimportant since the nature of the behavior just depends

upon the order in which the first few easily detectable edges are actually detected.

The second phase begins when the growth rate slows and continues until it starts

rising rapidly again. The second phase is the most important in terms of parameter

estimation accuracy because it corresponds to the situation where the detectors is

131

detecting most of the edges, and there are no false positives to degrade the global

measures of coherence. In the second phase, the closer a curve lies to the abscissa

the better. The third phase begins when the curve starts to rise rapidly again.

This occurs when the detector starts detecting false positives. Since the measures

are based on variances, they are not robust to outliers. Hence, as soon as any false

positives are detected, the performance drops off rapidly. As discussed above, if the

third phase begins for a relatively small number edges, it is indicative of a detector

that suffers badly from false negatives, since it means many edges have been not

yet been detected by the time the false positives start to be detected. So, the later

the start of the third phase begins, the better the detector is performing. Also, the

sharper the transition from the second to the third phase the better. In Figure 6.2,

the first phase for the Roberts’ cross operator lasts from 0 until about 10 edges,

the second phase from about 10 edges until about 110 edges, and the third phase

from 110 edges onwards. For the parametric manifold detector, the transition from

the second to the third phase is very sharp and occurs at around 140 edges.

In the second phase of the results for the first variant of the first global

measure of coherence displayed in Figure 6.2, the ranking of the detectors is very

clear. The best detector is the parametric manifold detector. The Canny and

Nalwa-Binford detectors perform next best, and roughly the same. Next is the

Sobel detector, and the worst by a long way is the Roberts’ cross detector. This

ordering is pretty much exactly what one would expect. Looking at the transition

from the second to the third phase, one sees that the order is similar, with one

exception. The transition for the Nalwa-Binford detector is further to the left and

is less sharp than for the Canny and Sobel detectors. I therefore conclude that the

132

Nalwa-Binford detector suffers from a relatively high percentage of false negatives.

This fact is totally consistent with Figure 4.1 in the Statistical Tests section of

Chapter 4. It is also consistent with the results presented in [80].

The results for the second (unknown orientation) variant of the first global

measure of coherence displayed in Figure 6.3 are somewhat different. First, note

that the scale on the ordinate has changed. So long as the two edges are far enough

apart, estimating the line from two edges is far easier than from a single edge

and its orientation. This is as one would expect. The results for the second variant

demonstrate the clear distinction between the two detectors which provide subpixel

localization (the Nalwa-Binford and parametric manifold detectors) and those that

don’t (the Sobel, Roberts’ cross, and Canny detectors). The second variant of

the first global measure of coherence is largely a measure of subpixel localization,

whereas to do well on the first variant, both accurate subpixel localization and

orientation estimation are required. Depending upon the requirements of a specific

application, a user could easily decide which of the two variants to use.

6.4.2 GMC 2: All Edges Intersect at a Single Point

In Figure 6.4, I present the results for my second global measure of coherence. The

benchmark used to generate these results consists of 150 cropped images of the

vertices of the tetrahedron in Figure 6.1(b). The vertices used were the ones where

two extended edges meet; ie. the ones formed by one depth discontinuity and one

reflectance discontinuity. The results for the three edge vertices are very similar

and are omitted. One minor difference from the previous results is that phase one

lasts longer. This fact is of little significance, for the reasons described above. Quite

133

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 50 100 150 200 250

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 2

Average Number of Edges Used

Canny
Nalwa-Binford

Sobel
Roberts’ Cross

Parametric Manifold

Figure 6.4: The results for the second global measure of coherence. The parametric
manifold detector performs the best by a wide margin. Next, the Canny, Nalwa-Binford,
and Sobel detectors perform similarly. Finally, the Roberts’ cross operator performs by
far the worst. This figure clearly demonstrates the wide range of performance levels
that are possible with global measures of coherence, a fundamental requirement for a
performance measure to be useful.

simply the detectors tend to detect most of the edges from one of the extended edges

before the other. Therefore, between 20 and 50 edges need to be detected before

there are a pair that can actually be used to estimate the intersection point. The

results in Figure 6.4 again show that the parametric manifold detector performs

the best. The Canny, Nalwa-Binford, and Sobel detectors all perform similarly,

and as before, the Robert’s cross operator is by far the worst. The most important

point, however, is the huge difference in performance between the worst detector

(the Roberts’ cross operator) and the best one (the parametric manifold detector).

Thus, the ability of my global measures of performance to discriminate between

multiple performance levels is clearly demonstrated.

134

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 200 400 600 800 1000

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 3

Average Number of Edges Used

Canny
Nalwa-Binford

Sobel
Roberts’ Cross

Parametric Manifold

Figure 6.5: The results for the third global measure of coherence. The parametric
manifold detector again performs the best, followed by the Canny and Sobel detectors.
The Roberts’ cross operator does by far the worst. The third phase of the Nalwa-Binford
detector starts early, as in Figure 6.2, indicating a large number of false negatives.

6.4.3 GMC 3: All Edges Are Parallel in the Scene

In Figure 6.4, I present the results for the third global measure of coherence. The

benchmark used to generate these results consists of 75 cropped images of the three

parallel edges of the rectangular cuboid in Figure 6.1(c). As can be seen, one of the

edges is a surface normal discontinuity, the second is a depth discontinuity, and the

third is a reflectance discontinuity. As can be seen, the results are similar to before

with the parametric manifold detector doing the best, followed by the Canny and

Sobel detectors. Again, the Roberts’ cross operator is by far the worst. As for the

first measure, phase three for the Nalwa-Binford detector begins much earlier than

for the other detectors, indicating that it is suffering from a large number of false

negatives. Since there is almost no foreshortening in the benchmark images, the

135

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 100 200 300 400 500 600

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 4

 -
 0

 T
an

ge
nc

y
C

on
st

ra
in

ts

Average number of Edges Used

Canny
Nalwa-Binford

Sobel
Roberts’ Cross

Parametric Manifold

Figure 6.6: The results for the unknown orientation variant of the fourth global measure
of coherence. The location of five edges are used to estimate the ellipse. The parametric
manifold and Nalwa-Binford detectors perform significantly better than the other three
detectors. Like Figure 6.3, these results demonstrate the clear distinction between the
two detectors that provide subpixel localization and those that don’t. This variant of the
fourth global measure of coherence is largely a measure of subpixel localization accuracy.

vanishing point is close to lying at infinity. Hence, the most important element of

the third global measure of performance is the orientation estimation accuracy. It

is no surprise then that the Nalwa-Binford detector performs worse than both the

Canny and parametric manifold detectors because this was what was discovered

before in Figure 4.3 of Section 4.1.2.

6.4.4 GMC 4: All Edges Lie on an Ellipse

I present the results for the fourth global measure of coherence in Figures 6.6–6.8.

Figure 6.6 contains the results for the first variant, the one that assumes unknown

orientation and uses the location of five edges to estimate the ellipse. Figure 6.7

136

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 4

 -
 1

 T
an

ge
nc

y
C

on
st

ra
in

t

Average Number of Edges Used

Canny
Nalwa-Binford

Sobel
Roberts’ Cross

Parametric Manifold

Figure 6.7: The results for the first known orientation variant of the fourth global mea-
sure of coherence. The location of four edges and one tangency constraint are used to
estimate the ellipse. The parametric manifold detector does the best, followed by the
Nalwa-Binford and Canny detectors doing about the same, then the Sobel operator, and
finally the Roberts’ cross operator.

contains the results for the second variant, the one that uses the location of four

edges and one tangency constraint. Finally, Figure 6.8 contains the results for

the third variant, the one that uses the location of three edges and two tangency

constraints. The benchmark consists of 75 cropped images of a cylinder sliced with

a plane, as shown in Figure 6.1(d).

The first thing to note about the results is that the first phase is much longer

than before. The reason is that, to estimate the ellipse, between three and five edges

are needed. Moreover, I require that the edges are well spread around the ellipse

(see Section 6.2.5), because otherwise the estimates of the ellipse are very sensitive

to noise. For similar reason to those given in Section 6.4.2, it often takes until over

137

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 4

 -
 2

 T
an

ge
nc

y
C

on
st

ra
in

ts

Average Number of Edges Used

Canny
Nalwa-Binford

Sobel
Roberts’ Cross

Parametric Manifold

Figure 6.8: The results for the second known orientation variant of the fourth global
measure of coherence. The location of three edges and two tangency constraints are used
to estimate the ellipse. The parametric manifold detector does the best, followed by the
Nalwa-Binford and Canny detectors doing about the same, then the Sobel operator, and
finally the Roberts’ cross operator.

two hundred edges have been detected before the edges are sufficiently well spread

around the ellipse for the ellipse to be estimated reasonably accurately.

The results for the first variant in Figure 6.6 are similar to those in Figure 6.3

for the same reason that only the location of the edges is used. Like there, the two

detectors that provide subpixel localization (the Nalwa-Binford and parametric

manifold detectors) perform far better than the three that don’t (the Sobel, Roberts’

cross, and Canny detectors). As usual, the Robert’s cross operator is even worse

than Sobel and Canny detectors. In fact, it does so badly that the second phase

appears to be non-existent. The Sobel and Canny detectors also do quite badly

with their second phases being relatively short and steep.

138

The results for the two other variants in Figures 6.7 and 6.8 are very similar to

each other. The parametric manifold detector does the best, followed by the Canny

and Nalwa-Binford detectors doing about the same, then the Sobel operator, and

finally the Roberts’ cross operator. Note that the scales of the ordinate in both of

these graphs have been changed from that used in Figure 6.6. As in Section 6.4.1,

when using more edges with subpixel localization it is easier to estimate the ellipse

than when using fewer edges and the tangency constraint. As was the case there,

the first variant is largely a measure of the subpixel localization and the other two

variants require both accurate subpixel localization and orientation estimation for

performance to be good. A user could decide which of the three variants to use,

based upon the requirements of the application at hand.

6.5 Varying Camera Parameters

Because the images used to estimate the global measures of coherence are captured

in a controlled environment, it is very easy to vary the imaging conditions to in-

vestigate how performance degrades as the conditions become more difficult. In

this section, I present the results of two experimental comparisons. In the first

experiment, I varied the focus setting. In the second, I varied the aperture of the

camera. A number of other experiments could have been performed. For example,

the material or reflectance properties of the objects in the scene could have been

changed. Alternatively, the sharpness of the surface normal discontinuities could

have been reduced. The results presented here are meant to be illustrative of the

type of information that global measures of coherence can provide about how edge

detection performance degrades as imaging conditions become more difficult.

139

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 50 100 150 200 250 300 350 400

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 2

Average Number of Edges Used

In Focus
Slightly Out of Focus

Out of Focus

Figure 6.9: The results of varying the focus setting for the parametric manifold detector.
As the images become more defocused the parametric detector performs worse. However,
for defocused images more edges are detected before the performance falls off rapidly.

6.5.1 Varying the Focus Setting

In Figures 6.9–6.11, I present the results of varying the focus setting. I captured

three sets of images for the second global measure of coherence, one fully focused,

one slightly out of focus, and one even more out of focus. I then estimated the

second global measure of coherence for all three sets of images. Figure 6.9 contains

the results for the parametric manifold detector, Figure 6.10 the results for the

Nalwa-Binford detector, and Figure 6.11 the results for the Canny detector.

As one would expect, the performance of all three detectors becomes worse

as the images get more defocused. However, the drop off in performance is notice-

ably worse for the Canny detector than it is for the other two detectors. Another

interesting point is the variation in the point at which the detectors enter the third

rapid growth phase. For the parametric manifold and Nalwa-Binford detectors this

140

0

0.005

0.01

0.015

0.02

0 50 100 150 200 250 300 350 400

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 2

Average Number of Edges Used

In Focus
Slightly Out of Focus

Out of Focus

Figure 6.10: The results of varying the focus setting for the Nalwa-Binford detector.
Just as for the parametric manifold detector the performance gets worse as the images
get more defocused. Also, when the images are very defocused more edges are detected
before the performance drops off completely.

point gets later as the images get more defocused, whereas for the Canny detector it

gets earlier. These results indicate that as images become more defocused, model-

matching detectors tend to start generating false positives and detecting thicker

lines, whereas optimal filtering detectors like Canny tend to start generating false

negatives and detecting broken edges.

6.5.2 Varying the Aperture Setting

In Figures 6.12–6.14, I present the results of varying the aperture setting. I captured

three sets of images for the third global measure of coherence, one using an F1.8

aperture, one using an F2.8 aperture, and one using an F4.0 aperture. I estimated

the third global measure of coherence for all three sets of images. Figure 6.12

141

0

0.005

0.01

0.015

0.02

0 50 100 150 200 250 300 350 400

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 2

Average Number of Edges Used

In Focus
Slightly Out of Focus

Out of Focus

Figure 6.11: The results of varying the focus setting for the Canny detector. Just
as for the other detectors the performance gets worse as the images get more defocused.
However, unlike the other detectors, less edges are detected in the more defocused images.

contains the results for the parametric manifold detector, Figure 6.13 the results

for the Nalwa-Binford detector, and Figure 6.14 the results for the Canny detector.

As one would expect, the performance of all three detectors gets worse as the

aperture gets smaller. Just as for the focus setting, the drop off in performance is

slightly worse for the Canny detector than it is for the other two detectors. However,

for the parametric manifold detector, the number of edges at which the detector

enters the third rapid growth phase stays roughly constant. On the other hand, for

the other two detectors an increasing number of edges are missed as the aperture

decreases. The reason the parametric manifold algorithm does not suffer from an

increasing number of false negatives is probably the parameter normalization of

Section 3.2.4. This normalization makes the detection decision largely independent

142

0

0.0005

0.001

0.0015

0.002

0 200 400 600 800 1000 1200

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 3

Average Number of Edges Used

F1.8
F2.8
F4.0

Figure 6.12: The results of varying the aperture setting for the parametric manifold
detector. As the aperture gets smaller the performance gets worse, however the number
of detected edges stays almost constant.

0

0.0005

0.001

0.0015

0.002

0 200 400 600 800 1000 1200

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 3

Average Number of Edges Used

F1.8
F2.8
F4.0

Figure 6.13: The results of varying the aperture setting for the Nalwa-Binford detector.
As in Figure 6.12, the performance gets worse as the aperture gets smaller. In addition,
for smaller apertures there are an increasing number of false negatives.

143

0

0.0005

0.001

0.0015

0.002

0 200 400 600 800 1000 1200

G
lo

ba
l M

ea
su

re
 o

f C
oh

er
en

ce
 3

Average Number of Edges Used

F1.8
F2.8
F4.0

Figure 6.14: The results of varying the aperture setting for the Canny detector. As for
the other detectors, the performance gets worse as the aperture gets smaller. Just as for
the Nalwa-Binford detector, the number of false negatives also goes up.

of the size of the step, and hence the size of the aperture.

6.6 Discussion

In this chapter, I presented global measures of coherence as a method of benchmark-

ing an edge detector for applications which require precise sub-pixel localization and

orientation estimation. Examples of such applications include the Hough transform,

structure from motion, industrial inspection, the computation of projective invari-

ants, and stereo matching. The results show that global measures of coherence can

clearly discriminate a wide range of different performance levels.

The major weakness of global measures of coherence is that the scenes used

to capture the images contain carefully constructed man made objects. Although

144

they are somewhat representative of certain industrial environments, the scenes are

very simple. However, it should be noted that defining what is, and moreover what

is not, an edge in an image of a natural object such as a tree or a human face is

very difficult, and arguably inherently subjective anyway. In fact, in a recent paper

in which edge detectors are evaluated by getting a human to mark the edges in

an image by hand, Dougherty and Bowyer allowed the human to mask out certain

regions as too difficult for the human to say which pixels contain edges [32]. The

three major advantages of using global measures of coherence are:

1. They use a very large number of real images. Although the benchmarks used

in this chapter only contain between seventy-five and two hundred images,

capturing an order of magnitude more images would be easy, although some-

what time consuming.

2. They can be used to measure how detection performance degrades as imaging

conditions and physical properties of the scene change. This possibility could

lead to important insights into what physical causes make edge detection dif-

ficult. This understanding in turn might lead to better edge models and noise

distributions that could then be used to design better detectors. (Note that

although my benchmarks only contained images of scenes with reflectance,

depth, and surface normal discontinuity edges, it would be very easy to cre-

ate similar scenes containing shadow edges, edges created when the surface

normal turns away from a light source, and other physical causes of edges.)

3. They can be applied to any edge detector very easily. Applying the bench-

marks consists of three simple steps: (1) download the images and compile my

145

code, (2) modify the detector to output the edge map in the correct format,

and (3) run a script with the detector name as its first argument. This final

point is perhaps the most significant. For a benchmark to be used, it has to

be possible to obtain it freely, use it without significant effort, and the re-

sults of competing algorithms on the same benchmark must be available. My

benchmarks are already available over the Internet with performance graphs

for the five detectors I tested. In the future, I hope to obtain implementations

of other detectors to test with my global measures of coherence, the results

of which I will also make available.

146

Chapter 7

Conclusion

7.1 Summary of Contributions

In Chapter 3, I developed a feature detection algorithm applicable to arbitrary

parametric features. This algorithm offers a level of generality that is uncommon

in feature detection. As far as possible to ascertain, there is no other technique

that is capable of detecting the five features considered in Chapter 3. Moreover,

the construction of a new detector just consists of two simple steps: (1) writing

a C/C++ function to define the continuous feature model, and (2) compiling the

new feature model and linking it with the existing implementation. Features could

also be constructed from imaged features by writing a defining function that appro-

priately transforms (e.g. interpolates, scales, rotates, shifts, and blurs) the image

data. A similar approach to object recognition was recently proposed by Krumm

[62]. Finally, note that although I have only considered features in visible light

images, the same approach is directly applicable to any other sensing modality,

including, X-ray, MR, infrared, ultrasound, and range.

147

A second major contribution of Chapter 3 is the use of realistic multi-

parameter feature models and the incorporation of an explicit sensor model. As

discussed in Section 2.6.2, careful modeling of sensing and optical effects is necessary

to maximize feature detection robustness and obtain the best possible estimates of

the parameters. In this respect, the approach of Chapter 3 should be contrasted

with previous feature detectors which typically use relatively simple feature models

and completely ignore sensing effects. Such simplified models do not capture the

full variation in the appearance of imaged features. Hence, the performance of the

resulting detectors is sub-optimal.

In Chapter 5, I investigated the choice of the matching function for the

feature detector described in Chapter 3. In particular, I restricted attention to

weighted L2 norms and presented a general framework for the selection of the

weighting function. I proposed optimality criteria for the three key aspects of

feature detection performance and showed how they can be combined to yield op-

timality criteria for specific applications. I derived an approximate expression for

the optimal weighting function for the parameter estimation accuracy criterion and

suggested a numerical algorithm for the optimization of the other criteria. This

algorithm can be used to compute the optimal weighting function for any of my

optimality criteria and for arbitrary parametric features.

In Chapter 6, I proposed a collection of edge detector benchmarks appro-

priate for applications requiring precise sub-pixel localization and orientation es-

timation, such as the Hough transform, stereo matching, and the computation of

projective invariants. Each benchmark consists of a very large number of real im-

ages, albeit of carefully constructed scenes in the laboratory. These benchmarks

148

yield non-subjective performance metrics, but do not require ground truth data.

Besides being useful for assessing the relative performance of edge detectors, these

benchmarks can also be used to study how feature detection performance degrades

as camera parameters, such as the focus and aperture settings, vary.

7.2 Discussion

The most important requirement when designing a feature detector is a specifica-

tion of the intensity distributions that constitute the feature. There are a number

of ways of providing this information. One commonly used method is through an

explicit feature model, the approach I took in Chapter 3. Other ways define the dis-

tributions implicitly, for example, using differential invariants or optimality criteria,

as in Sections 2.2 and 2.3. Another possibility might be to define the distributions

empirically by giving a large number of example features.

The same statement is equally true when evaluating a feature detector: the

key requirement is a specification of the intensity distributions that constitute the

feature. Again, this information can be provided in several ways. One way is using

an explicit feature model, as I did in Section 4.1. Another method is to provide a

large number of example features, usually embedded in a collection of images, as

was done in both Section 4.2 and Chapter 6.

An underlying theme of this thesis has also been an investigation into how

to specify the intensity distributions that constitute a feature, both when designing

and evaluating a feature detector. In this respect, several points should be noted:

• In Chapter 3, I proposed a feature detection algorithm applicable to essen-

149

tially any feature. Since the most important goal was generality, I used ex-

plicit parametric feature models to specify the features. With most implicit

methods it would have been very difficult, if possible at all, to provide spec-

ifications for arbitrary features. For this reason, differential invariants and

optimality criteria were immediately ruled out as possibilities.

• Just specifying the intensity distributions that constitute an ideal feature is

not enough, on its own, either to define or evaluate a feature detector. In

addition, a description of the distributions that do not constitute the feature

is also needed. This information can be provided explicitly in the form of a

non-feature model, as was done in Section 4.1 and Chapter 5, or in the form

of a large number of example non-features. As above, example non-features

are usually embedded in a collection of images, particularly when evaluating

a detector. This was the approach taken in both Section 4.2 and Chapter 6.

Alternatively, it is possible to specify the non-features implicitly using either

an optimality criterion, as in Section 2.3, or a function that measures the

distance from ideal. See Chapter 5 for more discussion of this point.

• In Chapter 6, I studied the evaluation of step edge detectors. Using explicit

models of features and non-features for detector evaluation is problematic.

As discussed in Section 4.1.1 and Section 5.5, the selection of appropriate

feature models, non-feature models, and noise models is difficult to do without

biasing the comparison. Ideally one would like to use example features and

non-features taken from real images to avoid these issues. As discussed in

Section 2.5.2, doing so is unfortunately problematic because deciding which

pixels in an image exhibit a feature is tedious, error prone, and inherently

150

subjective. In Chapter 6, I proposed a class of evaluation benchmarks that

avoid this problem by using images for which a constraint is known on the

feature instances. The detectors are evaluated using the extent to which this

constraint holds in the output edge map, rather than in terms of the extent

to which individual features are detected or not.

7.3 Future Work

This thesis suggests a number of possibilities for future work. Here, I just mention

two of them. In Section 7.3.1, I discuss the possibility of using the output of

multiple feature detectors as input into a multi-feature aggregation algorithm. In

Section 7.3.2, I describe how my global measures of coherence might be used to

study which physical effects actually make edge detection difficult.

7.3.1 Multi-Feature Aggregation

Simple post-processing can dramatically improve the performance of a feature de-

tector. A number of post-processing and feature aggregation algorithms have been

proposed in the literature, perhaps the most well known being Canny’s adaptive

thresholding technique, hysteresis [20]. In this thesis, I focused exclusively on how

well feature detection can be performed without using such techniques. In particu-

lar, I assumed that the decision of whether to detect a feature is based solely upon

the distribution of the pixel intensity values in the feature window, and indepen-

dently of whether features are detected in neighboring windows.

Existing post-processing and feature aggregation algorithms, such as relax-

151

ation [108], typically assume that a single feature detector has been applied to the

image. Not surprisingly, the feature detector is usually a step edge detector. The

results of applying the five detectors proposed in Section 3.3 not only consists of

detected features, but also estimates of their parameters and a measure of how well

the image data fits the feature model in terms of the distance to the closest point

on the manifold. This yields a huge amount of information that might be valuable

to a higher level multi-feature aggregation algorithm.

There are at least two effects that such an algorithm should take advantage

of: (1) Powerful constraints result from the use of multiple feature detectors. For

instance, a corner cannot exist in isolation, but instead must have edges in the

vicinity. (2) There are inherent correlations between the responses of the feature

detectors. For example, a corner with an angle above around 150◦ also gives a weak

response as a step edge. Similarly, a line that is wide enough should also gives a

weak responses as a pair of parallel step edges. This correlation between detector

responses is clearly demonstrated in Figure 4.14. The incorporation of these two

effects into a multi-feature aggregation algorithm should lead to much improved

performance over algorithms that only use a single feature.

7.3.2 Investigation into the Physical Causes of Edges

In Section 6.5, I demonstrated how global measures of coherence can be used to

investigate how quickly detector performance degrades as camera parameters are

altered. In particular, I varied both the focus and aperture settings. A large

number of other experiments could have been performed. For example, the material

properties of the objects in the scene could have been changed, the sharpness of

152

the surface normal discontinuities could have been reduced, and additional camera

parameters such as the zoom setting could have been varied.

Conducting these experiments may lead to far greater understanding of which

physical effects actually make edge detection difficult. Many important questions

might be answered: At what point do low contrast edges become undetectable?

Are depth discontinuity edges fundamentally easier to detect than surface normal

discontinuities? What about the other types of discontinuities and causes of edges?

How big an effect do material and reflectance properties have on performance? How

robust can edge detection ever be to the setting of camera parameters?

The understanding gained by conducting such experiments into the physical

causes of edges should hopefully lead to more realistic edge models, physically

validated noise distributions, and eventually better edge detectors.

153

Bibliography

[1] I.E. Abdou and W.K. Pratt. Quantitative design and evaluation of enhance-

ment/thresholding edge detectors. Proceedings of the IEEE, 67(5):753–763,

May 1979.

[2] J.F. Abramatic. Why the simplest “Hueckel” edge detector is a Roberts

operator. Computer Graphics and Image Processing, 17:79–83, 1981.

[3] A.C. Aitken. On least squares and linear combinations of observations. Pro-

ceedings of the Royal Society of Edinburgh A, 55:42–47, 1934.

[4] S. Baker and S.K. Nayar. Algorithms for pattern rejection. In Proceedings of

the 13th International Conference on Pattern Recognition, volume II Track

B, pages 869–874, Vienna, Austria, August 1996. IAPR.

[5] S. Baker and S.K. Nayar. Pattern rejection. In Proceedings of the 1996

Conference on Computer Vision and Pattern Recognition, pages 544–549,

San Francisco, California, June 1996. IEEE Computer Society.

[6] S. Baker, S.K. Nayar, and H. Murase. Parametric feature detection. Inter-

national Journal of Computer Vision, 27(1):27–50, 1998.

154

[7] D.F. Barbe. Charge-Coupled Devices. Springer-Verlag, 1980.

[8] P.R. Beaudet. Rotational invariant image operators. In Proceedings of the

4th International Conference on Pattern Recognition, pages 579–583, Tokyo,

Japan, 1978.

[9] S. Becker and Jr. V.M. Bove. Semiautomatic 3-D model extraction from un-

calibrated 2-D camera views. In Proceedings of SPIE Visual Data Exploration

and Analysis II, volume 2410, pages 447–461, San Jose, California, February

1995.

[10] F. Bergholm. Edge focusing. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 9(6):726–741, November 1987.

[11] V. Berzins. Accuracy of Laplacian edge detectors. Computer Vision, Graph-

ics, and Image Processing, 27:195–210, 1984.

[12] R.A. Boie, I.J. Cox, and P. Rehak. On optimum edge recognition using

matched filters. In Proceedings of the 1986 Conference on Computer Vision

and Pattern Recognition, pages 100–108, 1986.

[13] M. Born and E. Wolf. Principles of Optics. Permagon Press, 1965.

[14] A.C. Bovik, T.S. Huang, and D.C. Munson Jr. Nonparametric tests for edge

detection in noise. Pattern Recognition, 19(3):209–219, 1986.

[15] R.N. Bracewell. The Fourier Transform and Its Applications. McGraw Hill,

second edition edition, 1978.

155

[16] M. Brady. Computational approaches to image understanding. Computing

Surveys, 14(1):2–71, March 1982.

[17] M.J. Brooks. Rationalizing edge detectors. Computer Graphics and Image

Processing, 8:277–285, 1978.

[18] D.C. Brown. Close-range camera calibration. In Symposium on close-range

photogrametry, Urbana, Illinois, January 1971.

[19] D.J. Bryant and D.W. Bouldin. Evaluation of edge operators using relative

and absolute grading. In Proceedings of the IEEE Conference on Pattern

Recognition and Image Processing, pages 138–145, Chicago, IL, 1979.

[20] J. Canny. A computational approach to edge detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 8(6):679–698, November 1986.

[21] S. Castan, J. Zhao, and J. Shen. New edge detection methods based on

exponential filter. In Proceedings of the 10th International Conference on

Pattern Recognition, pages 709–711, 1990.

[22] J.S. Chen, A. Huertas, and G. Medioni. Fast convolution with Laplacian-

of-Gaussian masks. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 9(4):584–590, July 1987.

[23] K. Cho, P. Meer, and J. Cabrera. Performance assessment through boot-

strap. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(11):1185–1198, November 1997.

[24] C. Coehlo, A. Heller, J.L. Mundy, D.A. Forsyth, and A. Zisserman. An exper-

imental evaluation of projective invariants. In J.L Mundy and A. Zisserman,

156

editors, Geometric Invariants for Machine Vision, chapter 4, pages 87–104.

MIT Press, 1992.

[25] J.B. Conway. A Course in Functional Analysis. Springer-Verlag, 1985.

[26] L.S. Davis. A survey of edge detection techniques. Computer Graphics and

Image Processing, 4:248–270, 1975.

[27] D. Demigny and T. Kamlé. A discrete expression for Canny’s criteria for

step edge detector performance evaluation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19(11):1199–1211, November 1997.

[28] R. Deriche. Optimal edge detection using recursive filtering. In Proceedings

of the First International Conference on Computer Vision, pages 501–505,

1987.

[29] R. Deriche. Using Canny’s criteria to derive a recursively implemented op-

timal edge detector. International Journal of Computer Vision, 1:167–187,

1987.

[30] R. Deriche and G. Giraudon. A computational approach for corner and vertex

detection. International Journal of Computer Vision, 10(2):101–124, 1993.

[31] E.S. Deutsch and J.R. Fram. A quantitative study of the orientation bias of

some edge detector schemes. IEEE Transactions on Computers, 27(3):205–

213, March 1978.

[32] S. Dougherty and K.W. Bowyer. Objective evaluation of edge detectors us-

ing a formally defined framework. In Proceedings of the 1998 Workshop on

157

Empirical Evaluation Techniques in Computer Vision, pages 211–234, Santa

Barbara, California, June 1998. IEEE Computer Society.

[33] L. Dreschler and H.H. Nagel. On the selection of critical points and local cur-

vature extrema of region boundaries for interframe matching. In Proceedings

of the 6th International Conference on Pattern Recognition, pages 542–544,

1982.

[34] J. Elder and S. Zucker. Scale space localization blur and contour-based image

coding. In Proceedings of the 1996 Conference on Computer Vision and Pat-

tern Recognition, pages 27–34, San Francisco, California, June 1996. IEEE

Computer Society.

[35] O.D. Faugeras. Three–dimensional Computer Vision: A Geometric View-

point. MIT Press, 1993.

[36] J.R. Fram and E.S. Deutsch. On the quantitative evaluation of edge detection

schemes and their comparison with human performance. IEEE Transactions

on Computers, 24(6):616–628, June 1975.

[37] W.T. Freeman and E.H. Adelson. The design and use of steerable filters.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:891–

906, 1991.

[38] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press,

1990.

158

[39] M. Gennert. Detecting half-edges and vertices in images. In Proceedings

of the 1986 Conference on Computer Vision and Pattern Recognition, pages

552–557, 1986.

[40] A.K. Griffith. Mathematical models for automatic line detection. Journal of

the Association for Computing Machinery, 20(1):62–80, January 1973.

[41] M. Hahsimoto and J. Sklansky. Multiple-order derivatives for detecting local

image characteristics. Computer Vision, Graphics, and Image Processing,

39:28–55, 1987.

[42] R.M. Haralick. Edge and region analysis for digital image data. Computer

Graphics and Image Processing, 12:60–73, 1980.

[43] R.M. Haralick. Ridges and valleys on digital images. Computer Vision,

Graphics, and Image Processing, 22:28–38, 1983.

[44] R.M. Haralick. Digital step edges from zero crossing of second directional

derivatives. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 6(1):58–68, January 1984.

[45] C. Harris. Determination of ego-motion from matched points. In Proceddings

of the 3rd Alvey Vision Conference, Cambridge, UK, 1987.

[46] R. Hartley. A Gaussian-weighted multiresolution edge detector. Computer

Vision, Graphics, and Image Processing, 30:70–83, 1985.

[47] M.D. Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer. A robust visual method

for assessing the relative performance of edge-detection algorithms. IEEE

159

Transactions on Pattern Analysis and Machine Intelligence, 19(12):1338–

1359, December 1997.

[48] B.K.P. Horn. Robot Vision. McGraw Hill, 1996.

[49] J.S. Huang and D.H. Tseng. Statistical theory of edge detection. Computer

Vision, Graphics, and Image Processing, 43:337–346, 1988.

[50] M.H. Hueckel. An operator which locates edges in digitized pictures. Journal

of the Association for Computing Machinery, 18(1):113–125, January 1971.

[51] M.H. Hueckel. A local visual operator which recognizes edges and lines.

Journal of the Association for Computing Machinery, 20(4):634–647, October

1973.

[52] R.A. Hummel. Feature detection using basis functions. Computer Graphics

and Image Processing, 9:40–55, 1979.

[53] B.F. Logan Jr. Information in the zero crossings of bandpass signals. Bell

Systems Technical Journal, 56(4):487–510, April 1977.

[54] G.E. Sotak Jr. and K.L. Boyer. The Laplacian-of-Gaussian kernal: A formal

analysis and design procedure for fast, accurate convolution and full-frame

output. Computer Vision, Graphics, and Image Processing, 48:147–189, 1989.

[55] G. Kanizsa. Subjective contours. Scientific American, 234(4):48–52, 1976.

[56] T. Kanungo, M.Y. Jaisimha, J. Palmer, and R.M. Haralick. A methodol-

ogy for quantitative performance evaluation of detection algorithms. IEEE

Transactions on Image Processing, 4(12):1667–1673, December 1995.

160

[57] L. Kitchen and A. Rosenfeld. Edge evaluation using local edge coher-

ence. IEEE Transactions on Systems, Man, and Cybernetics, 11(9):597–605,

September 1981.

[58] L. Kitchen and A. Rosenfeld. Gray-level corner detection. Pattern Recognition

Letters, 1:95–102, December 1982.

[59] D.E. Knuth. The Art of Computer Programming, Volume II: Seminumerical

Algorithms. Addison-Wesley, 1981.

[60] J.J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370,

1984.

[61] A.L. Korn. Towards a symbolic representation of intensity changes in images.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5):610–

625, September 1988.

[62] J. Krumm. Eigenfeatures for planar pose measurement of partially occluded

objects. In Proceedings of the 1996 Conference on Computer Vision and

Pattern Recognition, San Francisco, California, June 1996. IEEE Computer

Society.

[63] C.L. Lawson and R.J. Hanson. Solving Least Squares Problems. Prentice-Hall,

1974.

[64] R. Lenz. Optimal filters for the detection of linear patterns in 2-D and higher

dimensional image. Pattern Recognition, 20(2):163–172, 1987.

[65] T. Lindenberg. Scale-Space Theory in Computer Vision. Kluwer Academic

Publishers, 1994.

161

[66] W.H.H. Lunscher. The assymptotic optimal frequency domain filter for edge

detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

5(6):678–680, November 1983.

[67] W.H.H.J. Lunscher and M.P. Beddoes. Optimal edge detector design 1: Pa-

rameter selection and noise effects. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 8(2):164–177, March 1986.

[68] W.H.H.J. Lunscher and M.P. Beddoes. Optimal edge detector design 2: Co-

efficient quantization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 8(2):178–187, March 1986.

[69] S. Mallat and S. Zhong. Characterization of signals from multiscale edges.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7):710–

732, July 1992.

[70] D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the Royal

Society of London, Series B, 207:187–217, 1980.

[71] P. Meer and I. Weiss. Smoothed differentiation filters for images. Journal of

Visual Communication and Image Representation, 3(1):58–72, March 1992.

[72] J.W. Modestino and R.W. Fries. Edge detection in noisy images using recur-

sive digital filtering. Computer Graphics and Image Processing, 6:409–433,

1977.

[73] H.P. Moravec. Towards automatic visual obstacle avoidance. In Proceedings

of the Fifth Internation Joint Conference on Artificial Intelligence, 1977.

162

[74] D.G. Morgenthaler. A new hybrid edge detector. Computer Graphics and

Image Processing, 16:166–176, 1981.

[75] D.G. Morgenthaler and A. Rosenfeld. Multidimensional edge detection by

hypersurface fitting. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 3(4):482–486, July 1981.

[76] H.H. Nagel. Displacement vectors derived from second-order intensity varia-

tions in image sequences. Computer Vision, Graphics, and Image Processing,

21:85–117, 1983.

[77] N.E. Nahi and M.H. Jahanshahi. Image boundary estimation. IEEE Trans-

actions on Computers, 26(8):772–781, August 1977.

[78] V.S. Nalwa. Edge detector resolution improvement by image interpolation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(3):446–

451, May 1987.

[79] V.S. Nalwa. A Guided Tour of Computer Vision. Addison-Wesley, 1993.

[80] V.S. Nalwa and T.O. Binford. On detecting edges. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(6):699–814, November 1986.

[81] D. Nandy, Z. Wang, J. Ben-Arie, K. Raghunath Rao, and N. Jojic. A gen-

eralized feature extractor using expansion matching and the karhunen-loeve

transform. In Proceedings of the 1996 DARPA Image Understanding Work-

shop, pages 969–972, Palm Springs, CA, February 1996.

[82] R. Nevatia. Evaluation of a simplified Hueckel edge-line detector. Computer

Graphics and Image Processing, 6:582–588, 1977.

163

[83] R. Nevatia and K.R. Babu. Linear feature extraction and description. Com-

puter Graphics and Image Processing, 13:257–269, 1980.

[84] J.A. Nobel. Finding corners. Image and Vision Computing, 6(2):121–127,

May 1988.

[85] H.N. Norton. Sensor and Analyzer Handbook. Prentice Hall, 1982.

[86] The Museum of Modern Art. The Museum of Modern Art New York: The

History and the Collection. Harry N. Abrams, 1984.

[87] American Society of Photogrammetry. Manual of Photogrammetry. American

Society of Photogrammetry, fourth edition edition, 1980.

[88] F. O’Gorman. Edge detection using Walsh functions. Artificial Intelligence,

10:215–223, 1978.

[89] E. Oja. Subspace Methods of Pattern Recognition. Research Studies Press,

1983.

[90] P.L. Palmer, H. Dabis, and J. Kittler. A performance measure for boundary

detection algorithms. Computer Vision and Image Understanding, 63(3):476–

494, May 1996.

[91] L. Parida, D. Geiger, and R. Hummel. Kona: A mulie-junction detector and

classifier. In Proceedings of the International Conference on Energy Mini-

mization in Computer Vision and Pattern Recognition, Venice, Italy, 1997.

[92] K. Paton. Picture description using Legendre polynomials. Computer Graph-

ics and Image Processing, 4:40–54, 1975.

164

[93] D.A. Patterson and J.L. Hennessy. Computer Architecture: A Quantitive

Approach. Morgan Kaufman, San Mateo, California, 1990.

[94] F. Pedersini, A. Sarti, and S. Tubaro. Estimation and compensation of sub-

pixel edge localization error. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(11):1278–1284, November 1997.

[95] T. Peli and D. Malah. A study of edge detectional algorithms. Computer

Graphics and Image Processing, 20:1–21, 1982.

[96] P. Perona and J. Malik. Scale-space and edge detection using anisotropic

diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

12(7):629–639, July 1990.

[97] M. Petrou and J. Kittler. Optimal edge detectors for ramp edges. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 13(5):483–491,

May 1991.

[98] K.K. Pingle. Visual perception by a computer. In A. Grasselli, editor, Auto-

matic Interpretation and Classification of Images, pages 277–284. Academic

Press, New York, 1969.

[99] R.L. Plackett. Principles of Regression Analysis. Oxford Univeristy Press,

1960.

[100] W.K. Pratt. Digital Image Processing. Wiley-Interscience, 1991.

[101] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes in C. Cambridge University Press, second edition, 1992.

165

[102] J.M. Prewitt. Object enhancement and extraction. In B.S. Lipkin and

A. Rosenfeld, editors, Picture Processing and Psychopictorics. Academic

Press, 1970.

[103] V. Ramesh and R.M. Haralick. Performance characterization of edge de-

tectors. SPIE Applications of Artificial Intelligence: Machine Vision and

Robotics, 1708:252–266, 1992.

[104] K. Raghunath Rao and J. Ben-Arie. Optimal edge detection using expan-

sion matching and restoration. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 16(12):1169–1182, December 1994.

[105] L.G. Roberts. Machine perception of three-dimensional solids. In J.T. Trippit,

D.A. Berkowitz, L.C. Chapp, C.J. Koester, and A. Vanderburgh, editors, Op-

tical and Electro-Optical Information Processing, pages 159–197. MIT Press,

Cambridge, Massachusetts, 1965.

[106] K. Rohr. Recognizing corners by fitting parametric models. International

Journal of Computer Vision, 9(3):213–230, 1992.

[107] A. Rosenfeld. The max Roberts operator is a Hueckel-type edge detector.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(1):101–

103, January 1981.

[108] A. Rosenfeld, R.A. Hummel, and S.W. Zucker. Scene labeling by relaxation

operations. IEEE Transactions on Systems, Man, and Cybernetics, 6:420–

433, 1976.

166

[109] S. Sarkar and K.L. Boyer. On optimal infinite impulse response edge detection

filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(11):1154–1171, November 1991.

[110] M.A. Shah and R. Jain. Detecting time-varying corners. Computer Vision,

Graphics, and Image Processing, 28:345–355, 1984.

[111] K.S. Shanmugam, F.M. Dickey, and J.A. Green. An optimal frequency do-

main filter for edge detection in digital pictures. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 1(1):37–49, January 1979.

[112] M.C. Shin, D. Goldgof, and K.W. Bowyer. An objective comparison method-

ology of edge detection algorithms using a structure from motion task. In

Proceedings of the 1998 Workshop on Empirical Evaluation Techniques in

Computer Vision, pages 235–254, Santa Barbara, California, June 1998. IEEE

Computer Society.

[113] L.A. Spacek. Edge detection and motion estimation. Image and Vision Com-

puting, 4:43–56, 1986.

[114] C. Steeger. Analytical and empirical performance evaluation of subpixel line

and edge detection. In Proceedings of the 1998 Workshop on Empirical Eval-

uation Techniques in Computer Vision, pages 188–210, Santa Barbara, Cali-

fornia, June 1998. IEEE Computer Society.

[115] V. Torre and T.A. Poggio. On edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8(2):147–163, March 1986.

167

[116] R.Y. Tsai. An efficient and accurate camera callibration technique for 3D

machine vision. In Proceedings of the 1986 Conference on Computer Vision

and Pattern Recognition, pages 364–374, 1986.

[117] I. Weiss. High-order differential filters that work. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 16(7):734–739, July 1994.

[118] A.P. Witken. Scale-space filtering. In Proceedings of the 8th International

Joint Conference on Artificial Intelligence, pages 1019–1022, Karlsruhe, Ger-

many, August 1983.

[119] P.N. Yianilos. Data structures and algorithms for nearest neighbor search

in general metric spaces. In Proceedings of the ACM-SIAM Symposium on

Discrete Algorithms, 1993.

[120] A.L. Yuille and T.A. Poggio. Scaling theorems for zero crossings. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1986.

[121] Q. Zhu. Efficient evaluation of edge connectivity and width uniformity. Image

and Vision Computing, 14:21–34, 1996.

[122] S.W. Zucker and R.A. Hummel. A three-dimensional edge operator. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 3(3):324–331,

May 1981.

[123] O.A. Zuniga and R.M. Haralick. Corner detection using the facet model. In

Proceedings of the 1983 Conference on Computer Vision and Pattern Recog-

nition, pages 30–37. IEEE Computer Society, 1983.

