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Abstract. Mostvisual features are parametricin nature, including, edges, lines, corners, andjunctions. We propose
an algorithm to automatically construct detectors for arbitrary parametric features. To maximize robustness we use
realistic multi-parameter feature models and incorporate optical and sensing effects. Each feature is represented:
a densely sampled parametric manifold in a low dimensional subspace of a Hilbert space. During detection, the
vector of intensity values in a window about each pixel in the image is projected into the subspace. If the projection
lies sufficiently close to the feature manifold, the feature is detected and the location of the closest manifold point
yields the feature parameters. The concepts of parameter reduction by normalization, dimension reduction, patter
rejection, and heuristic search are all employed to achieve the required efficiency. Detectors have been constructe
for five features, namely, step edge (five parameters), roof edge (five parameters), line (six parameters), corner (fiv
parameters), and circular disc (six parameters). The results of detailed experiments are presented which demonstre
the robustness of feature detection and the accuracy of parameter estimation.

1. Introduction or recognition of a manufactured part, a subpart such
as bolt may be the feature of interest. The appearance
Many applications in image processing and com- of such a feature in an image may well depend upon
putational vision rely upon the robust detection of a number of parameters such as orientation, localiza-
parametric image features. The standard example oftion, scale, and level of blurring. In short, parametric
a parametric feature is thetep edge It is by far the features are too numerous to justify the process of man-
most frequently studied feature due to its abundance ually deriving a detector for each one.
in natural scenes, its high information content, and the  The objective of this paper is to develop an algo-
fact that its simple one-dimensional structure makes rithm that automatically constructs a feature detector
analysis tractable. Nevertheless, the step edge is byfor an arbitrary parametric feature. Further, during de-
no means the only feature of interest in image under- tection we also wish to recover the parameters of de-
standing. Itis closely followed in significance by other tected features and, in particular, do so with as high
ubiquitous features such &res corners junctions accuracy as possible. In many applications, precise es-
androof edges This list is far from comprehensive, timates of feature parameters are of vital importance to
even if we restrict attention to features that can be de- higher levels of visual processing. A simple example is
fined analytically. Moreover, in any given application, thatofthe generalized Hough transform where accurate
the term feature may take on a meaning that is specific knowledge of edge direction reduces the dimension of
to that application. For instance, during the inspection the Hough space by one. Likewise, the performance
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of boundary growing algorithms can be dramatically If we treat the pixel intensity values as real numbers,
enhanced when the orientation of image edgels is usedwe can regard each parametric feature instance as a
to guide the growth of the boundary. point in RN, whereN is the number of pixels in the

To obtain high performance in both detection and pa- window surrounding the feature. As the feature pa-
rameter estimation, it is essential to accurately model rameters vary, the point ilRN corresponding to the
the features as they appear in the physical world. feature traces out kdimensional manifold, wherk
Hence, we choose not to make any simplifications for is the number of feature parameters. In this setting,
analytic or efficiency reasons, but instead use realis- feature detection can be posed as finding the closest
tic multi-parameter feature models. Whereas many point on the feature manifold to the pointhN corre-
step edge models assume that the edge passes directlgponding to the pixel intensity values in a novel image
through the center of the pixel and is a perfect step dis- window. If the closest manifold point is near enough,
continuity, we include a localization parameter and a we register the presence of the feature. Then, the ex-
blurring parameter. These parameters enhance the ro-act location of the closest point on the manifold re-
bustness of detection while at the same time being use-veals the parameters of the feature just detected. On
ful parameters to recover in their own right. Our model the other hand, if the nearest manifold point is too far
of the step edge has five parameters, namely, the loweraway from the novel point, we declare the absence of
brightness level, the brightness difference across thethe feature. This statement of the feature detection
step, the angle (orientation) of the edge, the intrapixel problem was first introduced by Hueckel (1971), and
location, and the blurring (scaling) parameter. Our ar- was subsequently used by O’'Gorman (1978), Hummel
guments in favor of highly descriptive feature models (1979), Hartley (1985), and Nalwa and Binford (1986)
apply to other features as well. We use a five parameter for the detection of step edges. Hueckel (1973) ap-
model for roof edges, a six parameter model for lines, plied the same formulation to line detection and Rohr
afive parameter model for corners, and a six parameter(1992) used it to detect corners. The same approach
model for circular discs. generalizes to three-dimensional image data as was

In most previous work, feature detectors have been used by Zucker and Hummel (1981) and also by
designed in the continuous domain based upon con-Lenz (1987) in the detection of three-dimensional step
tinuous feature models. The detectors developed areedges.
only sampled as a final step before their applicationto  Hueckel (1971) and Hummel (1979) both argued
discrete images. We argue that to fully optimize the that to achieve the required efficiency, a closed form
performance of a detector, careful consideration must solution must be found for the parameters of the clos-
be given to how the sensor converts the continuous radi- est manifold point. To make their derivations possible,
ance function of a scene feature into its discrete image. they used simplified feature models and neglected sens-
For instance, the aspect ratio of an image sensor maying effects. Our view of feature detection is radically
significantly affect the appearance of a feature inanim- different. We believe that the features we wish to de-
age. Perhaps less obvious are the effects of the shapédect are inherently complex visual entities. Hence, we
and size of the photosensitive elements within a CCD willingly forego all hope of finding closed-form solu-
image sensor. Our notion of a parametric feature model tions for the best-fit parameters. Instead, we discretize
is acontinuous one, but during detector construction we the search problem by densely sampling the feature
explicitly model the discretization of the sensor. The manifold. The closest point on the manifold is then
sensor model used is that of a standard CCD imaging approximated by finding the nearest neighbor amongst
device which integrates the radiance function over a the sample points. Typically, this sampling will result
sub-rectangle of each sensor pixel. The sub-rectanglein the order of 18 points, which lie in a space of di-
corresponds to the pixel photosensitive area, which in mension,N = 25-100. Further, the search for the
general is not the entire pixel. In addition to the sens- closest manifold point must be repeated for each win-
ing discretization, we also model the blurring caused dow (centered around each pixel) in the image. Nalwa
by the optical transfer function of the imaging optics. and Binford (1986) and Rohr (1992) used more com-

When combined, a parametric feature model and an plex feature models than Hueckel and Hummel and also
imaging system model allow us to accurately predict used numerical methods to find the best-fit parameters
the pixel intensity values in a window around an im- of their models to the image data.
aged feature. All that is required are the parameters At first glance, applying a high dimensional search
of the feature and the details of the imaging system. for every pixel in an image seems inefficient to the
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point of impracticality. However, we will show that imental results are presented, which include compar-
our approach is indeed very practical. To obtain the isons with the Canny (1986) and Nalwa-Binford (1986)
required efficiency we used a number of different tech- step edge detectors. We conclude in Section 6 with a
niques. First, we introduce a set of simple normal- discussion of several issues arising from our work.
izations that eliminate some of the parameters and so
reduce the dimensionality of the manifoldto 3 or4 (for 2. Parametric Feature Representation
the five features which we experimented with). These
normalizations cause no significant loss of information We begin by presenting the theoretical basis of our
or reduction in the signal-to-noise ratio. Next, we ap- approach to feature detection. First, the notion of a
ply the Karhunen-LeVe expansion (Oja, 1983), as a parameterized scene feature is introduced. Then, we
dimension reduction technique. This enables us to im- describe the artifacts introduced by the imaging system
prove efficiency by projecting the feature manifold into as it maps a scene feature to its discrete image. Fi-
asubspace of dimensiah,« N. Dramatic dimension  nally, parameter normalization and dimension reduc-
reduction is possible because most features of interesttion techniques are used to obtain parametric feature
have significant structure and inherent symmetries. In manifolds in low-dimensional subspaces.
practice,d turns out to be in the range 5-15. Dimen-
sion reduction was first used in feature detection by 2.1. Parametric Scene Features
Hummel (1979) and a similar compressed representa-
tion was proposed for 3-D object recognition and pose By a scene feature we mean a geometric or photomet-
estimation in (Murase and Nayar, 1995). ric phenomenon in the physical world that produces

During the search itself, we use a coarse-to-fine al- spatial radiance variations which, if detectable, can aid
gorithm that exploits the local smoothness of the fea- in visual perception. It is known that image bright-
ture manifolds to quickly find the closest sample point. ness is proportional to scene radiance (Horn, 1986).
Further, we do not need to perform the search at every The image feature is therefore the continuous radi-
pixel in the image. Amongst other techniques, we use ance function of the scene feature. It can be written as
a recently developed rejection algorithm (Baker and F€(x, y; q) where(x, y) € Sare image points within
Nayar, 1996) to quickly eliminate a vast majority of a finite feature windowS, andq are the parameters of
pixels without even needing to project fully into the the feature. For instance, in the case of a step gdge
low-dimensional subspace. Such a rejection scheme iswould include edge orientation and the brightness val-
feasible and effective since most pixels in an image do ues on the two sides of the edge. In the case of a corner
not represent features of interest. With all the above g would include the orientation of the corner, the an-
efficiency enhancements in place, our feature detectorsgle subtended by the corner, and the brightness values
take only a few seconds on a standard single-processorinside and outside the corner. To fully specify a fea-
workstation when applied to a 5¥2480image. Given  ture, we need to provide the feature radiance function,
the enormous strides being made in memory and multi- F¢(x, y; ), the feature windowS, and the ranges of
processor technology, it is only a matter of time before the parameters.
real-time performance is achieved.

The remainder of this paper is organized as follows. 2.2. Modeling Image Formation and Sensing
In the next section, we introduce the notion of a para-
metric scene feature and discuss our sensor models. WePrevious work on feature detection has implicitly as-
show how features may be represented as parametricsumed that the artifacts induced by the imaging sys-
manifolds, and then describe the efficiency enhance- tem are negligible and can be ignored. There are two
ments achievable through parameter normalization and possible reasons for this. First, some of the artifacts
dimension reduction. In Section 3, we introduce our are nonlinear in nature and would make the derivation
five example features, namely, step edges, lines, cor-of the detector, as approached before, more cumber-
ners, roof edges, and circular discs. In each case, wesome. Second, the effects introduced by the imaging
present the feature model, the result of dimension re- system are typically less pronounced than those that
duction, and the feature manifold. In Section 4, the de- result from the feature parameters themselves. For rea-
tection algorithm is presented in detail. In particular, sonsthatwillbecome clear shortly, we are able toincor-
we describe manifold sampling, efficient search, and porate both linear and nonlinear effects in our feature
the use of rejection techniques. In Section 5, our exper- model. Hence, we choose to make our feature models



30  Baker, Nayar and Murase

as precise as possible by incorporating image formation wherex is the 2-D convolution operator. (Note that

effects. a(x, y), a(x, y), ands(x, y) are all unit volume and
The first such effect is the blurring of the continu- so the feature image is not scaled.) Since the above

ous feature image. If the scene feature lies outside theimage is simply a weighted sum of Kronecker delta

focused plane of the imaging system, its image will be functions (Bracewell, 1978), it can also be written as

defocused. Further, the finite size of the lens aperture F(m, n; q), where(m, n) € Sare the (integer valued)

causes the optical transfer function of the imaging sys- pixel coordinates.

tem to be bandlimited in its spatial resolution. Finally, It is important to note that the blurring, averaging,

the feature itself, even before imaging, may be some- and sampling functions vary from sensor to sensor.

what blurred. Forinstance, a real scene edge would not Above, we have assumed the pixels and the sampling

be a perfect step but rather rounded. The magnitude ofto be rectangular. In practice, these functions should

this effect in image space is spatially variant and also be selected based on the specifications of the actual

depends upon the magnification of the imaging system. sensor used. More generally, a model of the imaging

Moreover, the level of defocus is not constant across system is a functional that takes the continuous radi-

the image and so we will develop an approach that ance functionF¢(x, y; ) and maps it to the discrete

can handle spatially varying blur. The defocus factor functionF(m, n; q).

can be approximated by a pillbox function (Born and

Wolf, 1965), the optical transfer function by the square ) )

of the first-order Bessel function of the firstkind (Born  2-3-  Parametric Feature Manifolds

and Wolf, 1965), and the blurring due to imperfections ) ) )

in the feature by a Gaussian (Koenderink, 1984). We If the total number of pixels in the feature window

combine all three effects in a single blurring factor that 1S N. then each feature instanc&,(m, n; ), may
is assumed to be a 2-D Gaussian: be regarded as a point in ti¢-dimensional Hilbert

space, . Suppose the feature has parameters
1 1 x2+y? (dim(q) =K). Then, as the parameters vary over their
9(x.y:0) = mexp(—é T2 > (1) ranges, the corresponding feature instances trace out a
k-parameter manifold iRN. Therefore, any paramet-
The continuous image on the sensor plane is con- ric feature may be represented as a multivariate mani-
verted (typically by a CCD detector) to adiscreteimage fold in a high-dimensional space. Feature detection can
through two processes. First, the light flux falling on  then be posed as finding the closest point on the fea-
each sensor element is averaged, or integrated. If theture manifold to each novel candidate window in the
pixels are rectangular (Barbe, 1980; Norton, 1982), the image. Performing this task directly using the feature
averaging function is simply the rectangular function manifold is impractical for reasons of efficiency due to

(Bracewell, 1978): the high dimensionality of the Hilbert spad¢)Yand the
manifold itself k). In the following two subsections,
a(x,y) = 2 <ix iy> 2) we present techniques that dramatically reduce the di-
Wx Wy Wx Wy mensionality of the manifold and the space in which it

lies, thereby making the feature manifold a viable rep-
resentation for feature detection and parameter esti-
mation.

where,wy, andwy are thex andy dimensions of the
pixel, respectively. Next, the pixels are sampled, which
can be modeled by a rectangular grid:

s(x, y) = 21l (pix iy) ©) 2.4. Parameter Reduction by Normalization
x Py

For each feature instand&(m, n; g), we compute its
meanu(d) = 5 X nmesF (M N;g), and its mag-
nitude v3(Q) = Y mes(F(M. N: @) — w(@)) The
following brightness normalization is then applied:

where, py and py are spacings between discrete sam-
ples in the two spatial dimensions. The final discrete
image of a feature may then be written as:

F(m.n:q) = — (F(m.n; q) — 5
= {F°0¢ y; ) % g(x, y) = alx, )} -s(x, ) (4) (MDD =g FM M@ =@ )
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This simple normalization proves to be very valuable. K-L residuedefined by:

For all of the features we implemented, it reduced the

dimensionality of the feature manifold by two. This N

is because (m, n; q) turns out to be approximately R(d) = Z Aj (7
independent of two of the brightness parameters. in j=d+1

For instance, in the case of the step edge the normal-
ized featureF (m, n; q) is invariant to the brightness
values on either side of the step. It is only the values
of u andv that change with the two brightness param-
eters. There are three important points to note about
this brightness normalization: (a) it does not alter the
signal-to-noise ratio of the feature, (b) the normaliza-

To give an idea of the data compression possible, a
step edge manifold in a 49-D Hilbert space can be rep-
resented in a 3-D subspace with K-L residue of less
than 10%. Moving to an 8-D subspace reduces the
residue to less than 2%.

The parametric feature manifold is constructed by
projecting all feature instances into the subspace. This

tion must be applied not only during the construction of . .
: : : requires the dot products (convolution) of each feature
the feature manifold but also during feature detection, . . : :
instance with the prominent eigenvectors that serve as

and (c) once a normalized feature has been detected, . ; .
. . a basis for the subspace. Since such a parameterized
its meanu and magnitude can be used to recover the

X . ; feature manifold is easy to compute for any feature,
two brightness parameters eliminated during normal- we have at our disposal a generic tool for desianin
ization. See Appendix A for the details. b 9 gning

feature detectors. Further, the dramatic dimension re-
duction produced by the K-L expansion together with

the parameter elimination achieved through the bright-
ness normalization described in Section 2.4 allow us

For several reasons, such as feature symmetries an&c_) compactly represent features and detect them effi-

high correlation between feature instances with sim- ciently.

ilar parameter values, it is possible to represent the

fe_ature m_an_if_old ina Iow-dimensio_nal subspacé_‘té‘f 3. Example Features
without significant loss of informatiofi. If correlation

between feature instances is the preferred measure ofye now illustrate the manifold representations of five
similarity, the Karhunen-Leve (K-L) expansion (Oja,  parametric features. For each feature, we provide a
1983; Fukunaga, 1990) yields the optimal subspace. definition of the feature, list its parameters, discuss
The covariance matriR = E[(F — E[F])(F — the effects of brightness normalization, and present
E[F])'] represents the correlation between corre- the results of dimension reduction. The features we
sponding pixels in the different feature instances. The have chosen are merely examples that happen to be

2.5. Dimension Reduction

normalized featureinStanCE_SB.reN-dimenSional vec- important in machine Vision_ The techniques are not
tors, and s® is a symmetridN x N matrix. The re-  restricted to brightness images, but may also be applied
duced space is computed by solving the eigenstructuretg features found in data produced by most other types
decomposition problem: of sensors.

Re=ae ®) 31 StepEdge
The result is the set of eigenvalugs | j = 1,2, ..., Our first example feature is the familistep edge.
N} wherexr; > A, > --- > Ay > 0, and a cor- Parametric models for edges date back to the work of
responding set of orthonormal eigenvect(es| j = Hueckel (1971). Since then, the edge has been studied
1,2,..., N}. Duetotheinherent structure and symme- in more detail than any other visual feature (see Nalwa,

tries of most parametrized features, the first few eigen- 1993). Figures 1(a) and (b) show the isometric and
values tend to be significantly larger than the remaining plan views of the step edge model which we use. This
ones. This allows us to represent features in a low- model is a generalization of those used in (Hueckel,
dimensional subspace spanned by the few most promi-1971; Hummel, 1979; Lenz, 1987). It is closest to the
nent eigenvectors. Suppose we use thediesgenvec- one used by Nalwa and Binford (1986) in terms of the
tors, then a measure of the information discarded is the number and type of parameters, but differs slightly in
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Figure L The step edge model includes two constant intensity regions of brighreass A + B. Its orientation and intrapixel displacement

are given by the parameteisandp, respectively. The fifth parameter (not shown) is the blurring fagtoFhe decay of the K-L residue shows

that 90% of the edge image content is preserved by the first three eigenvectors and 98% by the first eight eigenvectors. The step edge manifo
is parameterized by orientation and intrapixel localization for a fixed blurring value and is displayed in a 3-D subspace constructed using the
first three K-L eigenvectors.

its treatment of smoothing effects. The basis for the A step withlower intensity levelp, and upper intensity

2-D step edge model is the 1-D unit step function: level, A+ B, can be written a& + B - u(t). To extend
the model to 2-D, we assume that the step edge is of
1 ift>0 constant cross section (step size along its length), is

u(t) = (8) oriented at an angk, and lies at a distangefrom the

0 ift<0O origin. Then, the signed distance of an arbitrary point
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(X, y) from the step (see Fig. 1(b)) is given by: are not optimal for our, more complex, edge model.
It is also interesting to note that the first two eigen-
Z=1y-cost —x-sinf — p 9) vectors resemble first-order spatial derivative operators
that constitute the basis of many popular edge detectors
Therefore, an ideal step edge is given/y- B - u(z). (for instance the Sobel operator (Prewitt, 1970)).

For the reasons given in Section 2.2, we need to incor-  The window chosen for our edge model includes
porate the Gaussian blur and the integration over each49 pixels. To avoid unnecessary non-hnganues In-
pixel performed by the sensor. The resulting step edge duced by a square window we used a disc shaped

model is: one. In Fig. 1(d), the decay of the Karhuneneke’
residue is plotted as a function of the number of
Fse(X,y; A, B,8,p,0) eigenvectors. As can be seen from the residue plot,

the first two eigenvectors capture only about 80% of
the information in an edge. Consequently, edge de-
(10) tectors that rely solely on the two first-order deriva-
tives can only suggest the possible existence of an
edge but not guarantee it. To reduce the residue to
10% we need to use three eigenvectors. To reduce it
further to 2% we need eight eigenvectors. These re-
sults illustrate a significant data compression factor of
5-15 times. As a result, the efficiency of feature de-
tection and parameter estimation is greatly enhanced.
Hummel (1979) predicts that for his continuous step
edge model, the eigenvalues should decay like?1
Our results are consistent with this. By plotting

={(A+B-u(2)*g(x, y; o) *a(x, y)}-s(x, y)

wherez is given by Eq. (9). Note that the step edge
model has five parameters, namely, orientatipifo-
calizationp, blurring or scalingr, and the brightness
valuesA andB.

To complete our definition of the step edge, we need
to specify the ranges that the parameters may take.
Distances are measured in units of the distance be-
tween two neighboring pixels and angles are given
in degrees. The orientation parameter,is drawn

from [0°, 3601 V\ﬁ “32”@ the localization param- againstn on logarithmic scales and analyzing the
eter,p, to lie n [=. °7] since any edge must pass slope of the curve, we found that our eigenvalues ini-
closerthan a dlstancw‘éz2 from the center of at least one tially decay like ¥n?. Because we are working iR
pixelin the image. The blurring parameterisdrawn  rather than the infinite-dimensional Hilbert Space of
from [0.3, 1.5]. As described in (Nalwa and Binford,  (jymmel, 1979), the rate of decay increases somewnhat
1986), substantially larger values @fcould be used,  \yith increasingn.
but really represent an edge at a much higher magni-  The step edge manifold is displayed in Fig. 1(e).
figation. Such cases require the use of a larger image Naturally, we are only able to display a 3-D projection
window. The intensity parametersandB are free 0 it jnto a subspace. This subspace is spanned by the
take any value. This is because of the brightness nor- yhree most important eigenvectors. Also, for clarity,
mallzat|o.n described in Sgcnon 2.4. The structure of |y only display a 2-parameter slice through the man-
anormalized step edge, given by the parameiers ifold, by keepings constant and varying andp. As
ands, is independent oA and B. Further, the values  mentioned earlier, the first three eigenvectors capture
of AandB may be recovered from the mearand the  more than 90% of the information. This is reflected in
magnitudev as described in Appendix A. Fig. 1(e), where most points on the manifold are seen to
_The results of applying the Karhunen#w€ expan- e close to unit distance from the origin. Note that the
sion are displayed in Figs. 1(c) and (d). In Fig. 1(c)we toyr apparent singularities of the manifold are simply
display the eight most important eigenvectors, ordered ifacts of the projection into the 3-D subspace. If we

by their eigenvalues. The similarity between the first \yere aple to visualize a higher dimensional projection,
four eigenvectors and the ones derived analytically by e singularities would disappear.

Hummel (1979) is immediate. On closer inspection,

we notice that while Hummel’s eigenvectors are radi-

ally symmetric, the ones we computed are not. Thisisto 3.2. Roof Edge

be expected since the introduction of the parameters

ando breaks the radial symmetry that Hummel's edge The roof edge is similar to the step edge. However, un-
model assumes. While Hummel’s eigenvectors are op- like the step edge, it has not been explored much in the
timal for his edge model, our results imply that they past despite having been acknowledged as a pertinent
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Figure 2 The roof edge model has a region of constant brightess one side and a uniform brightness slope of gradiérin the other.

Both parameterg andM are removed by the brightness normalization. The orientation paraghéberlocalization parameter, and the blur
parametet are similar to those used for the step edge. The first two eigenvectors of the roof edge are similar to those of the step edge, but afte
that the K-L residue decays marginally faster. The displayed slice through the roof edge manifold is parameterized by orientation and intrapixel
displacement for a fixed blurring value.

feature (Nalwa, 1993). The difference between the two roof. The result is a 5-parameter model:
edge models is that the step discontinuity is replaced by

a uniform intensity gradient as shown in Fig. 2(a). A Fre(X,y; A, M, 0, p, o)

formal definition is obtained by replaciny+ B - u(z) _ )

with A — M - z- u(z), whereA is the upper intensity ={(A=M-2-u@) *g(x, y; o) *a(x, y)}
level of the roof, andV is the gradient, or slope, of the -S(X, Y) (1)



Parametric Feature Detection 35

whereu(z) andz are as defined for the step edge. The We restrict the width of the line taw € [1.0, 3.5].
parameter ranges which we used for the roof edge are: The brightness parameters and B are free, as for
6 € [0°,360], p € [—%, %], ando € [0.4,1.0]. the step and roof edge models, and can be eliminated
The range of sigma is less than that for the step edge by applying the normalization procedures presented in
since blur has more effect on the roof edge for the same Section 2.4. Again, during detectioA,and B can be
size window. Increasing the size of the window would recovered from the normalization coefficieptendv
allow a larger range for sigma. The parametarand using exactly the same algorithm as for the step edge.
M are free. As with the step edge, the structure of the  The result of applying the Karhunen-&eé expan-
normalized roof edge is independentAdfindM, and sion is a little different from the results for the previous
their values are easily recovered from the normalization features. Most significant is the lower rate of decay in
coefficientsu andv. See Appendix A for the details. the residue, as seen in Fig. 3(d). To reduce the residue
The results of applying the Karhunen#we expan-  to 10% we require eight eigenvectors, and to reduce it
sion, as shown in Figs. 2(c) and (d), are similar to those to 2% we need 22. By this measure, the line is a con-
forthe step edge. The K-L residue decays slightly faster siderably more complex feature to detect than an edge.
as should be expected since the roof edge more closelyHowever, the data compression factor is still relatively
resembles a constant intensity region than the step edgelarge, and in the range of 3-5. It is interesting to note
(The residue of a constant intensity region would de- that the line manifold in Fig. 3(e) has the structure of a
cay immediately to zero.) The first two eigenvectors Mobius band. This follows directly from the following
are approximately the same as those for the step edgesymmetry in the line model:
(at least, up to a sign change). For the roof edge three
eigenvectors are needed to capture 90% of the edge FLx.y; A, B0 + 180, p, w, o)
content, and five eigenvectors for 98%. The parametric =F.(Xy;A B0, —p,w,0) (13)
manifold for the roof edge is displayed in Fig. 2(e). 34, Corner
The significant difference in appearance from the step = ™
edge manifold is due to the difference between the third
eigenvectors of the two features. The projection onto
the first two eigenvectors is similar; it is approximately
a circle.

The corner is a common and hence important image
feature (Nobel, 1988). Most existing approaches to
corner detection are based upon differential geometric
measures of curvature such as the determinant of the
Hessian or the second directional derivative orthogo-
3.3. Line nal to the gradient (Deriche and Giraudon, 1993). Re-
cently, Rohr (1992) proposed a parametric model fitting
The line consists of a pair of parallel step edges sepa- approach to detect corners. The simplest way to think
rated by a short distance, namely, the widtlof the about a corner is as the intersection point of two non-
line (Hueckel, 1973). Our line model is illustrated in ~ parallel lines. In our corner model, shown in Fig. 4(a),
Fig. 3(a). In our definition, we assume that the intensity 61 is the angle one of the edges of the corner makes
steps are both of the same magnitude. It is possible to with the y-axis, andd, the angle subtended by the cor-
generalize the model to lines with different intensities ner itself. That is, the corner lies at the intersection of
on either side of the line with the addition of one extra its bounding edges at anglés and 180 + 61 + 6,.
parameter (Hueckel, 1973). The symmetric line model This is illustrated in Fig. 4(b). Mathematically, this

which we use has six parameters and is given by: intersection can be expressed as the product of two
unit step functions. The complete corner model has 5
FLX, V: A, B, 6, p, w,0) parameters and is written as:
={(A+B-u@z+w/2)—B-u(z—w/2) Fc(X,y; A, B, 01,02, 0)
#g(X, y; o) xa(x, y)} - (X, y) 12) ={(A+B-u(z(61)) - u(z(180 + 61 +6,)))
*g(X, Y; o) *xa(x, -S(X, 14
The ranges of the parametgrando are exactly as 00 ¥; o) xalx, )} - S, ¥) a4
for the roof edgeyp € [—%, %], ando € [0.4, 1.0]. where, z(#) = y-cosd — x-sind. The parame-

Given the brightness symmetry in our line model, the ter ranges which we used aré; € [0°, 360°], 6, €
orientation range can be halved @o € [0°, 180°]. [40°, 120°], and o € [0.4,1.0]. Again, brightness
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Figure 3 Theline is of widthw, has brightnes# + B on the line itself, and has regions of brightnéssn either side of the line. In addition,

there is the orientation parametgithe localization parameter, and the blur parameter. Eight eigenvectors are needed to capture 90% of the
feature content and 22 eigenvectors for 98%. By this measure the line is a more complex feature than an edge. The line manifold is displaye
for fixed values ot andw. It has the structure of a &bius band.

normalization eliminates the parametérandB. The 3.5. Circular Disc

decay of the K-L residue, shown in Fig. 4(d), is simi-

lar to that of the line. In this case, seven eigenvectors Our final example feature is the circular disc which
reduce the residue to below 10%, and 15 eigenvectorsis illustrated in Figs. 5(a) and (b). The parameters of
are needed to reduce it to less than 2%. The cornerthe circular disc are its radius the directiond that
manifold is displayed for fixed in Fig. 4(e). the center P of the disc makes with tlgeaxis, the
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(b) Plan view
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(e) Corner parametric manifold

Figure 4 The corner is described by the brightness val#ear(d A + B) inside and outside the corner, the angleandd, made by its edges,
and the blur parameter. Seven eigenvectors are needed to preserve 90% of the information and 15 eigenvectors for 98%. The corner manifold

is shown for a fixed value aof.

disc localizationp, and the level of blurringr. The
brightness values inside and outside the disc®ateB
and A, respectively. Mathematically, the circular disc
model can be expressed as:

Feo(X, y; A, B, 6, p,1,0)
= {(A+ B -u(r —d(x,y))) *«9(X, y; o)

xa(x, y)} - s(x,y) (15)

whered(x, y) = /(X + (r — p)sind)2 + (y — (r —

p) cosh)?) is the distance aix, y) from the point P. The
parameter ranges aré:c [0°, 360], p € —%2, %],

r € [3.0,120], ando € [0.4, 1.0]. Again, brightness
normalization removes the effects@findB. The rate

of decay of the K-L residue, as seen from Fig. 5(d), is
slightly less than that of the step edge. In this case, we
need four eigenvectors to reduce the residue to 10%,
and 11 eigenvectors to reduce it to below 2%. The
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(a) Circular disc model (b) Plan view
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(d) Decay of the K-L residue

(e) Circular disc parametric manifold

Figure 5 The circular disc is described by the brightness paramétarsd B, the radiug of the disc, the anglé subtended by the center of
the disc, the localizatiop, and the blur parameter. Four eigenvectors are needed to preserve 90% of the information, and 11 eigenvectors for
98%. The circular disc manifold is displayed for fixed values @ndr .

first eight eigenvectors are shown in Fig. 5(c), and the together with their parametric manifolds. We now
manifold in Fig. 5(e). describe how feature detection and parameter estima-
tion are accomplished in terms of the feature manifolds.

4. Feature Detection and Parameter Estimation
4.1. Sampling the Parametric Manifold
In Section 2 we introduced parametric feature mani-
folds as a representation for parametric features, andAs we saw in Section 3, after eliminating two pa-
then in Section 3 we presented five example features rameters by applying the brightness normalization of
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Section 2.4, we are typically left with a manifold of di- uses the estimates to derive sampling intervals for each
mension in the range 2—4. For convenience, we sampleparameter. The input to the program was the request to
each parameter independently and at equally spaced in-generate manifold samplings each containing approx-
tervals across its range. Then, the Cartesian product ofimately 50,000 sample points. The output is displayed
the parameter sample points is taken and used to sam-n a separate column for each feature and consists of
ple the manifold. If the dimension of the manifold is the sampling interval determined for each parameter.
k, the result is sampling at le-dimensional mesh of
parameter values. For example, we might sample the
angled of the step edge every 2the localizationp 4.2. Search for the Closest Manifold Point
every Q1 pixels, and the blurring parameterevery
0.2 pixels. This leaves one question unanswered: How Finding the nearest neighbor amongst a fixed set of
densely should we sample each parameter? points to a given novel point is a well studied prob-
The answer to this question depends on how much lem in computational geometry, and was first posed
varying each parameter affects the visual appearanceby Knuth (1981). The more recent paper (Yianilos,
of the feature. Suppose we measure change in ap-1993) contains a pretty comprehensive bibliography
pearance by the Euclidean distance traveled on theof algorithms developed since then. Our problem has
manifold in RN. Then, if changing a particular pa- more structure than the general nearest neighbor prob-
rameter causes the appearance to vary rapidly, welem since we know that the points lie on a parametric
should sample it densely in order to capture the full manifold. So rather than using any of the general pur-
variation in appearance. If varying a parameter re- pose algorithms, we attempt to take advantage of the
sults in only a small change in appearance, then therelocally smooth nature of the feature manifolds and de-
is little point in sampling it densely, since the noise velop a less general but faster search technique. We
inherent in the image will fundamentally limit the used a 4-level heuristic coarse-to-fine search. It does
accuracy with which we can estimate that parame- not guarantee finding the closest point for pathological
ter anyway. As a rough guideline, we should aim manifolds, but we found empirically that is performs
for the change in appearance between two neigh- very well for our five example features all of which
boring sample points to be approximately the same have smooth manifolds as can be seen in Figs. 1-5.
as the change in appearance we can expect due tdn particular, for the manifolds sampled at approxi-
noise. mately 50,000 points, the coarse-to-fine search results
In the absence of an estimate of the level of noise, in a speed-up by a factor of 50-100 times over linear
we specify the number of sample points that can be af- search through the 50,000 points. The average error for
forded, for either time or space complexity reasons. each parameter of every feature was always less than
Then, we sample the manifold as uniformly and the spacing between neighboring samples.
densely as possible, with approximately that number  The coarse-to-fine search is both conceptually sim-
of sample points. In Fig. 6, we present the output of ple as well as very easy to implement. We sample the
an algorithm that estimates the average rate of changemanifold several times, giving a sequence of meshes,
of appearance with respect to each parameter, and therfrom a very coarse one with few points up to the finest
one containing the most points. The finest mesh is the

Feature Step Edge Roof Edge Line Corner Circular Disc
No. Sample Points 49500 45300 41040 45650 41328
A8 | 2.007° | A8 0.796° A6 2.532° | Ae, | 2.171° | Ae 2.928°
Ap | 0.082 Ap | 0.081 Ap 0.106 A8, | 2.930° | Ap 0.144
Ac 0.136 Ao 0.161 Ao 0.376 Ac 0.122 Ac 0.174
Aw 0.218 Ar 2.282

Figure 6. Automatically generated sampling intervals for the five example features. The intervals are generated by attempting to ensure that the
appearance change (Euclidean distance) between each pair of neighboring sample points is the same, while at the same time trying to limit tf
total to 50,000 sample points. This figure may be used to assess the importance of each parameter to the model. The most important paramet

should be those with the smallest sampling intervals.
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one we really wish to search. We begin by finding workstation will be able to apply the proposed detec-
the closest point on the coarsest mesh by using a brutetors in real-time.

force linear search. This does not cost much in terms

of time since the coarsest mesh does not contain manys, Experimental Results

points. We then move to the next finer mesh. We search

this mesh locally in the region of the result of the previ-  Upon surveying the literature, we found a number of

ous level. This searchis also alinear brute force search.methods that have been used to compare the perfor-
It again does not cost much since it is only a local mance of feature detectors:

search, and on arelatively coarse mesh. We repeat this
for each mesh in turn, reducing the size of the local ® Examine the rates of occurrence of false positives
search at each step, until we reach the finest mesh. The and false negatives when applied to synthetically

result at the finest search gives us the answer we are generated feature instances. (See, for example, Fram
looking for. and Deutsch, 1975; Abdou and Pratt, 1979; Nalwa

and Binford, 1986.)

e Study the accuracy of parameter estimation, either
using statistical tests or through an analytical in-
vestigation of systematic biases. (See, for example,
Deutsch and Fram, 1978; Abdou and Pratt, 1979;
Berzins, 1984; Nalwa and Binford, 1986.)
Evaluate measures that combine feature detection
rates with parameter estimation accuracy. (One ex-
ample is Pratt’s Figure of Merit (Abdou and Pratt,
1979; Pratt, 1990).)

e Subjectively analyze detector outputs when applied
Rejection. We do not need to apply the coarse-to-fine ~ to real or synthetic images. (Almost all feature
search at every pixel in the image. This observationis detection papers do this.)
almost as old as edge detection itself and is explicitly
mentioned in (Hueckel, 1971). Combining a variety
of techniques, we have already reduced the time to
process a 51% 480 image to less than a minute. In
particular, we currently threshold on the magnitude,
obtained during normalization. This technique is simi- . :
larto Moravec's interest operator (Moravec, 1977) used tor with thosg of Canp y .(1986) and Nalwa-Binford
to predict the usefulness of potential stereo correspon- (1986). 'T‘ this, our-aim 1S to demonstrate that the
dence matches. We also threshold on the distance ofthe’o"j‘ralmetrlc manifold method performs comparably to
novel point from the K-L subspace. Since the distance these well-known step edge detectors. We also com-
from the subspace is (approximately) a lower bound on pare the performance of our techmque across the five
the distance from the manifold, if the distance is too example features', the goal of which is to Qemon-
large, we can immediately decide that the pixel does strate the generality of the approach by showing that

not contain the feature. Using the techniques in (Baker tShe tperfogrgancdegs‘l similar fort Z:I five :‘teatl}lres.l I_n
and Nayar, 1996), we can even avoid most of the cost ections 5.5 and 5.4 We present th€ resufis ot applying

of computing the distance from the K-L subspace. ?;;;iiture detectors to a number of real and synthetic

4.3. Further Efficiency Improvements

On a single-processor DEC Alpha 3600 workstation
with no additional hardware, the coarse-to-fine search
for a 3-D manifold in a 10-D space that is sampled at
50,000 points takes approximately 1 ms. So, applying *
the detector to every pixel in a 522480 image takes
around 4 mins. This figure is by no means the best we
can do in terms of efficiency.

We begin this experimental section by presenting the
results of a sequence of statistical tests. In Section 5.1
we study feature detection rates, and then move ontoin-
vestigate parameter estimation accuracy in Section 5.2.
In both cases, we compare our step edge detec-

Parallel Implementation. Feature detection is in-

herently a parallelizable task. As high performance 5.1. Feature Detection Rates

multi-processor workstations become commonplace,

the times mentioned above will easily be cut by fac- We first statistically compare our step edge detec-
tors on the order of 10 or more. Also, it is reasonable tor with the Canny (1986) and Nalwa-Binford (1986)
to expect performance increases for the individual pro- detectors. For reasons of consistency with previous
cessors, further increasing the overall performance. It work, we follow the approach taken in (Nalwa and
is safe to expect that, within a few years, a standard Binford, 1986). The statistical analysis consists of two
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phases. Inthe first phase we generate a number of ideakquare window containinyl = 25 pixels for our de-
step edges, add zero-mean Gaussian noise to themiector, rather than the 49 pixel disc window presented
and then apply the three step edge detectors. When-in Fig. 1. Anotherissue is the lack of a model for a win-
ever a detector fails to detect an edge, we increment dow not containing an edge (Nalwa, 1993). We resolve
a count of false negatives. The second phase consistghis, as in (Nalwa and Binford, 1986), by taking a con-
of generating windows not containing edges, adding stant intensity window as our characteristic non-edge.
noise, and again applying the detectors. If a detector Finally, we need to be able to measure the amount of
responds positively to a non-edge we register a false noise in a consistent way across the five features. We
positive. define the SNR of a feature to tgél wherev is the
Although the basic idea behind the comparison is magnitude of the feature as defined in Section 2.4 and
simple, there are a number of difficult decisions that ongise iS the standard deviation of the added Gaussian
need to be made. The first problem arises because eacmoise. The reason for this definition is that for an step
detector is based upon its own model of an edge. Our edge with no blur in a window and where half of the
model and the Nalwa-Binford model are closely re- pixels are on each side of the edge, the value of the
lated, but the Canny operator is based upon differen- SNR is the size of the step (i.e., the value of parameter
tial invariants rather than a parametric model. Since B), which is the measure of SNR used in (Nalwa and
we took great care modeling both the features and Binford, 1986).
the imaging system, we used our step edge model in In Fig. 7 we compare the detection performance of
the comparison. For fairness we changed some of thethe three edge detectors. Inherent in each of the three
details slightly. Both the Canny and Nalwa-Binford de- detectorsis athreshold. The Canny operator thresholds
tectors assume a constant amount of blur, so we fixed on the gradient magnitude, the Nalwa-Binford detec-
the value ofs in the step edge model to besOixels. tor thresholds on the estimated step size, and our ap-
Secondly, the Nalwa-Binford detector is based upon proach thresholds on the distance from the parametric
a square 5« 5 window, as is the Canny detector in manifold. As we vary the threshold, for a fixed level of
the implementatichthat we used. Hence, we used a noise, the relative number of false positives and false

% of False : . . .
negatives

80 E

N-B 1.0

Z
o]
Ing
=}

40

PM 1.0

20 +

0 20 40 60 80 % of False positives

0

Figure 7. A comparison of edge detection rates. The Canny (C), Nalwa-Binford (N-B), and parametric manifold (PM) detectors are compared

for SNR= 1.0 and 20. We plot false positives against false negatives. For each detector and SNR, the result is a curve parameterized by the
threshold inherent in that detector. The closer a curve lies to the origin, the better the performance. We see that the Canny detector and th
parametric manifold technique perform comparably. The results for the Nalwa-Binford detector are consistent with those presented in (Nalwa

and Binford, 1986) but are of a fundamentally different nature. See text for a discussion of this.
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Figure 8 A comparison of feature detection rates for our five example features. All results are fo=SNRand for a disc shaped window
containing 49 pixels. We see that the step edge and circular disc are less noise sensitive than the other features. Note however that the noi
sensitivity of all features may be reduced by increasing the size of the window. Further, for SNR afband 8bove, all the feature detectors
perform with very little error.

negatives changes. Hence, for each signal-to-noise ra-Nalwa-Binford performs qualitatively differently to the

tio (SNR), we can plot a curve of false positives against Canny and Parametric Manifold detectors in Fig. 7 isits

false negatives parameterized by that detector’s thresh-inherent conservatism in detecting edges, as enforced

old. The closer a curve lies to the origin in Fig. 7, the by steps (4) and (5) of the Nalwa-Binford algorithm

better the performance. We see that both the Canny (see page 704 of (Nalwa and Binford, 1986)).

detector and our detector do increasingly well as the In Fig. 8 we compare the detection rates of our five

SNR increases. Further, we note that the two detectorsexample features. In the figure, the curves are all plot-

perform comparably, with our algorithm doing very ted for SNR 10, and for a disc shaped window contain-

marginally bettef. ing 49 pixels. We see that the performances of the step
The results for the Nalwa-Binford detector are con- edge and the circular disc are marginally superior to

sistent with those presented in (Nalwa and Binford, that of the other three features. We conclude, that the

1986). (We did not use step (®f the algorithm.) Inde- roof edge, corner, and line are slightly more sensitive

pendently of the SNR, the percentage of false positives to noise. One method of reducing the noise sensitivity

in Fig. 7 never exceeds 32%. This validates Fig. 8 is to use a slightly larger window. If we increase the

of (Nalwa and Binford, 1986). Secondly, for a SNR window size to a disc containing 81 pixels, the per-

of 1.0, the number of false negatives in Fig. 7 never formance is greatly enhanced. We also found that the

drops below 56%, whereas in Fig. 9 of (Nalwa and performance of each of the five feature detectors im-

Binford, 1986) its lowest level is 77%. These two nu- proves with the SNR, just as it does for the step edge

merical results are slightly different because (a) we use in Fig. 7. For SNR above about® all the detectors

a different model to generate the ideal step edges, andperform almost without error.

(b) our definition of SNR yields a slightly lower value

than the definition in (Nalwa and Binford, 1986) due

to blurred and off center edges. Comparing our results 5.2. Parameter Estimation Accuracy

with those in Fig. 9 of (Nalwa and Binford, 1986), we

see that our curve for SNRQlies somewhere between Assessing the performance of parameter estimation is

the two curves for SNR.0 and 20. Thereasonthatthe relatively straightforward when compared to that of
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Figure 9 A comparison of the orientation estimation accuracy for the three step edge detectors. We took synthesized step edges, added noise
them, and then applied the edge detectors. We plot the RMS error of the orientation estimate against the SNR. At all noise levels, the parametri
manifold approach slightly outperforms both the Nalwa-Binford and Canny detectors.

feature detection robustness. Again, generalizing the marginally outperforms both of the other detectors. If
procedure used in (Nalwa and Binford, 1986), we ran- we plot a similar graph for the localization parameter
domly generate a vector of feature parameters, syn- p we find the behavior to be similar. In this case how-
thesize a feature with those parameters, add a knownever, the performance of the Nalwa-Binford detector
amount of zero-mean white Gaussian noise, apply the is slightly better than that of the parametric manifold
detector, and then measure the accuracy of the esti-detector, except at low noise levels.
mated parameters. If we repeat this procedure a sta- Next, we compare the performance of our five ex-
tistically meaningful number of times, the results give ample features. Since all the feature models have an
a very good indication of parameter estimation per- orientation parameter, in Fig. 10 we plot the RMS error
formance when applied to a real image. The issue of in orientation estimate against the SNR. From Fig. 10,
which model we should use to generate the features iswe see the performance to be very similar for all our
still problematic. For the same reasons as before, we features. Only for the corner is parameter estimation
again used our feature models to generate the syntheticaccuracy significantly worst than the rest. Although
features. we do not have room to show them, we plotted similar
In Fig. 9 we compare the performance of our step graphs for the other parameters. Qualitatively the re-
edge detector with that of the Canny detector (Canny, sults are all similar. We now summarize some of the
1986) and the Nalwa-Binford (1986) detector. For fair- more interesting points:
ness, as before, we used the parametric step edge de-
tector computed for a & 5 square window, and with e The plot for the localization parametershows that
the blurring parameter fixed at®pixels. In the figure, the step edge, roof edge, and circular disc all perform
we plot the RMS error in the estimate of the orien- very similarly. The performance for the line is no-
tation # against the SNR. The plot is consistent with ticeably better, presumably because it is an average
the performance figures for the Nalwa-Binford detector  over two estimates, one for each of the two parallel
presented in (Nalwa and Binford, 1986), after allowing  step edges.
for the different feature models used and definition of e EstimatingA is easier for the corner and line than
SNR. We see that for low SNR the performance of all ~ for the step edge, but estimatifyis more difficult.
detectors is severely limited by the noise. However, This reflects the relative areas occupied by the lower
for all noise levels, the parametric manifold detector  and upper intensity levels in these features.
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Figure 10 A comparison of orientation estimation accuracy across the five features. Since all the features have an orientation parameter, we
use it to compare the performance. We plot the RMS orientation estimation error against the SNR. The graph shows that the performance fo
all five features is approximately the same.

(a) Noisy synthetic image (b) Step edges (c) Roof edges

O

(d) Lines (e) Corners (f) Circular discs

Figure 11 The application of our five feature detectors to a noisy synthetic image. Five different features have been detected and discriminatec
in the same image using the same technique.

e Itis harder to estimaté, for the corner thanitisto  5.3. Application to Synthetic Images
estimate,;. Probably for related reasons, estimating
the width of the line is harder than estimating the In Figs. 11(b)—(f) we display the results of apply-
localization. ing the five example detectors to the noisy synthetic
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image in Fig. 11(a). The synthetic image is of size and the addition of noise, corners and circular discs
128x 128 pixels and contains a pentagonal region (in- can appear very similar and so it required a limited

tensity of 175), a circular disc (radius of 8.5 pixels, amount of post-processing to discriminate these two
intensity of 206), a line (width of 3 pixels, intensity features.

of 153), and a roof edge (slope of 4 intensity levels per

pixel). The background intensity is 110. The image

was first blurred with Guassian smoothing & 0.6 5.4. Application to Real Images

pixels) and then we added white zero-mean Gaussian

(o = 4.0 pixels) noise. At pixels where two feature de- In Figs. 12(b)—(d), 13(b)—(d), and 14(b)—(d) we present

tectors register the presence of a feature, we choose thesome of the results obtained by applying our feature de-
one with the closer manifold. Further, after blurring tectors to three greyscale images in Figs. 12(a), 13(a),

i
i
|
|
|
|
|

(b) Detected step edges (blue) & corners {red)

s
i

(¢) Grey-coded distance to step edge manifold (d) Grey-coded distance to corner manifold

Figure 12 Results of step edge and corner detection for ax661 image of “Red and Blue,” berrit Rietveld circa 1918. The raw
(unthresholded) detector outputs in (c) and (d) reflect high accuracy in detection and localization as well as some similarly between the definition
of corners and edges as the angle subtended by a corner nears$rl@f), simple thresholds were used to find the dominant feature (if any) at
each pixel. Some corners remain undetected due to their angles being less thamti@Qm which we imposed in our definition.
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(b) Detected lines (green) and discs (orange)
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(c) Grey-coded distance to line manifold (d) Grey-coded distance to disc manifold
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Figure 13 Results of line and disc detection for a 729679 image of “Lobster Trap and Fish Tail,” Byexander Calder1939. Though many
of the lines in the image are faint, thin, and incomplete, the line detector does a good job extracting them. In (b), simple thresholds were used t
find the dominant feature at each pixel. Again, (c) and (d) indicate considerable similarity between the feature definitions. In this case, a thick

line and a disc with a large radius are similar in appearance.

and 14(a). The original images are all taken from (The  The outputs of the step edge and corner detectors in
Museum of Modern Art, 1984) and were digitized us- Figs. 12(b)—(d), and the outputs of the line and disc de-
ing an Envisions 6600S scanner at 200 dpi. Feature tectors in Figs. 13(b)—(d) are consistent with the struc-
detection was accomplished by thresholding on the tures of the images. The results in Figs. 14(b)—(d) are
distance from the feature manifold. No further post- included simply to convey the richness of information
processing or sophisticated thresholding techniques obtained by applying multiple detectors (step edge,
(e.g., hysteresis (Canny, 1986)) were applied. One line, and corner, in this case) to an image. The dis-
slight change was made to the raw feature maps for tance from manifold and the parameters produced by
clarity. To make the detected corners in Fig. 12(b) vis- a detector at a pixel can be valuable in reinforcing or
ible on the printed page, we first applied non-maximal inhibiting the existence of the same or another feature
suppression to localize the corner, and then replacedat a neighboring pixel. Itis argued, therefore, that mul-
each detected corner with a55 disc of highlighted tiple feature detection can improve the performance of
pixels. individual feature detectors.
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(b) Grey-coded distance to step edge manifold

R
S

(¢) Grey-coded distance to corner manifold (d) Grey-coded distance to line manifold

Figure 14 Results of step edge, corner, and line detection for 25641 image of “Schoder House,” byGerrit Rietveld 1924. These results

convey the richness of information is obtained from the application of multiple feature detectors, as well as similarities in feature definitions for
extreme parameter values. The outputs (b), (c), and (d), together with parameter estimates, could serve as the basis for an effective relaxatic
scheme that produces a descriptive primal sketch.

6. Discussion e The algorithm offers a level of generality that is un-
common in the realm of feature detection. As far
We have proposed an algorithm to generate detectors as we can ascertain, there is no single technique
for arbitrary parametric features. We conclude with a  capable of detecting the five features (step edges,
few general observations related to the algorithm: lines, corners, circular discs, and roof edges) we
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implemented. More importantly, the addition of a manifold. For the step edge, line, corner, and circular
new feature to our implementation is simply a mat- disc, the two normalized parameters are the base in-
ter of writing a single C/C++function that definesthe tensity A and the intensity step. For the roof edge,
feature model. Alternatively, features can be derived it is the peak intensityA and the intensity gradiemy.
from experimentally obtained data sets by writing Although we describe the recovery technique in terms
a defining function that transforms (e.g., interpo- of AandB, the same approach works for the roof edge
lates, scales, rotates, shifts, and blurs) the stored databy replacingB with M.
appropriately. Further we note that although we If we work in a continuous domain and fix the pa-
present our results entirely in the context of visible- rametergy — {A, B} then the meam and normv are
light images, the same approach is directly applica- linear functions ofA andB:
ble to any sensing modality, including, X-ray, MR,
infrared, ultrasound, and range. w =cCu-A+cpp-B (16)

e Most previous detectors have used relatively sim-
ple feature models with detection as the main goal v =Ca-A+Cp-B (17)
and not parameter estimation. Such models do not o
entirely capture the properties of imaged features. Wherec; = ¢ij(q — {A, B}) are coefficients that de-
The descriptive nature of our feature models and the Pend upon the unnormalized parameters. If we incor-
incorporation of sensor and optical effects give the porate the discretization of the sensor, the relationships
features an unusual level of realism. This serves to May nothold exactly, however the deviation should be

optimize the robustness of detection and accuracy of Very small. Hence, we use Egs. (16) and (17) to re-
parameter estimation. cover the normalized parameters. If we knaywwe

« The output of the detector consists of detected fea- €an easily invert Egs. (16) and (17):
tures, estimates of their parameters, and a measure

of how well the image data fits the feature model in A= Saz w— Gz v (18)
terms of the distance to the closest manifold point. ACZl Acn
Combining the outputs of a number of such detectors, B = XM + A v (29)

each designed for a different feature, yields a large
amount of information that would be valuable to a \yperea — C11- Cop — C12 - Cpy is the determinant of the
higher level algorithm such as relaxation (Rosenfeld y,4trix @)

et al, 1976?. While exis?ing re.Iaxation algorithms The coefficientss; = ¢ (q — {A. B}) can be pre-
assume a single feature in the image, often the step .o mpyted during the construction of the manifold. For
edge, powerful constraints resultfromthe use of mul- o5ch vector of unnormalized parameters- {A, B}

tiple feature detectors. For instance, a corner cannot ;,caq tq sample the manifold, we evaluate the feature
exist in isolation, but instead must have edges inits 5. A — 0. B = 1 and then normalize as in Section 2.4

vicinity. The incorporation of such constraints into give meanu; and normy;. Repeating forA = 1

a multi-feature relaxation algorithm should lead to g — 1 e obtain meap, and normv, and can then
much improved performance over single-feature al- compute:

gorithms.
Ci1 = M2 — 1 (20)
Appendix A Cio = i1 (22)
Recovering Normalized Parameters C1=v2— 1 (22)
C2 = V1 (23)

The brightness normalization described in Section 2.4

was used to eliminate two of the parameters for each of The coefficients;; are stored in alookup table indexed
our example features. We now describe how to recover by g — {A, B}. As soon as the parameters- {A, B}

the normalized parameters. The computation requires have been recovered from the closest manifold point,
as input, the meam and normv computed during  the coefficients;; can be easily found and thewand
normalization, and the unnormalized parameters esti- B can be recovered from the mearthe magnitude
mated from the parameters of the closest point on the using Egs. (18) and (19).



We tested the accuracy of normalization inversion
for each of our 5 features. After computing the coeffi-
cients,c;, for every manifold sample point using the

method described above, we then randomly generated a;
sequence of feature instances. The normalized param-

etersA andB of the feature were generated uniformly
atrandom in the interval [A]. To generate the unnor-

malized parameters, a point on the manifold was chosen

uniformly at random and its unnormalized parameters

used. Then, we generated the feature according to our

feature and sensor models. After normalizing the fea-
ture, we then use Egs. (18) and (19) to recodeand

B. The normalization inversion works almost com-
pletely without error. The worst performance across all

five features and over every single feature instance we s
generated gave an error of 0.02%. The average recon-

struction error was an order of magnitude lower.
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proach is to use elaborate feature models and numerical methods.
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zero crossing of the second directional derivative. Neither do
we perform hysteresis (Canny, 1986) since this uses information
derived from neighboring windows.

4. These results differ slightly from the ones presented in (Nayar
et al., 1996) as they reflect refinements made to our detector, the
definition of the SNR, and the manner in which the experiments
were conducted.

Recent work (Krumm, 1996) uses this approach to detect planar
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