A Theory of Pattern Rejection *
Simon Baker and Shree K. Nayar

Department of Computer Science, Columbia University

New York, N.Y. 10027

Abstract

The efficiency of pattern recognition is critical
when a large number of classes are to be discrimi-
nated, or when the recognition algorithm needs to be
applied a large number of times. We propose and an-
alyze a general technique, namely pattern rejection,
that results in efficient pattern recognition. Rejectors
are introduced as algorithms that can very quickly
eliminate from further consideration most classes or
inputs (depending on the setting). Rejectors may be
combined to form composite rejectors, which are more
effective than any single rejector. Composite rejectors
are analyzed and conditions derived which guarantee
both efficiency and practicality. A general technique
is proposed for the construction of composite rejec-
tors, based on a single assumption about the classes.
The generality of this assumption is shown through its
connection with the Karhunen-Loéve expansion. A re-
lation of pattern rejection with Fisher’s discriminant
analysis is also shown. Composite rejectors were con-
structed for two applications, namely, object recogni-
tion and local feature detection. In both cases, a sub-
stantial improvement in efficiency over existing tech-
niques was found.

1 Introduction

We address the efficiency of pattern recognition,
which is known to be vital when the number of classes
involved is large. An example application in computa-
tional vision is object recognition, which in many cases
can be reduced to a classical pattern recognition prob-
lem [Murase and Nayar 95]. Of particular importance
in this context, is the growth rate of recognition time
as a function of the number of classes (objects). High
efficiency also proves critical when the recognition al-
gorithm must be applied a large number of times. This
is the case in local feature detection [Nayar et al. 95],
where the detector needs to be applied at every pixel
in the image.

We propose a general theory that results in sub-
stantial efficiency improvements in both of the above
scenarios. We introduce the notion of a rejector, that
can be used to efficiently eliminate from further con-
sideration most of a large number of classes (e.g. ob-
jects in recognition) or inputs (e.g. local image bright-

*This research was supported in part by ARPA Con-
tract DACA-76-92-C-007, in part by DOD/ONR MURI Grant
NO00014-95-1-0601, and in part by an NSF National Young In-
vestigator Award.

ness values in feature detection). The following are the
main results that constitute the proposed theory:

1. The definition of correctness for a rejector is less
constraining than that for a recognizer. As a re-
sult, rejectors can be constructed that are more
efficient than recognizers.

2. Although, in general, a single rejector does not
provide the final solution to the pattern recogni-
tion problem, it can significantly reduce the num-
ber of possible classes or inputs. Consequently,
the recognizer can dedicate its computational re-
sources to a small number of candidates.

3. A collection of rejectors may be combined in a
tree-like structure to form a more effective one,
which we term a composite rejector. At each node
is a single rejector, that is tuned to the small set
of classes which were not eliminated by a previous
rejector.

4. Tt is possible to analyze the performance of com-
posite rejectors. For instance, we derive condi-
tions that guarantee logarithmic time complexity
in terms of the total number of classes involved.

5. Although the exact structure of a composite re-
jector is determined by the application at hand,
the proposed rejection technique is very general
and is based on a single assumption, namely,
the class assumption. The generality of the
class assumption is argued by establishing a con-
nection with the Karhunen-Loéve (K-L) expan-
sion [Fukunaga 90].

We demonstrate the utility of rejection via
experiments on appearance matching based object
recognition [Murase and Nayar 95] and feature detec-
tion [Nayar et al. 95]. First, we constructed a com-
posite rejector for a widely used image database of 20
objects (each in a large number of poses). A com-
posite rejector was able to completely (and without
error) discriminate between all 20 objects with an ef-
ficiency that is a significant improvement over exist-
ing techniques. We empirically illustrate logarithmic
growth in the time complexity with the number of
objects. Next, we constructed a composite rejector
for the task of feature detection. This results in a
very efficient method of preprocessing an image to
identify pixels that truly deserve the application of a
full-fledged feature detector, such as the one proposed
in [Nayar et al. 95].

2 Related Work

The recursive structure of the composite rejec-
tor constitutes a decision tree (or more generally a
directed acyclic graph.) A complete list of references
that use such a structure is beyond the scope of this
paper, but a small selection is [Henrichon and Fu 69,
Payne and Meisel 77, Weng 94]. Also, a relation-
ship can be established between our technique for re-
jector construction and Fisher’s discriminant analy-
sis [Fisher 36, Fukunaga 90]. Whereas our ideas are
geared towards the computational efficiency of recog-
nition, discriminant analysis is concerned with repre-
sentational compactness. Further, there is little work
that investigates when discriminant analysis will work,
and if so, how much computation will be required. Our
results provide insights into these issues.

Connections can also be made between the
present work and the large body of work on com-
putationally motivated nearest neighbor classifiers
[Friedman et al. 77, Bentley 80, Yianilos 93]. Though
the problem we address is somewhat similar, namely,
efficient classification, our setting is shown to be more
general. The present work attempts to unify ideas
from the nearest neighbor literature which is con-
cerned with complexity issues, and the pattern recog-
nition literature which is mainly concerned with rep-
resentational issues.

3 Theory

3.1 Assumptions and Definitions

A classification decision is based on a finite
set of measurements of an underlying physical pro-
cess. Hence, we assume the existence of a classi-
fication space, S = R?, where d is the number of
measurements. Elements, z € S| will be referred to
as measurement vectors, or for convenience, vectors.
Next, we assume the existence of a finite collection,
Wi, Wa, ..., W,, of classes; that is subsets of S. The
classes themselves are defined by the application in
question. We will therefore assume that the classes
are given to us. Now we can define a classifier:

Definition 1 A classifier is an algorithm, ¢, that
gwen an input, x € S, returns the class label i for

which x € W;.

A rejectoris a generalization of a classifier in the sense
that it returns a set of classes. This set must contain
the correct class, but may also contain others:

Definition 2 A rejector is an algorithm, i, that
gwen an nput, © € S, returns a set of class labels,
Y(x), such that x € W; = 1 € ¢(x) or equivalently
igy(e) > e g Wi

The rejection domain for W;, is the set of all z € S
for which ¢ does not appear in the rejector output:

Definition 3 If ¢ is a rejector, and W; is a class,

then the rejection domain, R;p, of ¥, for class W; is
the set of x € S for which i & Y(x).

Then, the following important properties hold:

1. From Definitions 2 & 3, the rejector, 1, eliminates
W; from further consideration if x € Rzp.

2. Subject to R;ﬁ C W;, we are free to choose the re-
jection domains and still conform with the correct
definition of a rejector. This freedom to choose
rejection domains with “simple” decision bound-
aries, is what allows rejectors to be efficient.

3.2 Rejection Based Classifiers

Applying a rejector does not guarantee that we
will be able to uniquely answer the classification ques-
tion, since there may be more than one class in the
output of the rejector. We deal with this potential
ambiguity by adding a verification stage:

Definition 4 A verifier for a class W; is a boolean
algorithm which, given an input, x € S, returns the
result, 1, if 1s a member of W;, and 0 otherwise.

We form a rejection-based classifier by first applying a
rejector, 1, and then applying a verifier for each class,
i € Y(x). Combining the results, we can classify the
input, € S. The efficiency of our rejection-based
classifier, ¢"°, can be shown [Baker and Nayar 95] to
be:

Tau(9") = Tao(¥) + Boes([(2)]) - Toer (1)

where, T,,(¢™) is the average run time of the
rejection-based classifier, Ty, (1), is the average run
time of the rejector, Ezes(|¢(2)]) is the expected car-
dinality of the rejector output, and 7., is the run time
of each of the verifiers (assumed to be the same for all
verifiers.) We now introduce a further definition:

Definition 5 If ¢ is a rejector, we define the effec-
tiveness of ¥ by: Eff(y) = M

Note that a small numeric value of Eff(4) corresponds
to an “effective” rejector. Then, Equation (1) shows
that our rejection-based classifier is efficient when, (a)
rejection is efficient, and (b) rejection is effective.

3.3 Composite Rejectors

Applying a rejector results in a subset of classes,
and so a smaller instance of the original classification
problem. Recursively applying a rejector, tuned to
the smaller subset of classes, may enable us to further
narrow down the set of classes under consideration.
This leads to the notion of a composite rejector:

Definition 6 A composite rejector, ¥, is a collection
of rejectors, ¥ = {4, : 1 € S}, where S is an index
set for W, and such that, (a) there is a rejector in ¥
designed for the complete set of classes, and (b) for
any rejector, ¢, € ¥, and any x € S, either ¢,(z) =1
or there is a rejector in U designed for ¢, (x).

Intuitively, the recursive structure of the com-
posite rejector leads us to expect logarithmic complex-
ity. Sufficient conditions to prove such a result are as
follows:

1. For all 4, € ¥, and for all z € S, either |¢,(z)| =

1, or at least one class is eliminated by ,.

2. With respect to the underlying a prior: probabil-
ity density function from which the measurement

vectors are drawn, the events, {z : z & R}/j’}, are
mutually independent.

3. The effectiveness of all of the rejectors is the same:

Ve e Q, Eff(y,) = E, say.

Then, we can show (see [Baker and Nayar 95]) that
a rejection-based classifier using a composite rejector
runs in time:

Taw (¢rb) < [logE—l 7’L—| : Trej + 2 Tyer (2)

where, T,.; is the run time of each of the rejectors
(assumed constant), and n is the number of classes.

One potential problem with the composite rejec-
tor is that the number of rejectors within ¥ may be
very large, possibly as large as 2”7. To avoid this ex-
ponential growth, we impose constraints on each ,.
We require that: (a) for each ¢, € ¥, the number of
different possible outputs is two, (b) the two possible
output subsets of classes are of equal cardinality, and
(c) the intersection between the two outputs consists
of at most a fraction, € € [0, 1), of the classes for which
the rejector was constructed. Then, if we denote by
M (n), the maximum number of rejectors in ¥ that
may be reached after, and including, the rejector con-
structed for a collection of n classes, then it can be
shown that:

M(n) < nt/(-leg(1+e) _q (3)

In practice, it may not be straightforward to com-
pletely satisfy the three requirements stated above.
However, the following three design criteria may be
used as guidelines while implementing each rejector
in the composite rejector ¥: (a) avoid rejectors that
produce a large number of outputs, (b) attempt to
balance the output cardinalities, and (¢) minimize the
overlap between the outputs.

3.4 Construction of Rejectors

In this section, we assume that the norm of a
measurement vector is unimportant for classification
purposes, so we restrict attention to the surface of the
unit ball, B={2z € S: ||z]2 = 1}.

The design of a rejector is equivalent to deciding
on the rejection domains. Since, we require Rj’ Cc W;,
this choice depends on the nature of the underlying
classes. Hence, we make the following assumption
about the classes, illustrated in Figure 1:

The class assumption For each W;, there exists
ac; €585, alinear subspace, L; C S, and a threshold,

r

(Irn=29

Figure 1: An illustration of the class assumption for a low
dimensional example, S = R*. The subspace, L;, is the
2 dimensional subspace spanned by the vectors, {e1,e2}.
Every vector in W; can be approximated to within error,
é;, by the linear combination of ¢; and a vector in L;.

8 > 0, such thatVe € Wy, dist(z, ¢;+L;) < 8;. Further
we assume: (a) dim(L;) < d, and (b) 6; < 1.

The class assumption! is approximately equiva-
lent to assuming that the application of the K-L ex-
pansion results in a compact and accurate represen-
tation of the class. Suppose that M} is the subspace
spanned by the & most important K-L eigenvectors,
and A; are the decaying K-L eigenvalues, then we have:

d
Eer,(diSt(I:EyeW,(y)+Mik)2) = Z As & 0. (4)
s=k+1
Setting ¢; to be Ezew,(z), L; to be MF, we see that
the difference between the class assumption and the K-
L expansion is one of expected versus maximum value.
The widespread use of the K-L expansion allows us to
argue that the class assumption can be expected to
hold extensively.
Starting from the class assumption, we now de-
rive a general form for a rejector. We begin by defining
the notion of a rejection vector:

Definition 7 Suppose the class assumption holds for
the classes, W1, Wy, ..., W,. Then a rejection vector
1s a unit vector, r € B, for which r L @?:1 L;.

If r is a rejection vector it follows immediately from or-
thogonality and the Cauchy-Schwarz inequality, that:

zeW; = [(re) = (ra)| <6 ()

Equation (5) means that the rejection vector projects
each class onto approximately a point. So long as the
points, (r, ¢;), are well separated, the intervals [{r, ¢;)—
8, (r, ¢;) + 6;] will not intersect. So, we can use this
equation to discriminate? between the classes. Based

1The class assumption is very general and allows various
“shapes,” including disconnected multi-cluster distributions.

2There is no guarantee that we will be able to find a rejection
vector that will completely distinguish between a given pair of
classes, for example when the two classes’ convex hulls overlap.
This fact need not effect the usefulness of a derived rejector,
since the goal of a rejector is to eliminate most of the classes,
not necessarily all.

Figure 2: The 20 objects used in the recognition experi-
ment. There are 72 images of each object, with each pair
of images separated by 5° of pose. The data set was pro-
vided by H. Murase and S.K. Nayar and is that used in
[Murase and Nayar 95].

on this fact, we define a derived rejector:

Definition 8 Given that the class assumption holds
for the classes, Wy, Wa,...,W,, and that r € B is a
rejection vector, then we define the derived rejector,
1/}7‘ by i€ wT(I) ~ |<T,.Z‘> - (’l", CZ>| < 62

We have some freedom in choosing the direction
of the rejection vector, since it is simply constrained
to lie orthogonally to @, L;. We should choose r to
optimize the effectiveness of the derived rejector:

Definition 9 An optimal rejection vector,® r,p¢, is a
rejection vector which minimizes Eff (¢,)

We are unable to exactly calculate the optimal re-
jection vector, however [Baker and Nayar 95] contains
the details of an algorithm to approximate one.

4 Practical Issues and Implementation

While implementing the proposed ideas, several
practical issues must be addressed, including verify-
ing the class assumption, approximating the optimal
rejection vector, estimating the §;, and avoiding the
exponential explosion in the size of the composite re-
jector. For lack of space, we refer the interested reader
to [Baker and Nayar 95] for the details.

5 Example Applications
5.1 3D Object Recognition

We follow the appearance matching approach,
first described in [Murase and Nayar 95]. Object

3The optimal rejection vector may be related to Fisher’s dis-
criminant analysis [Fisher 36]. By working in a space orthog-
onal to each L;, we are limiting the within-class scatter. Fur-
ther, an optimal rejection vector will tend to spread out the
points {r,c;}, and so will be the one that tends to maximize the
between-class scatter.

{1-20

{10}

{12,45,7-9
13,14} {18 {17} {24,7-9,11-16}

{8,11-13,15,16}

@ @
& (19 {3 (8
{19} {5}
Figure 3: A representation of the composite rejector.
Each interior node denotes a single rejector, and is labeled
with the set of objects that it is designed to act on. At
each node, only one dot product and a couple of compar-
isons need to be performed. Each leaf denotes a possible
output of the composite rejector.

recognition is reduced to pattern recognition by first
segmenting the object and then scale normalizing it to
an image of size 128 x 128 pixels. The image is then
treated directly as a 16,384 dimensional measurement
vector in the classification space, S, reading the pixels
in a raster scan fashion. The vector is finally intensity
normalized to lie on the unit sphere, B.

The data set that we used (see Figure 2) con-
sists of 20 objects (classes). It contains 72 images of
each object separated by 5° intervals of pose. The im-
ages were divided into a training and a test set each
comprising 36 images of each object. The training set
for each object is then treated as samples of the cor-
responding class and used to implement the compos-
ite rejector, a representation of which is presented in
Figure 3. As it happens, every leaf of the composite
rejector contains a single class, hence the composite
rejector can fully discriminate between the 20 objects.
(We would have regarded the rejector as successful
even if each leaf had contained 2-3 objects.)

We found the composite rejector responded
100% correctly for both the training and test sets.
We calculated the average number of rejectors which
we need to apply to be just 6.43, based on the as-
sumption that each image in the data set is equally
likely to appear. Since the cost of making the deci-
sion at each node is essentially the cost of one inner
product (convolution), the efficiency compares very fa-
vorably with the results obtained by Murase and Na-
yar [Murase and Nayar 95]. Their implementation re-
quired 20 inner products, followed by a sophisticated
search procedure.

We investigated the growth rate of the number
of rejectors required as a function of the number of
classes. The results, in Figure 4, validate the hypoth-
esized logarithmic growth in time complexity.

Average number

of rejectors
Experimental data °

ol -1.29+2.42log qgumber of objects)

sl

6 o

3

4k

2k

ot

1 10

Number of objects

Figure 4: A graph of the number of objects against the
average number of simple rejectors required to completely
discriminate between those objects. The graph is plotted
using a log scale on the abscissa, implying a logarithmic
growth rate in the time complexity.

Figure 5: The edge rejector applied to a real image. The
output on the right consists of those pixels which our re-
jection algorithm has quickly decided as worthy of further
consideration. On average 1.81 rejectors (each correspond-
ing to a convolution) were applied at each pixel.

5.2 Local Feature Detection

We constructed a composite rejector for im-
plementing a feature detectors of the type proposed
in [Nayar et al. 95]. (The details of the implementa-
tion may be found in [Baker and Nayar 95].) The out-
put of the composite rejector is used as input to the
feature detector, and consists of pixels at which fur-
ther consideration is worthwhile. Although the tech-
nique is applicable to general parametric features, we
only have space to display our results (see Figure 5)
for edge detection.

6 Discussion

Our primary goal has been to introduce a compu-
tational theory of pattern recognition. In this respect
we have made considerable progress:

1. We have provided conditions for logarithmic
growth in time complexity as a function of the
number of classes, and validated the performance
empirically. However, further investigation of
these conditions is needed to enhance our under-
standing of when they apply.

2. We analyzed the growth in the number of re-
jectors required to construct a composite rejec-
tor. The key is the number of possible outputs
of the rejectors, and the amount of intersection
between them. This growth, rather than the
time complexity, may well turn out to the limit-
ing factor in the scalability of our approach. A
comparison with the much less conservative k-
d trees [Friedman et al. 77] would probably en-
lighten what is essentially a time-space tradeoff.

3. The class assumption is the heart of our technique
for constructing rejectors. As expected, it holds
for some objects far more than for others, how-
ever further study of when and why it holds is
required.

References

[Baker and Nayar 95] S. Baker and S.K. Nayar, “A
Theory of Pattern Rejection,” Columbia Univer-
sity Technical Report, CUCS-013-95, 1995.

[Bentley 80] J.L. Bentley, “Multidimensional divide-
and-conquer,” Communications of the ACM,

23:214-229, 1980.

[Fisher 36] R.A. Fisher, “The use of multiple mea-
surements in taxonomic problems,” Annals of Eu-

genics, 7:179-188, 1939.

[Friedman et al. 77] J.H. Friedman, J.L. Bentley, and
R.A. Finkel, “An algorithm for finding best
matches in logarithmic expected time,” ACM

Transactions on Mathematical Software, 3:209-
226, 1977.

[Fukunaga 90] K. Fukunaga, Statistical Pattern
Recognition, Academic Press, 1990.

[Henrichon and Fu 69] E.G. Henrichon and K-S. Fu,
“A Nonparametric Partitioning Procedure for
Pattern Classification,” IEEE Transactions on

Computers, 18:614-624, 1969.

[Murase and Nayar 95] H. Murase and S.K. Nayar,
“Visual Learning and Recognition of 3D Ob-
jects from Appearance,” International Journal of
Computer Vision, 14:5-24, 1995.

[Nayar et al. 95] S.K. Nayar, S. Baker,
and H. Murase, “Parametric Feature Detection,”
Columbia University Technical Report, CUCS-
028-95, 1995.

[Payne and Meisel 77] H.J. Payne and W.S. Meisel,
“An Algorithm for Constructing Optimal Binary

Decision Trees,” IEEE Transactions on Comput-
ers, 26:905-916, 1977.

[Weng 94] J. Weng, “SHOSLIF: The Hierarchical Op-
timal Subspace Learning and Inference Frame-
work,” Michigan State University Technical Re-
port, CPS 94-15, 1994.

[Yianilos 93] P.N. Yianilos, “Data Structures and Al-
gorithms for Nearest Neighbor Search in General
Metric Spaces,” Proc. of ACM-SIAM Symposium
on Discrete Algorithms, pp. 311-321, 1993.

