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Abstract. Conventional video cameras have limited fields of view which make them restrictive for certain ap-
plications in computational vision. A catadioptric sensor uses a combination of lenses and mirrors placed in a
carefully arranged configuration to capture a much wider field of view. One important design goal for catadioptric
sensors is choosing the shapes of the mirrors in a way that ensures that the complete catadioptric system has a single
effective viewpoint. The reason a single viewpoint is so desirable is that it is a requirement for the generation of pure
perspective images from the sensed images. In this paper, we derive the complete class of single-lens single-mirror
catadioptric sensors that have a single viewpoint. We describe all of the solutions in detail, including the degenerate
ones, with reference to many of the catadioptric systems that have been proposed in the literature. In addition, we
derive a simple expression for the spatial resolution of a catadioptric sensor in terms of the resolution of the cameras
used to construct it. Moreover, we include detailed analysis of the defocus blur caused by the use of a curved mirror
in a catadioptric sensor.
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1. Introduction

Many applications in computational vision require that
a large field of view is imaged. Examples include
surveillance, teleconferencing, and model acquisition
for virtual reality. A number of other applications,
such as ego-motion estimation and tracking, would also
benefit from enhanced fields of view. Unfortunately,
conventional imaging systems are severely limited in
their fields of view. Both researchers and practitioners
have therefore had to resort to using either multiple or
rotating cameras in order to image the entire scene.

One effective way to enhance the field of view is to
use mirrors in conjunction with lenses. See, for exam-
ple, (Rees, 1970; Charles et al., 1987; Nayar, 1988; Yagi
and Kawato, 1990; Hong, 1991; Goshtasby and Gruver,
1993; Yamazawa et al., 1993; Bogner, 1995; Nalwa,

1996; Nayar, 1997a; Chahl and Srinivassan, 1997). We
refer to the approach of using mirrors in combination
with conventional imaging systems ascatadioptricim-
age formation.Dioptrics is the science of refracting
elements (lenses) whereascatoptricsis the science of
reflecting surfaces (mirrors) (Hecht and Zajac, 1974).
The combination of refracting and reflecting elements
is therefore referred to as catadioptrics.

As noted in (Rees, 1970; Yamazawa et al., 1995;
Nalwa, 1996; Nayar and Baker, 1997), it is highly de-
sirable that a catadioptric system (or, in fact, any imag-
ing system) have a single viewpoint (center of pro-
jection). The reason a single viewpoint is so desirable
is that it permits the generation of geometrically cor-
rect perspective images from the images captured by
the catadioptric cameras. This is possible because, un-
der the single viewpoint constraint, every pixel in the
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sensed images measures the irradiance of the light pass-
ing through the viewpoint in one particular direction.
Since we know the geometry of the catadioptric system,
we can precompute this direction for each pixel. There-
fore, we can map the irradiance value measured by each
pixel onto a plane at any distance from the viewpoint to
form a planar perspective image. These perspective im-
ages can subsequently be processed using the vast array
of techniques developed in the field of computational
vision that assume perspective projection. Moreover,
if the image is to be presented to a human, as in (Peri
and Nayar, 1997), it needs to be a perspective image
so as not to appear distorted. Naturally, when the cata-
dioptric imaging system is omnidirectional in its field
of view, a single effective viewpoint permits the con-
struction of geometrically correct panoramic images as
well as perspective ones.

In this paper, we take the view that having a single
viewpoint is the primary design goal for the catadioptric
sensor and restrict attention to catadioptric sensors with
a single effective viewpoint (Baker and Nayar, 1998).
However, for many applications, such as robot navi-
gation, having a single viewpoint may not be a strict
requirement (Yagi et al., 1994). In these cases, sensors
that do not obey the single viewpoint requirement can
also be used. Then, other design issues become more
important, such as spatial resolution, sensor size, and
the ease of mapping between the catadioptric images
and the scene (Yamazawa et al., 1995). Naturally, it is
also possible to investigate these other design issues.
For example, Chahl and Srinivassan recently studied
the class of mirror shapes that yield a linear relationship
between the angle of incidence onto the mirror surface
and the angle of reflection into the camera (Chahl and
Srinivassan, 1997).

We begin this paper in Section 2 by deriving the
entire class of catadioptric systems with a single ef-
fective viewpoint, and which can be constructed us-
ing just a single conventional lens and a single mirror.
As we will show, the 2-parameter family of mirrors
that can be used is exactly the class of rotated (swept)
conic sections. Within this class of solutions, several
swept conics are degenerate solutions that cannot, in
fact, be used to construct sensors with a single effec-
tive viewpoint. Many of these solutions have, however,
been used to construct wide field of view sensors with
non-constant viewpoints. For these mirror shapes, we
derive the loci of the viewpoint. Some, but not all, of
the non-degenerate solutions have been used in sensors
proposed in the literature. In these cases, we mention
all of the designs that we are aware of. A different,

coordinate free, derivation of the fact that only swept
conic sections yield a single effective viewpoint was
recently suggested by Drucker and Locke (1996).

A very important property of a sensor that images a
large field of view is its resolution. The resolution of a
catadioptric sensor is not, in general, the same as that
of any of the sensors used to construct it. In Section 3,
we study why this is the case, and derive a simple ex-
pression for the relationship between the resolution of
a conventional imaging system and the resolution of a
derived single-viewpoint catadioptric sensor. We spe-
cialize this result to the mirror shapes derived in the
previous section. This expression should be carefully
considered when constructing a catadioptric imaging
system in order to ensure that the final sensor has suf-
ficient resolution. Another use of the relationship is to
design conventional sensors with non-uniform resolu-
tion, which when used in an appropriate catadioptric
system have a specified (e.g. uniform) resolution.

Another optical property which is affected by the use
of a catadioptric system is focusing. It is well known
that a curved mirror increases image blur (Hecht and
Zajac, 1974). In Section 4, we analyze this effect for
catadioptric sensors. Two factors combine to cause ad-
ditional blur in catadioptric systems: (1) the finite size
of the lens aperture, and (2) the curvature of the mirror.
We first analyze how the interaction of these two factors
causes defocus blur and then present numerical results
for three different mirror shapes: the hyperboloid, the
ellipsoid, and the paraboloid. The results show that the
focal setting of a catadioptric sensor using a curved
mirror may be substantially different from that needed
in a conventional sensor. Moreover, even for a scene
of constant depth, significantly different focal settings
may be needed for different points in the scene. This
effect, known asfield curvature, can be partially cor-
rected using additional lenses (Hecht and Zajac, 1974).

2. The Fixed Viewpoint Constraint

The fixed viewpoint constraint is the requirement that a
catadioptric sensor only measure the intensity of light
passing through a single point in 3-D space. The direc-
tion of the light passing through this point may vary,
but that is all. In other words, the catadioptric sensor
must sample the 5-D plenoptic function (Adelson and
Bergen, 1991; Gortler et al., 1996) at a single point in
3-D space. The fixed 3-D point at which a catadiop-
tric sensor samples the plenoptic function is known as
theeffective viewpoint.
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Suppose we use a single conventional camera as the
only sensing element and a single mirror as the only
reflecting surface. If the camera is an ideal perspective
camera and we ignore defocus blur, it can be mod-
eled by the point through which the perspective pro-
jection is performed; i.e. theeffective pinhole. Then,
the fixed viewpoint constraint requires that each ray
of light passing through the effective pinhole of the
camera (that was reflected by the mirror) would have
passed through the effective viewpoint if it had not been
reflected by the mirror. We now derive this constraint
algebraically.

2.1. Derivation of the Fixed Viewpoint
Constraint Equation

Without loss of generality we can assume that the
effective viewpointv of the catadioptric system lies
at the origin of a Cartesian coordinate system. Suppose
that the effective pinhole is located at the pointp. Then,
again without loss of generality, we can assume that the
z-axis ẑ lies in the directionEvp. Moreover, since per-
spective projection is rotationally symmetric about any
line throughp, the mirror can be assumed to be a surface
of revolution about thez-axisẑ. Therefore, we work in
the 2-D Cartesian frame (v, r̂ , ẑ) wherer̂ is a unit vector
orthogonal tôz, and try to find the 2-dimensional pro-
file of the mirrorz(r )= z(x, y) wherer =

√
x2+ y2.

Finally, if the distance fromv to p is denoted by the pa-
rameterc, we havêv= (0, 0) andp̂= (0, c). See Fig. 1
for an illustration1 of the coordinate frame.

We begin the translation of the fixed viewpoint con-
straint into symbols by denoting the angle between an
incoming ray from a world point and ther -axis byθ .
Suppose that this ray intersects the mirror at the point
(z, r ). Then, since we assume that it also passes through
the originv= (0, 0) we have the relationship:

tanθ = z

r
. (1)

If we denote the angle between the reflected ray and
the (negative)r -axis byα, we also have:

tanα = c− z

r
(2)

since the reflected ray must pass through the pinhole
p= (0, c). Next, ifβ is the angle between thez-axis and
the normal to the mirror at the point (r, z), we have:

dz

dr
= − tanβ. (3)

Figure 1. The geometry used to derive the fixed viewpoint con-
straint equation. The viewpointv = (0, 0) is located at the origin of
a 2-D coordinate frame(v, r̂ , ẑ), and the pinhole of the camerap =
(0, c) is located at a distancec from v along thez-axis ẑ. If a ray of
light, which was about to pass throughv, is reflected at the mirror
point (r, z), the angle between the ray of light andr̂ is θ = tan−1 z

r . If
the ray is then reflected and passes through the pinholep, the angle
it makes withr̂ is α = tan−1 c−z

r , and the angle it makes witĥz is
γ = 90◦ − α. Finally, if β = tan−1(− dz

dr ) is the angle between the
normal to the mirror at (r, z) andẑ, then by the fact that the angle of
incidence equals the angle of reflection, we have the constraint that
α + θ + 2γ + 2β = 180◦.

Our final geometric relationship is due to the fact
that we can assume the mirror to be specular. This
means that the angle of incidence must equal the an-
gle of reflection. So, ifγ is the angle between the re-
flected ray and thez-axis, we haveγ = 90◦ −α and
θ +α+ 2β + 2γ = 180◦. (See Fig. 1 for an illustra-
tion of this constraint.) Eliminatingγ from these two
expressions and rearranging gives:

2β = α − θ. (4)

Then, taking the tangent of both sides and using the
standard rules for expanding the tangent of a sum:

tan(A± B) = tanA± tanB

1∓ tanA tanB
(5)
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we have:

2 tanβ

1− tan2 β
= tanα − tanθ

1+ tanα tanθ
. (6)

Substituting from Eqs. (1)–(3) yields thefixed view-
point constraintequation:

−2dz
dr

1− ( dz
dr

)2 = (c− 2z)r

r 2+ cz− z2
(7)

which when rearranged is seen to be a quadratic first-
order ordinary differential equation:

r (c−2z)

(
dz

dr

)2

−2(r 2+cz+z2)
dz

dr
+r (2z−c) = 0.

(8)

2.2. General Solution of the Constraint Equation

The first step in the solution of the fixed viewpoint
constraint equation is to solve it as a quadratic to yield
an expression for the surface slope:

dz

dr
= (z2− r 2− cz)±

√
r 2c2+ (z2+ r 2− cz)2

r (2z− c)
.

(9)

The next step is to substitutey= z− c
2 and setb= c

2
which yields:

dy

dr
= (y2− r 2− b2)±

√
4r 2b2+ (y2+ r 2− b2)2

2r y
.

(10)

Then, we substitute 2r x = y2+ r 2 − b2, which when
differentiated gives:

2y
dy

dr
= 2x + 2r

dx

dr
− 2r (11)

and so we have:

2x + 2r
dx

dr
− 2r = 2r x − 2r 2±√4r 2b2+ 4r 2x2

r
.

(12)

Rearranging this equation yields:

1√
b2+ x2

dx

dr
= ±1

r
. (13)

Integrating both sides with respect tor results in:

ln(x +
√

b2+ x2) = ± ln r + C (14)

whereC is the constant of integration. Hence,

x +
√

b2+ x2= k

2
r±1 (15)

wherek= 2eC > 0 is a constant. By back substituting,
rearranging, and simplifying we arrive at the two equa-
tions which comprise the general solution of the fixed
viewpoint constraint equation:(

z− c

2

)2

− r 2

(
k

2
− 1

)
= c2

4

(
k− 2

k

)
(k ≥ 2).

(16)(
z− c

2

)2

+ r 2

(
1+ c2

2k

)
=
(

2k+ c2

4

)
(k > 0).

(17)

In the first of these two equations, the constant para-
meterk is constrained byk ≥ 2 (rather thank > 0)
since 0< k < 2 leads to complex solutions.

2.3. Specific Solutions of the Constraint Equation

Together, Eqs. (16) and (17) define the complete class
of mirrors that satisfy the fixed viewpoint constraint.
A quick glance at the form of these equations reveals
that the mirror profiles form a 2-parameter (c andk)
family of conic sections. Hence, the shapes of the 3-D
mirrors are all swept conic sections. As we shall see,
however, although every conic section is theoretically
a solution of one of the two equations, a number of the
solutions are degenerate and cannot be used to construct
real sensors with a single effective viewpoint. We will
describe the solutions in detail in the following order:

Planar Solutions:Equation (16) withk = 2 andc > 0.
Conical Solutions:Equation (16) withk ≥ 2 andc = 0.
Spherical Solutions:Equation (17) withk > 0 and

c = 0.
Ellipsoidal Solutions:Equation (17) withk > 0 and

c > 0.
Hyperboloidal Solutions:Equation (16) withk > 2

andc > 0.

For each solution, we demonstrate whether it is de-
generate or not. Some of the non-degenerate solutions
have actually been used in real sensors. For these so-
lutions, we mention all of the existing designs that we
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are aware of which use that mirror shape. Several of
the degenerate solutions have also been used to con-
struct sensors with a wide field of view, but with no
fixed viewpoint. In these cases we derive the loci of the
viewpoint.

There is one conic section that we have not men-
tioned: the parabola. Although the parabola is not a
solution of either equation for finite values ofc andk,
it is a solution of Eq. (16) in the limit thatc → ∞,
k→∞, and c

k = h, a constant. These limiting condi-
tions correspond to orthographic projection. We briefly
discuss the orthographic case and the corresponding
paraboloid solution in Section 2.4.

2.3.1. Planar Mirrors. In Solution (16), if we set
k= 2 andc > 0, we get the cross-section of a planar
mirror:

z= c

2
. (18)

As shown in Fig. 2, this plane is the one which bi-
sects the line segmentEvp joining the viewpoint and the
pinhole.

The converse of this result is that for a fixed view-
pointv and pinholep, there is only one planar solution
of the fixed viewpoint constraint equation. The unique
solution is the perpendicular bisector of the line joining
the pinhole to the viewpoint:[

x−
(

p+ v
2

)]
· (p− v) = 0. (19)

To prove this, it is sufficient to consider a fixed pinhole
p, a planar mirror with unit normal̂n, and a pointq on
the mirror. Then, the fact that the plane is a solution
of the fixed viewpoint constraint implies that there is
a single effective viewpointv = v(n̂, q). To be more
precise, the effective viewpoint is the reflection of the
pinholep in the mirror; i.e. the single effective view-
point is:

v(n̂, q) = p− 2[(p− q) · n̂] n̂. (20)

Since the reflection of a single point in two different
planes is always two different points, the perpendicular
bisector is the unique planar solution.

An immediate corollary of this result is that for a
single fixed pinhole, no two different planar mirrors
can share the same viewpoint. Unfortunately, a single
planar mirror does not enhance the field of view, since,
discounting occlusions, the same camera moved from

Figure 2. The planez= c
2 is a solution of the fixed viewpoint con-

straint equation. Conversely, it is possible to show that, given a fixed
viewpoint and pinhole, the only planar solution is the perpendicular
bisector of the line joining the pinhole to the viewpoint. Hence, for
a fixed pinhole, two different planar mirrors cannot share the same
effective viewpoint. For each such plane the effective viewpoint is the
reflection of the pinhole in the plane. This means that it is impossible
to enhance the field of view using a single perspective camera and an
arbitrary numberof planar mirrors, while still respecting the fixed
viewpoint constraint. If multiple cameras are used then solutions
using multiple planar mirrors are possible (Nalwa, 1996).

p to v and reflected in the mirror would have exactly
the same field of view. It follows that it is impossi-
ble to increase the field of view by packing anarbi-
trary numberof planar mirrors (pointing in different
directions) in front of a conventional imaging system,
while still respecting the fixed viewpoint constraint.
On the other hand, in applications such as stereo where
multiple viewpoints are a necessary requirement, the
multiple views of a scene can be captured by a single
camera using multiple planar mirrors. See, for exam-
ple, (Goshtasby and Gruver, 1993; Inaba et al., 1993;
Nene and Nayar, 1998).

This brings us to the panoramic camera proposed by
Nalwa (1996). To ensure a single viewpoint while us-
ing multiple planar mirrors, Nalwa (1996) arrived at a
design that uses four separate imaging systems. Four
planar mirrors are arranged in a square-based pyramid,
and each of the four cameras is placed above one of
the faces of the pyramid. The effective pinholes of the
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cameras are moved until the four effective viewpoints
(i.e. the reflections of the pinholes in the mirrors) co-
incide. The result is a sensor that has a single effective
viewpoint and a panoramic field of view of approxi-
mately 360◦ × 50◦. The panoramic image is of rel-
atively high resolution since it is generated from the
four images captured by the four cameras. This sen-
sor is straightforward to implement, but requires four
of each component: i.e. four cameras, four lenses, and
four digitizers. (It is, of course, possible to use only one
digitizer but at a reduced frame rate.)

2.3.2. Conical Mirrors. In Solution (16), if we set
c = 0 andk ≥ 2, we get a conical mirror with circular
cross section:

z=
√

k− 2

2
r 2. (21)

See Fig. 3 for an illustration of this solution. The angle
at the apex of the cone is 2τ where:

tanτ =
√

2

k− 2
. (22)

This might seem like a reasonable solution, but since
c = 0 the pinhole of the camera must be at the apex of
the cone. This implies that the only rays of light entering
the pinhole from the mirror are the ones which graze
the cone and so do not originate from (finite extent)
objects in the world (see Fig. 3.) Hence, the cone with
the pinhole at the vertex is a degenerate solution that
cannot be used to construct a wide field of view sensor
with a single viewpoint.

In spite of this fact, the cone has been used in wide-
angle imaging systems several times (Yagi and Kawato,
1990; Yagi and Yachida, 1991; Bogner, 1995). In these
implementations the pinhole is placed some distance
from the apex of the cone. It is easy to show that in
such cases the viewpoint is no longer a single point
(Nalwa, 1996). If the pinhole lies on the axis of the
cone at a distancee from the apex of the cone, the
locus of the effective viewpoint is a circle. The radius
of the circle is easily seen to be:

e · cos 2τ. (23)

If τ > 60◦, the circular locus lies inside (below) the
cone, ifτ < 60◦ the circular locus lies outside (above)
the cone, and ifτ = 60◦ the circular locus lies on the
cone. In some applications such as robot navigation, the

Figure 3. The conical mirror is a solution of the fixed viewpoint
constraint equation. Since the pinhole is located at the apex of the
cone, this is a degenerate solution that cannot be used to construct a
wide field of view sensor with a single viewpoint. If the pinhole is
moved away from the apex of the cone (along the axis of the cone),
the viewpoint is no longer a single point but rather lies on a circular
locus. If 2τ is the angle at the apex of the cone, the radius of the
circular locus of the viewpoint ise · cos 2τ , wheree is the distance
of the pinhole from the apex along the axis of the cone. Ifτ > 60◦,
the circular locus lies inside (below) the cone, ifτ < 60◦ the circular
locus lies outside (above) the cone, and ifτ = 60◦ the circular locus
lies on the cone.

single viewpoint constraint is not vital. Conical mirrors
can be used to build practical sensors for such appli-
cations. See, for example, the designs in (Yagi et al.,
1994; Bogner, 1995).

2.3.3. Spherical Mirrors. In Solution (17), if we set
c = 0 andk > 0, we get the spherical mirror:

z2+ r 2 = k

2
. (24)

Like the cone, this is a degenerate solution which can-
not be used to construct a wide field of view sensor
with a single viewpoint. Since the viewpoint and pin-
hole coincide at the center of the sphere, the observer
would see itself and nothing else, as is illustrated in
Fig. 4.

The sphere has also been used to build wide field
of view sensors several times (Hong, 1991; Bogner,
1995; Murphy, 1995). In these implementations, the
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Figure 4. The spherical mirror satisfies the fixed viewpoint con-
straint when the pinhole lies at the center of the sphere. (Sincec = 0
the viewpoint also lies at the center of the sphere.) Like the conical
mirror, the sphere cannot actually be used to construct a wide field of
view sensor with a single viewpoint because the observer can only
see itself; rays of light emitted from the center of the sphere are re-
flected back at the surface of the sphere directly towards the center
of the sphere.

pinhole is placed outside the sphere and so there is no
single effective viewpoint. The locus of the effective
viewpoint can be computed in a straightforward man-
ner using a symbolic mathematics package. Without
loss of generality, suppose that the radius of the mir-
ror is 1.0. The first step is to compute the direction of
the ray of light which would be reflected at the mir-
ror point (r, z) = (r,√1− r 2) and then pass through
the pinhole. This computation is then repeated for the
neighboring mirror point(r + dr, z+ dz). Next, the
intersection of these two rays is computed, and finally
the limit dr → 0 is taken while constrainingdz by
(r + dr)2 + (z+ dz)2 = 1. The result of performing
this derivation is that the locus of the effective view-
point is:(

c[1+ c(1+ 2r 2)
√

1− r 2]

1+ 2c2− 3c
√

1− r 2
,

2c2r 2

1+ 2c2− 3c
√

1− r 2

)
(25)

asr varies from−
√

1− 1
c2 to

√
1− 1

c2 . The locus of
the effective viewpoint is plotted for various values of
c in Fig. 5. As can be seen, for all values ofc the locus

Figure 5. The locus of the effective viewpoint of a circular mirror
of radius 1.0 (which is also shown) plotted forc = 1.1 (a),c = 1.5
(b), c = 3.0 (c), andc = 100.0 (d). For all values ofc, the locus lies
within the mirror and is of comparable size to the mirror.

lies within the mirror and is of comparable size to it.
Like multiple planes, spheres have also been used to
construct stereo rigs (Nayar, 1988; Nene and Nayar,
1998), but as described before, multiple viewpoints are
a requirement for stereo.

2.3.4. Ellipsoidal Mirrors. In Solution (17), when
k > 0 andc > 0, we get the ellipsoidal mirror:

1

a2
e

(
z− c

2

)2

+ 1

b2
e

r 2 = 1 (26)

where:

ae =
√

2k+ c2

4
and be =

√
k

2
. (27)

The ellipsoid is the first solution that can actually be
used to enhance the field of view of a camera while re-
taining a single effective viewpoint. As shown in Fig. 6,
if the viewpoint and pinhole are at the foci of the el-
lipsoid and the mirror is taken to be the section of the
ellipsoid that lies below the viewpoint (i.e.z< 0), the
effective field of view is the entire upper hemisphere
z≥ 0.

2.3.5. Hyperboloidal Mirrors. In Solution (16),
when k > 2 andc > 0, we get the hyperboloidal
mirror:

1

a2
h

(
z− c

2

)2

− 1

b2
h

r 2 = 1 (28)



182 Baker and Nayar

Figure 6. The ellipsoidal mirror satisfies the fixed viewpoint con-
straint when the pinhole and viewpoint are located at the two foci
of the ellipsoid. If the ellipsoid is terminated by the horizontal plane
passing through the viewpointz = 0, the field of view is the entire
upper hemispherez > 0. It is also possible to cut the ellipsoid with
other planes passing throughv, but it appears there is little to be
gained by doing so.

where:

ah = c

2

√
k− 2

k
and bh = c

2

√
2

k
. (29)

As seen in Fig. 7, the hyperboloid also yields a realiz-
able solution. The curvature of the mirror and the field
of view both increase withk. In the other direction (in
the limit k → 2) the hyperboloid flattens out to the
planar mirror of Section 2.3.1.

Rees (1970) appears to have been first to use a hy-
perboloidal mirror with a perspective lens to achieve a
large field of view camera system with a single view-
point. Later, Yamazawa et al. (1993, 1995) also recog-
nized that the hyperboloid is indeed a practical solution
and implemented a sensor designed for autonomous
navigation.

2.4. The Orthographic Case: Paraboloidal Mirrors

Although the parabola is not a solution of the fixed
viewpoint constraint equation for finite values ofc and
k, it is a solution of Eq. (16) in the limit thatc→∞,

Figure 7. The hyperboloidal mirror satisfies the fixed viewpoint
constraint when the pinhole and the viewpoint are located at the
two foci of the hyperboloid. This solution does produce the desired
increase in field of view. The curvature of the mirror and hence the
field of view increase withk. In the limit k → 2, the hyperboloid
flattens to the planar mirror of Section 2.3.1.

k → ∞, and c
k = h, a constant. Under these limiting

conditions, Eq. (16) tends to:

z= h2− r 2

2h
. (30)

As shown in (Nayar, 1997b) and Fig. 8, this limiting
case corresponds to orthographic projection. Moreover,
in that setting the paraboloid does yield a practical om-
nidirectional sensor with a number of advantageous
properties (Nayar, 1997b).

One advantage of using an orthographic camera is
that it can make the calibration of the catadioptric sys-
tem far easier. Calibration is simpler because, so long as
the direction of orthographic projection remains paral-
lel to the axis of the paraboloid, any size of paraboloid is
a solution. The paraboloid constant and physical size of
the mirror therefore do not need to be determined dur-
ing calibration. Moreover, the mirror can be translated
arbitrarily and still remain a solution. Implementation
of the sensor is therefore also much easier because
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Figure 8. Under orthographic projection, the only solution is a
paraboloid with the effective viewpoint at the focus of the paraboloid.
One advantage of this solution is that the camera can be translated
arbitrarily and remain a solution. This property can greatly simplify
sensor calibration (Nayar, 1997b). The assumption of orthographic
projection is not as restrictive a solution as it may sound since there
are simple ways to convert a standard lens and camera from perspec-
tive projection to orthographic projection. See, for example, (Nayar,
1997b).

the camera does not need to be positioned precisely.
By the same token, the fact that the mirror may be
translated arbitrarily can be used to set up simple con-
figurations where the camera zooms in on part of the
paraboloid mirror to achieve higher resolution (with a
reduced field of view), but without the complication of
having to compensate for the additional non-linear dis-
tortion caused by the rotation of the camera that would
be needed to achieve the same effect in the perspective
case.

3. Resolution of a Catadioptric Sensor

In this section, we assume that the conventional camera
used in the catadioptric sensor has a frontal image plane
located at a distanceu from the pinhole, and that the
optical axis of the camera is aligned with the axis of
symmetry of the mirror. See Fig. 9 for an illustration

Figure 9. The geometry used to derive the spatial resolution of a
catadioptric sensor. Assuming the conventional sensor has a frontal
image plane which is located at a distanceu from the pinhole and
the optical axis is aligned with thez-axis ẑ, the spatial resolu-
tion of the conventional sensor isd A

dω = u2

cos3ψ
. Therefore the area

of the mirror imaged by the infinitesimal image plane aread A is
dS= (c−z)2 · cosψ

u2 cosφ
· d A. So, the solid angle of the world imaged by

the infinitesimal aread Aon the image plane isdν = (c−z)2·cosψ
u2(r 2+z2)

·d A.
Hence, the spatial resolution of the catadioptric sensor isd A

dν =
u2(r 2+z2)

(c−z)2·cosψ
= r 2+z2

r 2+(c−z)2
· d A

dω since cos2ψ = (c−z)2

(c−z)2+r 2 .

of this scenario. Then, the definition of resolution that
we will use is the following. Consider an infinitesimal
aread A on the image plane. If this infinitesimal pixel
images an infinitesimal solid angledν of the world, the
resolutionof the sensor as a function of the point on
the image plane at the center of the infinitesimal area
d A is:

d A

dν
. (31)

If ψ is the angle made between the optical axis and
the line joining the pinhole to the center of the infinites-
imal aread A (see Fig. 9), the solid angle subtended by
the infinitesimal aread A at the pinhole is:

dω = d A · cosψ

u2/cos2ψ
= d A · cos3ψ

u2
. (32)
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Therefore, the resolution of the conventional camera
is:

d A

dω
= u2

cos3ψ
. (33)

Then, the area of the mirror imaged by the infinitesimal
aread A is:

dS= dω · (c− z)2

cosφ cos2ψ
= d A · (c− z)2 · cosψ

u2 cosφ
(34)

whereφ is the angle between the normal to the mirror
at (r, z) and the line joining the pinhole to the mirror
point (r, z). Since reflection at the mirror is specular,
the solid angle of the world imaged by the catadioptric
camera is:

dν = dS· cosφ

r 2+ z2
= d A · (c− z2) · cosψ

u2(r 2+ z2)
. (35)

Therefore, the resolution of the catadioptric camera is:

d A

dν
= u2(r 2+ z2)

(c− z)2 · cosψ
=
[
(r 2+ z2) cos2ψ

(c− z)2

]
d A

dω

(36)

But, since:

cos2ψ = (c− z)2

(c− z)2+ r 2
(37)

we have:

d A

dν
=
[

r 2+ z2

(c− z)2+ r 2

]
d A

dω
. (38)

Hence, the resolution of the catadioptric camera is the
resolution of the conventional camera used to construct
it multiplied by a factor of:

r 2+ z2

(c− z)2+ r 2
(39)

where (r, z) is the point on the mirror being imaged.
The first thing to note from Eq. (38) is that for the

planar mirrorz = c
2, the resolution of the catadioptric

sensor is the same as that of the conventional sensor
used to construct it. This is as expected by symmetry.
Secondly, note that the factor in Eq. (39) is the square of
the distance from the point (r, z) to the effective view-
point v = (0, 0), divided by the square of the distance
to the pinholep = (0, c). Let dv denote the distance
from the viewpoint to (r, z) anddp the distance of (r, z)

from the pinhole. Then, the factor in Eq. (39) isd2
v/d

2
p .

For the ellipsoid,dp + dv = Ke for some constant
Ke > dp. Therefore, for the ellipsoid the factor is:(

Ke

dp
− 1

)2

(40)

which increases asdp decreases anddv increases. For
the hyperboloid,dp − dv = Kh for some constant 0<
Kh < dp. Therefore, for the hyperboloid the factor is:(

1− Kh

dp

)2

(41)

which increases asdp increases anddv increases. So, for
both ellipsoids and hyperboloids, the factor in Eq. (39)
increases withr . Hence, both hyperboloidal and ellip-
soidal catadioptric sensors constructed with a uniform
resolution conventional camera will have their highest
resolution around the periphery, a useful property for
certain applications such as teleconferencing.

3.1. The Orthographic Case

The orthographic case is slightly simpler than the pro-
jective case and is illustrated in Fig. 10. Again, we
assume that the image plane is frontal; i.e. perpendi-
cular to the direction of orthographic projection. Then,
the resolution of the conventional orthographic camera
is:

d A

dω
= M2 (42)

where the constantM is the linear magnification of the
camera. If the solid angledω images the areadSof the
mirror andφ is the angle between the mirror normal
and the direction of orthographic projection, we have:

dω = cosφ · dS. (43)

Combining Eqs. (35), (42), and (43) yields:

d A

dν
= [r 2+ z2]

d A

dω
. (44)

For the paraboloidz= h2−r 2

2h , the multiplicative factor
r 2+ z2 simplifies to:[

h2+ r 2

2h

]2

. (45)
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Figure 10. The geometry used to derive the spatial resolution of a
catadioptric sensor in the orthographic case. Again, assuming that the
image plane is frontal and the conventional orthographic camera has
a linear magnificationM , its spatial resolution isd A

dω = M2. The solid
angledω equals cosφ ·dS, wheredSis the area of the mirror imaged
andφ is the angle between the mirror normal and the direction of
orthographic projection. Combining this information with Eq. (35)
yields the spatial resolution of the orthographic catadioptric sensor
as d A

dν = [r 2 + z2] d A
dω .

Hence, as for both the ellipsoid and the hyperboloid,
the resolution of paraboloid based catadioptric sensors
increases withr , the distance from the center of the
mirror.

4. Defocus Blur of a Catadioptric Sensor

In addition to the normal causes present in conventional
dioptric systems, such as diffraction and lens aberra-
tions, two factors combine to cause defocus blur in
catadioptric sensors. They are: (1) the finite size of the
lens aperture, and (2) the curvature of the mirror. To
analyze how these two factors cause defocus blur, we
first consider a fixed point in the world and a fixed point
in the lens aperture. We then find the point on the mir-
ror which reflects a ray of light from the world point
through that lens point. Next, we compute where on the
image plane this mirror point is imaged. By consider-
ing the locus of imaged mirror points as the lens point

varies, we can compute the area of the image plane onto
which a fixed world point is imaged. In Section 4.1, we
derive the constraints on the mirror point at which the
light is reflected, and show how it can be projected onto
the image plane. In Section 4.2, we extend the analy-
sis to the orthographic case. Finally, in Section 4.3,
we present numerical results for hyperboloid, ellipsoid,
and paraboloid mirrors.

4.1. Analysis of Defocus Blur

To analyze defocus blur, we need to work in 3-D. We
use the 3D cartesian frame(v, x̂, ŷ, ẑ)wherev is the lo-
cation of the effective viewpoint,p is the location of the
effective pinhole,̂z is a unit vector in the directionEvp,
the effective pinhole is located at a distancec from the
effective viewpoint, and the vectorsx̂ andŷ are ortho-
gonal unit vectors in the planez= 0. As in Section 3,
we also assume that the conventional camera used in the
catadioptric sensor has a frontal image plane located at
a distanceu from the pinhole and that the optical axis
of the camera is aligned with thez-axis. In addition to
the previous assumptions, we assume that the effective
pinhole of the lens is located at the center of the lens,
and that the lens has a circular aperture. See Fig. 11 for
an illustration of this configuration.

Consider a pointm = (x, y, z) on the mirror and a
point w = l

‖m‖ (x, y, z) in the world, wherel > ‖m‖.
Then, since the hyperboloid mirror satisfies the fixed
viewpoint constraint, a ray of light fromw which is
reflected by the mirror atm passes directly through the
center of the lens (i.e. the effective pinhole.) This ray of
light is known as theprincipal ray (Hecht and Zajac,
1974). Next, suppose a ray of light from the world
point w is reflected at the pointm1 = (x1, y1, z1) on
the mirror and then passes through the lens aperture
point l = (d · cosλ, d · sinλ, c). In general, this ray
of light will not be imaged at the same point on the
image plane as the principal ray. When this happens
there is defocus blur. The locus of the intersection of
the incoming rays throughl and the image plane asl
varies over the lens aperture is known as theblur region
or region of confusion(Hecht and Zajac, 1974). For an
ideal thin lens in isolation, the blur region is circular
and so is often referred to as theblur circle (Hecht and
Zajac, 1974).

If we know the pointsm1 and l, we can find the
point on the image plane where the ray of light through
these points is imaged. First, the line throughm1 in
the direction Elm1 is extended to intersect thefocused
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Figure 11. The geometry used to analyze the defocus blur. We work
in the 3D cartesian frame (v, x̂, ŷ, ẑ) wherex̂ and ŷ are orthogonal
unit vectors in the planez = 0. In addition to the assumptions of
Section 3, we also assume that the effective pinhole is located at
the center of the lens and that the lens has a circular aperture. If a
ray of light from the world pointw = l

‖m‖ (x, y, z) is reflected at
the mirror pointm1 = (x1, y1, z1) and then passes through the lens
point l = (d · cosλ, d · sinλ, c), there are three constraints onm1:
(1) it must lie on the mirror, (2) the angle of incidence must equal
the angle of reflection, and (3) the normaln to the mirror atm1, and
the two vectorsl −m1 andw−m1 must be coplanar.

plane. By the thin lens law (Hecht and Zajac, 1974)
the focused plane is:

z = c− v = c− f · u
u− f

(46)

where f is the focal length of the lens andu is the
distance from the focal plane to the image plane. Since
all points on the focused plane are perfectly focused,
the point of intersection on the focused plane can be
mapped onto the image plane using perspective projec-
tion. Hence, thex andy coordinates of the intersection
of the ray throughl and the image plane are thex and
y coordinates of:

−u

v

(
l + v

c− z1
(m1− l)

)
(47)

and thez coordinate is thez coordinate of the image
planec+ u.

Given the lens pointl = (d · cosλ, d · sinλ, c) and
the world pointw = l

‖m‖ (x, y, z), there are three con-
straints on the pointm1 = (x1, y1, z1). First,m1 must
lie on the mirror and so (for the hyperboloid) we have:(

z1− c

2

)2

− (x2
1 + y2

1

) (k

2
− 1

)
= c2

4

(
k− 2

k

)
.

(48)

Secondly, the incident ray (w −m1), the reflected ray
(m1 − l), and the normal to the mirror atm1 must lie
in the same plane. The normal to the mirror atm1 lies
in the direction:

n = ([k− 2]x1, [k− 2]y1, c− 2z1) (49)

for the hyperboloid. Hence, the second constraint is:

n · (w−m1) ∧ (l −m1) = 0. (50)

Figure 12. The geometry used to analyze defocus blur in the ortho-
graphic case. One way to create orthographic projection is to add a
(circular) aperture at the rear focal point (the one behind the lens)
(Nayar, 1997b). Then, the only rays of light that reach the image
plane are those which are (approximately) parallel to the optical
axis. The analysis of defocus blur is then essentially the same as in
the perspective case except that we need to check whether each ray
of light passes through this aperture when computing the blur region.
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Figure 13. The area of the blur region plotted against the distance to the focused planev = f ·u
u− f for the hyperboloidal mirror withk = 11.0.

In this example, we havec = 1 meter, the radius of the lens aperture 10 millimeters, and the distance from the viewpoint to the world point
l = 5 meters. We plot curves for 7 different world points, at 7 different angles from the planez= 0. The area of the blur region never becomes
exactly zero and so the image can never be perfectly focused. However, the area does become very small and so focusing on a single point is not
a problem in practice. Note that the distance at which the image will be best focused (around 1.0–1.15 meters) is much less than the distance
from the pinhole to the world point (approximately 1 meter from the pinhole to the mirror plus 5 meters from the mirror to the world point.) The
reason is that the mirror is convex and so tends to increase the divergence of rays of light.

Finally, the angle of incidence must equal the angle of
reflection and so the third constraint on the pointm1 is:

n · (w−m1)

‖w−m1‖ =
n · (l −m1)

‖l −m1‖ . (51)

These three constraints onm1 are all multivariate poly-
nomials inx1, y1, andz1: Eqs. (48) and (50) are both
of order 2, and Eq. (51) is of order 5. We were unable
to find a closed form solution to these three equations
(Eq. (51) has 25 terms in general and so it is probable
that none exists) but we did investigate numericals solu-
tion. Before we present the results, we briefly describe
the orthographic case.

4.2. Defocus Blur in the Orthographic Case

The orthographic case is slightly different, as is illus-
trated in Fig. 12. One way to convert a thin lens to
produce orthographic projection is to place an aper-
ture at the focal point behind the lens (Nayar, 1997b).
Then, the only rays of light that reach the image plane
are those that are (approximately) parallel to the optical
axis. For the orthographic case, there is therefore only
one difference to the analysis. When estimating the blur
region, we need to check that the ray of light actually
passes through the (circular) aperture at the rear focal
point. This task is straightforward. The intersection of
the ray of light with the rear focal plane is computed
using linear interpolation of the lens point and the point
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Figure 14. The area of the blur region plotted against the distance to the focused planev = f ·u
u− f for the ellipsoidal mirror withk = 0.11. The

other settings are the same as for the hyperboloidal mirror in Fig. 13. Again, the distance to the focused plane is less than the distance to the
point in the world, however the reason is different. For the concave ellipsoidal mirror, a virtual image is formed between the mirror and the lens.
The lens needs to focus on this virtual image.

where the mirror point is imaged on the image plane.
It is then checked whether this point lies close enough
to the optical axis.

4.3. Numerical Results

In our numerical experiments we set the distance be-
tween the effective viewpoint and the pinhole to be
c = 1 meter, and the distance from the viewpoint to
the world pointw to bel = 5 meters. For the hyper-
boloidal and ellipsoidal mirrors, we set the radius of the
lens aperture to be 10 mm. For the paraboloidal mirror,
the limiting aperture is the one at the focal point. We
chose the size of this aperture so that it lets through
exactly the same rays of light that the front 10 mm one
would for a point 1 meter away on the optical axis. We
assumed the focal length to be 10 cm and therefore set
the aperture to be 1 mm. With these settings, the F-stop
for the paraboloidal mirror is 2× 10/100= 1/5. The

results for the other two mirrors are independent of the
focal length, and hence the F-stop.

To allow the three mirror shapes to be compared
on an equal basis, we used values fork and h that
correspond to the same mirror radii. The radius of the
mirror is taken to be the radius of the mirror cut off by
the planez= 0; i.e. the mirrors are all taken to image
the entire upper hemisphere. Some values ofk andh
are plotted in Table 1 against the corresponding mirror
radius, forc = 1 meter.

4.3.1. Area of the Blur Region. In Figs. 13–15, we
plot the area of the blur region (on the ordinate) against
the distance to the focused planev (on the abscissa) for
the hyperboloidal, ellipsoidal, and paraboloidal mir-
rors. In each figure, we plot separate curves for differ-
ent world point directions. The angles are measures in
degrees from the planez = 0, and so the curve at 90◦

corresponds to the (impossible) world point directly
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Figure 15. The area of the blur region plotted against the distance to the focused planev = f ·u
u− f for the paraboloidal mirror withh = 0.1.

The settings are the same as for the hyperboloidal mirror, except the size of the apertures. The limiting aperture is the one at the focal point. It
is chosen so that it lets through exactly the same rays of light that the 10 mm one does for the hyperboloidal mirror for a point 1 meter away on
the optical axis. The results are qualitatively very similar to the hyperboloidal mirror.

upwards in the direction of thez-axis. For the hyper-
boloid we setk = 11.0, for the ellipsoidk = 0.11, and
for the paraboloidh = 0.1. As can be seen in Table 1,
these settings correspond to a mirror with radius 10 cm.
Qualitatively similar results were obtained for the other
radii. Section 4.3.3 contains related results for the other
radii.

Table 1. The mirror radius as a function of the mirror parameters
(k andh) for c = 1 meter.

Mirror radius Hyperboloid Ellipsoid Paraboloid
(cm) (k) (k) (h)

20 6.1 0.24 0.2

10 11.0 0.11 0.1

5 21.0 0.05 0.05

2 51.0 0.02 0.02

The smaller the area of the blur region, the better
focused the image will be. We see from the figures that
the area never reaches exactly zero, and so an image
formed using these catadioptric sensors can never be
perfectly focused. However, the minimum area is very
small, and in practice there is no problem focusing the
image for a single world point. Moreover, it is possible
to use additional corrective lenses to compensate for
most of this effect (Hecht and Zajac, 1974).

Note that the distance at which the image of the world
point will be best focused (i.e. somewhere in the range
0.9–1.15 meters) is much less than the distance from
the pinhole to the world point (approximately 1 meter
from the pinhole to the mirror plus 5 meters from the
mirror to the world point). The reason for this effect
is that the mirror is curved. For the hyperboloidal and
paraboloidal mirrors which are convex, the curvature
tends to increase the divergence of rays coming from
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Figure 16. The variation in the shape of the blur region as the focus setting is varied. Note that all of the blur regions in this figure are relatively
well focused. Also, note that the scale of the 6 figures are all different.

the world point. For these rays to be converged and the
image focused, a larger distance to the image planeu
is needed. A larger value ofu corresponds to a smaller
value ofv, the distance to the focused plane. For the

concave ellipsoidal mirror, the mirror converges the
rays to the extent that a virtual image is formed between
the mirror and the lens. The lens must be focused on
this virtual image.
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Figure 17. An example of the variation in the blur region as a function of the angle of the point in the world. In this example for the hyperboloid
with k = 11.0, the point at 45◦ is in focus, but the points in the other directions are not.

4.3.2. Shape of the Blur Region. Next, we provide an
explanation of the fact that the area of the blur region
never exactly reaches zero. For a conventional lens,
the blur region is a circle. In this case, as the focus

setting is adjusted to focus the lens, all points on the
blur circle move towards the center of the blur circle at
a rate which is proportional to their distance from the
center of the blur circle. Hence, the blur circle steadily
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Figure 18. The focus setting which minimizes the area of the blur region in Fig. 13 plotted against the angleθ which the world pointw makes
with the planez = 0. Four separate curves are plotted for different values of the parameterk. See Table 1 for the corresponding radii of the
mirrors. We see that the best focus setting forw varies considerably across the mirror. In practice, these results mean that it can sometimes be
difficult to focus the entire scene at the same time, unless additional compensating lenses are used to compensate for the field curvature (Hecht
and Zajac, 1974). Also, note that this effect becomes less important ask increases and the mirror gets smaller.

shrinks until the blur region has area 0 and the lens is
perfectly focused. If the focus setting is moved further
in the same direction, the blur circle grows again as all
the points on it move away from the center.

For a catadioptric sensor using a curved mirror, the
blur region is only approximately a circle for all three
of the mirror shapes. Moreover, as the image is focused,
the speed with which points move towards the center
of this circle is dependent on their position in a much
more complex way than for a single lens. The behavior
is qualitatively the same for all of the mirrors and is
illustrated in Fig. 16. From Fig. 16(a) to (e), the blur
region gets steadily smaller, and the image becomes
more focused. In Fig. 16(f), the focus is beginning to
get worse again. In Fig. 16(a) the blur region is roughly
a circle, however as the focus gets better, the circle be-

gins to overlap itself, as shown in Fig. 16(b). The de-
gree of overlap increases in Figs. 16(c) and (d). (These
2 figures are for the ellipse and are shown to illustrate
how similar the blur regions are for the 3 mirror shapes.
The only difference is that the region has been reflected
about a vertical axis since the ellipse is a concave mir-
ror.) In Fig. 16(e), the image is as well focused as pos-
sible and the blur region completely overlaps itself. In
Fig. 16(f), the overlapping has begun to unwind.

Finally, in Fig. 17, we illustrate how the blur regions
vary with the angle of the point in the world, for a fixed
focal setting. In this figure, which displays results for
the hyperboloid withk = 0.11, the focal setting is
chosen so that the point at 45◦ is in focus. As can be
seen, for points in the other directions the blur region
can be quite large and so points in those directions
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Figure 19. The focus setting which minimizes the area of the blur region in Fig. 14 plotted against the angleθ which the world pointw makes
with the planez = 0. Four separate curves are plotted for different values of the parameterk. See Table 1 for the corresponding radii of the
mirrors. The field curvature for the ellipsoidal mirror is roughly comparable to that for the hyperboloidal, and also decreases rapidly as the mirror
is made smaller.

are not focused. This effect, known as field curvature
(Hecht and Zajac, 1974), is studied in more detail in
the following section.

4.3.3. Focal Settings. Finally, we investigated how
the focus setting that minimizes the area of the blur re-
gion (see Figs. 13–15) changes with the angleθ which
the world pointw makes with the planez = 0. The
results are presented in Figs. 18–20. As before, we set
c = 1 meter, assumed the radius of the lens aperture
to be 10 millimeters (1 millimeter for the paraboloid),
and fixed the world point to bel = 5 meters from
the effective viewpoint. We see that the best focus set-
ting varies considerably across the mirror for all of the
mirror shapes. Moreover, the variation is roughly com-
parable for all three mirrors (of equal sizes.)

In practice, these results, often referred to as “field
curvature” (Hecht and Zajac, 1974), mean that it can

sometimes be difficult to focus the entire scene at the
same time. Either the center of the mirror is well fo-
cused or the points around the periphery are focused,
but not both. Fortunately, it is possible to introduce
additional lenses which compensate for the field cur-
vature (Hecht and Zajac, 1974). (See the discussion at
the end of this paper for more details.) Also note that as
the mirrors become smaller in size (k increases for the
hyperboloid,k decreases for ellipsoid, andh decreases
for the paraboloid) the effect becomes significantly less
pronounced.

5. Discussion

In this paper, we have studied three design criteria for
catadioptric sensors: (1) the shape of the mirrors, (2)
the resolution of the cameras, and (3) the focus settings
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Figure 20. The focus setting which minimizes the area of the blur region in Fig. 15 plotted against the angleθ which the world pointw makes
with the planez = 0. Four separate curves are plotted for different values of the parameterh. See Table 1 for the corresponding radii of the
mirrors. The field curvature for the paraboloidal mirror is roughly comparable to that for the hyperboloidal, and also decreases rapidly as the
mirror is made smaller.

of the cameras. In particular, we have derived the com-
plete class of mirrors that can be used with a single
camera to give a single viewpoint, found an expression
for the resolution of a catadioptric sensor in terms of the
resolution of the conventional camera(s) used to con-
struct it, and presented detailed analysis of the defocus
blur caused by the use of a curved mirror.

There are a number of possible uses for the (largely
theoretical) results presented in this paper. Through-
out the paper we have touched on many of their uses
by a sensor designer. The results are also of interest to
a user of a catadioptric sensor. We now briefly men-
tion a few of the possible uses, both for sensor design-
ers and users:

• For applications where a fixed viewpoint is not a
requirement, we have derived the locus of the view-

point for several mirror shapes. The shape and size
of these loci may be useful for the user of such a sen-
sor requiring the exact details of the geometry. For
example, if the sensor is being used in an stereo rig,
the epipolar geometry needs to be derived precisely.
• The expression for the resolution of the sensor could

be used by someone applying image processing tech-
niques to the output of the sensor. For example, many
image enhancement algorithms require knowledge
of the solid angles of the world integrated over by
each pixel in sensor.
• Knowing the resolution function also allows a sensor

designer to design a CCD with non-uniform resolu-
tion to get an imaging system with a known (for
example uniform) resolution.
• The defocus analysis could be important to the user

of a catadioptric sensor who wishes to apply various
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image processing techniques, from deblurring to
restoration and super-resolution.
• Knowing the defocus function also allows a sensor

designer to compensate for the field curvature intro-
duced by the use of a curved mirror. One method
consists of introducing optical elements behind the
imaging lens. For instance, a plano-concave lens
placed flush with the CCD permits a good deal of
field curvature correction. (Light rays at the periph-
ery of the image travel through a greater distance
within the plano-concave lens). Another method is
to use a thick meniscus lens right next to the imag-
ing lens (away from the CCD). The same effect
is achieved. In both cases, the exact materials and
curvatures of the lens surfaces are optimized using
numerical simulations. Optical design is almost al-
ways done this way as analytical methods are far too
cumbersome. See (Born and Wolf, 1965) for more
details.

We have described a large number of mirror shapes
in this paper, including cones, spheres, planes, hyper-
boloids, ellipsoids, and paraboloids. Practical catadiop-
tric sensors have been constructed using most of these
mirror shapes. See, for example, (Rees, 1970; Charles
et al., 1987; Nayar, 1988; Yagi and Kawato, 1990;
Hong, 1991; Goshtasby and Gruver, 1993; Yamazawa
et al., 1993, Bogner, 1995; Nalwa, 1996; Nayar, 1997a).
As described in (Chahl and Srinivassan, 1997), even
more mirror shapes are possible if we relax the single-
viewpoint constraint. Which then is the “best” mirror
shape to use?

Unfortunately, there is no simple answer to this ques-
tion. If the application requires exact perspective pro-
jection, there are three alternatives: (1) the ellipsoid,
(2) the hyperboloid, and (3) the paraboloid. The major
limitation of the ellipsoid is that only a hemisphere can
be imaged. As far as the choice between the paraboloid
and the hyperboloid goes, using an orthographic imag-
ing system does require extra effort on behalf of the
optical designer, but may also make construction and
calibration of the entire catadioptric system easier, as
discussed in Section 2.4.

If the application at hand does not require a sin-
gle viewpoint, many other practical issues may be-
come more important, such as the size of the sensor,
its reso-break lution variation across the field of view,
and the ease of mapping between coordinate systems.
In this paper we have restricted attention to single-
viewpoint systems. The reader is referred to other pa-

pers proposing catadioptric sensors, such as (Yagi and
Kawato, 1990; Yagi and Yachida, 1991; Hong, 1991;
Bogner, 1995; Murphy, 1995; Chahl and Srinivassan,
1997), for discussion of the practical merits of cata-
dioptric systems with extended viewpoints.
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Note

1. In Fig. 1 we have drawn the image plane as though it were ortho-
gonal to thez-axisẑ indicating that the optical axis of the camera
is (anti) parallel toẑ. In fact, the effective viewpointv and the
axis of symmetry of the mirror profilez(r ) need not necessarily
lie on the optical axis. Since perspective projection is rotationally
symmetric with respect to any ray that passes through the pinhole
p, the camera could be rotated aboutp so that the optical axis
is not parallel to thez-axis. Moreover, the image plane can be
rotated independently so that it is no longer orthogonal toẑ. In
this second case, the image plane would be non-frontal. This does
not pose any additional problem since the mapping from a non-
frontal image plane to a frontal image plane is one-to-one.
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