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Abstract 
The efficiency of pattern recognition is particularly cru- 

cial in two situations: whenever there are a large number 
of classes to discriminate, and, whenever recognition must 
be performed a large number of times. We develop a num- 
ber of algorithms to cope with the demands of these dificult 
conditions. The algorithms achieve high eficiency by us- 
ing pattern rejectors. A pattern rejector is a generalization 
of a classifier that quickly eliminates a large fraction of 
the candidate classes or inputs. After applying a rejector, 
the recognition algorithms can concentrate their computa- 
tional efforts on vertfiing the small number of remaining 
possibilities. The generality of our algorithms is established 
through a close relationship with the Karhunen-Loctve expan- 
sion. We experimented on two representative applications, 
namely, object recognition and feature detection. The results 
demonstrate substantial eficiency improvements over exist- 
ing approaches, most notably Fisher 's discriminant analysis. 

1 Introduction 
The efficiency of a pattern recognition algorithm be- 

comes increasingly important as the number of pattern 
classes grows. Object recognition using appearance match- 
ing [Murase and Nayar 951 is one example application where 
the computational dependence upon the number of classes 
(objects) is the key to a real time solution. High efficiency 
also proves critical whenever the recognition algorithm must 
be applied a large number of times. This is the case in 
local feature detection [Nayar et al. 961, where the feature 
detector must be applied at every pixel in an image. 

We develop efficient pattern recognition algorithms to 
deal with both of the scenarios described above. The algo- 
rithms achieve high performance by using pattern rejectors 
[Baker and Nayar 961. A rejector is an algorithm that very 
quickly eliminates a large fraction of the candidate classes 
(i.e. objects in recognition)or inputs (i.e. local image bright- 
ness values in feature detection). The theory of pattern re- 
jection, as developed in [Baker and Nayar 961, first defines 
the notion of a rejector and then shows how a collection of 
simple rejectors can be combined to yield a much more ef- 
fective composite rejector. By analyzing the performance 
of composite rejectors, a number of design criteria were de- 
rived for the individual component rejectors that go to form 
an effective composite rejector. 
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In this paper we propose a collection of general-purpose 
algorithms for the implementation of simple rejectors sat- 
isfying the design ciriteria derived in [Baker and Nayar 961. 
Using our algorithms in the individual rejectors of a compos- 
ite rejector then allows the construction of efficient pattern 
recognition algorithms. The derivation of our algorithms is 
based upon a single assumption about the underlying pattern 
classes, namely, the class assumption. The generality of the 
class assumption (and hence the algorithms) is established 
through a close connection with the Karhunen-LoCve (K-L) 
expansion [Fukunaga 901. 

We demonstrate the performance of our algorithms by 
experimenting on two applications: object recognition using 
appearance matching [Murase and Nayar 951 and local fea- 
ture detection [Nayar et al. 961. We first construct a compos- 
ite rejector for a wiclely-used image database of 20 objects. 
Each object appears in a large number of poses and consti- 
tutes a single pattern class. The final composite rejector is 
able to completely (,and without error) discriminate between 
all 20 objects with an efficiency that is a significant im- 
provement over currently used techniques. We compare the 
composite rejector with Fisher's discriminant analysis and 
show our algorithm to be both substantially more efficient 
as well as more accurate. Next, we constructed a composite 
rejector for the task of feature detection. The result is a very 
efficient method of preprocessing an image to identify pixels 
that truly deserve the application of a full-fledged feature 
detector, such as the one proposed in [Nayar et al. 961. 

2 Background: Pattern Rejection 
We begin by briefly summarizing pattern rejection as de- 

veloped in [Baker arid Nayar 961. After stating the assump- 
tions and definitions,, we present the design criteria for the 
individual component rejectors of a composite rejector. 

2.1 Assumption5 and Definitions 
A pattern recognition problem is based upon a finite set 

of measurements of an underlying physical process. Hence 
we assume the existence of a classification space, S = ?TZd, 
where d is the number of measurements. Elements, 2 E S, 
will be referred to as measurement vectors or for convenience 
vectors. Next, we assume the existence of a finite collection, 
WI , W2, . . . , W, 5 S of (pattern) classes. The classes 
themselves are definied by the application in question and 
so we assume that they are given to us a priori. 

Definition 1 A classifier (or recognizer) is an algorithm, 4, 
that given an input, z 6 S, returns the class label, i, for 
which z E Wi. 



A rejector is a generalization of a classifier in the sense 
that it returns a set of class labels. This set must contain the 
correct class label of the input, but it may also contain others: 
Definition 2 A rejector is an algorithm, $, that given an 
input, x E S, returns a set of class labels, $(x), such that 
x E Wj 3 i E $(x) (or equivalently i @ $(x) 3 x @ Wi). 

The name rejector is derived from the equivalent defini- 
tion; if i is not in the output of the rejector, we can safely 
reject the possibility that x E Wi. We then introduce the 
rejection domain of Wj as the set of all x E S for which 
i $! +(z). That is, the rejection domain is the set of all x for 
which we can reject the hypothesis that x E Wi : 
Definition 3 If $ is a rejector and Wi is a class, then the 
rejection domain, Rf, of rejectol; +,for  class Wi is the set 
ofal lx  E S forwhich i $! +(z). 

In follows from Definitions 3 & 2 than $ is a rejector 
if and only if V i  Rf n Wi = 0. The effectiveness of a 
rejector is defined to be the expected fraction of classes that 
are not rejected by it. Therefore, a small numeric value of 
the effectiveness corresponds to an “effective” rejector: 
Definition 4 If $ is a rejectol; the effectiveness of II, is 

Applying a rejector does not guarantee that we will be 
able to solve the pattern recognition problem uniquely; there 
may be more than one class in the output of the rejector. Any 
ambiguity is dealt with by adding a verification stage: 
Definition 5 A verifier for a class, Wi, is a boolean algo- 
rithm that, given an input, x E S, retums the result True  if 
x E Wi ana‘ False otherwise. 

We form a rejection-based classijier by first applying a 
rejector and then applying a verifier for each class with a 
label in the output of the rejector. Combining the results we 
can immediately classify the input. The overall efficiency of 
a rejection-based classifier depends upon both the efficiency 
and effectiveness of the rejector. 

The output of a rejector is a subset of classes and so a 
smaller instance of the original classification problem. Re- 
cursively applying another rejector, tuned to the reduced 
subset of classes, may eliminate more of the classes as can- 
didates and so improve the effectiveness of the combined 
rejectors. This is the notion of a composite rejector: 
Definition 6 A composite rejector, Y, is a collection ofre- 
jectors, Y = {$, : z E 3}, where 3 is an index set for Y, 
and such that: (a)  there is a rejector in ‘P designed for the 
complete set of classes, and (b)  for  any rejectol; E Y, 
and any x E S, either 4, (z) = 1 or  there is a rejector in Y 
designed for (x). 

A composite rejector has the structure of a directed acyclic 
graph. Each rejector, E Y, together with the subset of 
classes for which it was designed, corresponds to a node in 
the graph. Then, the application of the composite rejector to a 
novel measurement vector corresponds to a path through the 
graph. At each node in the path, the corresponding rejector 
is applied and its output determines the next rejector to apply 
and hence the edge that should be taken to leave the node. 

Eff($) = pdl*(x)Il = :E:=, P [ X  E R 3  

2.2 Rejector Design Criteria 
1. For a rejection-based classifier to be efficient overall, 

we require the composite rejector to be both eflcient 
and effective. 

2. To maximize the effectiveness of a composite rejector, 
we should design each component rejector to be as 
effective as possible. This is achieved by choosing the 
rejection domains to be as large as possible. However, 
there is a trade-off between maximizing the size of 
the rejection domains, ensuring Rf n Wj = 0 for 
correctness, and using simple decision boundaries for 
high efficiency. 

3. To avoid an exponential explosion in the size of the 
composite rejector the following design criteria should 
be adhered to: (a) avoid rejectors with large number of 
outputs, (b) balance rejector output cardinalities, and 
(c) minimize the overlap between rejector outputs. 

3 A General-Purpose Rejection Technique 
Before presenting our algorithms in detail, we first de- 

scribe the general principle upon which they are based. In 
what follows, we will write the Euclidean inner (dot) product 
of two vectors as (x, y). The induced Euclidean norm we 
denote by I I x I 12 = (2, x) ‘ j 2 .  We also assume that the norm of 
a vector does not effect classification and so restrict attention 
to the surface of the unit ball, B = {x E S : 11x112 = 1). 
3.1 The Class Assumption 

Designing a rejector is equivalent to deciding upon the 
rejection domains. Further, for correctness we require that 
Rf n W, = 0. Therefore, the choice of the rejection domains 
must depend heavily on the nature of the underlying classes. 
In order to make progress we need to assume something 
about the classes: 
The Class Assumption For each class Wi , there exists a 
vectol; C i  E S, a linear subspace, Li S, and a threshold, 
Sj 2 0,  such that Vx E Wi, dist(x, ci + L i )  5 S i .  Further 
we assume: (a)  dim( Li)  << d,  and (6)  S i  << 1. 

The class assumption (see Figure 1) is very general and 
allows various “shapes” of classes including disconnected 
multi-cluster distributions. All that is required is that each 
class be roughly low dimensional. In fact, the class as- 
sumption is approximately equivalent to assuming that the 
Karhunen-Loeve K-L expansion results in a compact and 
accurate representation of the class. Suppose that Mi” is the 
subspace spanned by the E most important K-L eigenvectors, 
and A; are the decaying K-L eigenvalues, then we have: 

d 

EzEW.(dist(z, ~&w, (Y)  + Mi”)’) = A, = 0. (1) 

Setting c; = EZ,=w,(x), and Li = M:, we see that the 
difference between the class assumption and the K-L expan- 
sion is one of expected versus maximum value. Then, the 
widespread use of the K-L expansion allows us to argue that 
the class assumption can be expected to hold extensively. 

s = k + l  
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Figure 1 - An illustration of the class assumption for a low 
dimensional example, S = W3. The subspace, L, ,  is the 
2 dimensional subspace spanned by the vectors, {e l ,  ez}.  
Every vector in W, can be approximated to within error, 6 i ,  
by the linear combination of c, and a vector in L, .  

3.2 Rejection Vectors 
Given that the class assumption holds, we now explain 

the basis of our algorithms. We begin by defining the notion 
of a rejection vector: 
Definition 7 Suppose the class assumption holds for the 
classes, Wl, Wz, . . . , W,. Then, a rejection vector is a unit 
vector; r E B, for which r I 
If r is a rejection vector, it follows immediately from the 
class assumption, orthogonality, and the Cauchy-Schwarz 
inequality, that: 

Li. 

3 E Wi 3 I(r,z) - (r,ci)I 5 6i (2) 
Equation (2) means that the rejection vector projects each 
class, Wi, onto approximately a single point, (T ,  cj). So long 
as the points, (r,ci) ,  are well separated, not many of the 
intervals [ (T ,  ci) - Si, (T ,  cj) + 6j] will overlap, and we can 
use equation (2) to discriminate between the classes. 

In Figure 2 we illustrate equation (2) by plotting the pro- 
jection, (r ,  t), against the likelihood of that projection oc- 
curring for a randomly selected measurement vector, t, of a 
fixed class. Equation (2) means that each class is projected 
onto almost a point, and so we expect to see very peaked 
distributions in the figure. Any pair of classes with distri- 
butions that do not overlap can be discriminated using this 
projection. In this particular example, we cannot discrimi- 
nate between every pair of classes, but we can always reject 
at least 2 classes. For example, if (P, t) = 0.1 we can only 
safely eliminate classes 13 and 18. In general there is no 
guarantee that we will be able to find a rejection vector that 
completely separates a given pair of classes. Note, however, 
that a rejector is only required to eliminate a large fraction 
of the classes, not necessarily every last one. In practice, we 
found that this technique allows us to reject sufficiently many 
classes to achieve a substantial efficiency improvement. 

4 Algorithms for Pattern Rejection 
To implement the technique just described, we must per- 

form six tasks: (1) verify the class assumption, (2) select 

ProbaMllIy 
Denslty 

I I , ' I  

o o w : 5  0.: 0;s ' ;, 0.2 0:4 0;s (,.I) 

Figure 2. An illustration of equation (2) for 5 classes taken 
from the object recognition application in Section 5.1. On 
the abscissa we plot the projection of the measurement vector 
with the rejection vector. On the ordinate we plot an estimate 
of the probability ithat a vector from a particular class will 
yield that projection. We plot five lines, one for each of the 
classes. As can be seen, the distributions are peaked in ac- 
cordance with the class assumption holding. We can use the 
projection with the rejection vector to discriminate between 
any pair of classes whose distributions do not overlap. For 
instance, if (z, z) =: 0.25 we can reject classes 1,5,13 & 19. 

the rejection vector, (3) estimate the thresholds, (4) con- 
struct the component rejectors, (5)  provide an algorithm 
with which to apply the component rejectors, and, (6) con- 
struct the composite! rejector. We discuss each task in turn 
and present an algorithm to accomplish it. The algorithms 
assume that we have available a set of training samples: 
{pi, 2, .  . . , p)(j) E ~i : i = I , .  . . , n). 
4.1 Verification of the Class Assumption 

We use the K-L expansion to verify the class assump- 
tion and to find appropriate values for Lj and ci. For each 
class, Wj, we put cj to be the mean class vector, and set L, 
to be the subspace spanned by the K-L eigenvectors with 
corresponding eigenvalues above a threshold, t: 
Algorithm 1: Estimation of Li and cj 

2. Compute the eigenvectors, e!, and their corresponding 
eigenvalues, Xi ,  of the covariance matrix, defined by: 
Mj = ;;;i;r x.5:) 2 (d )T 

(If m(i)  << d ,  the Singular Value Decomposition 
(SVD) should be used [Murakami and Kumar 821.) 

3. Set Li to be the subspace spanned by {e! : A! > t } .  

The choice of an appropriate value for the threshold, t ,  is 
application dependent. We suggest trying several different 
alternatives until an acceptable value is found. For many 
applications, a guideline figure would be one that results in 
the use of around 5-10 eigenvectors per class. 

. .  
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4.2 Choice of the Rejection Vector 
The rejection vector is only constrained by Definition 7 

to be a unit vector orthogonal to L; .  Therefore we 
have a lot of freedom in its selection. Our aim should be to 
choose the rejection vector to maximize the effectiveness of 
the resulting rejector. Since an effective rejection vector will 
be one that widely distributes the centers of the projections 
of the classes, ( T ,  C i ) ,  we choose the rejection vector to max- 
imize the spread of these points. If variance is used as the 
measure of spread, the optimal rejection vector is the first 
K-L eigenvector of the mean class vectors projected into the 
subspace (e:=, hi)'. This is the rejection vector that we 
use: 
Algorithm 2: Choice of the Rejection Vector 

1. 

2. 

3. 

4.3 

Construct an orthonormal basis for e:='=, Lj by ap- 
plying Gram-Schmidt orthonormalization to the basis 
vectors of the subspaces, Li,  computed in Algorithm 1. 
Suppose the result is {fj : j = 1, . . . , p } .  

Project each mean class vector, c i ,  into (Byzl L i ) l  
using: cf = ci - C;=,(ci, fj)fj. 

Apply the K-L expansion to { c' : i = 1, . . . , n}. Set 
the rejection vector, r, to be the (normalized) eigen- 
vector with the largest eigenvalue. 

Estimation of the Thresholds 
The only property the thresholds must satisfy for the rejec- 

tor to operate correctly is equation (2), which is redisplayed 
here: 

However, the smaller the thresholds are the more effective 
the rejectors will be. Therefore we need to chose the thresh- 
olds carefully. There are various methods that could be used 
to do this. Here we present the method which we used in our 
object recognition example in Section 5.1. (Other methods, 
including the technique used for our feature detection experi- 
ments in Section 5.2, are provided in [Baker and Nayar 951.) 
It was found empirically (see Figure 2) that the projected 
class distributions for all the objects closely resemble normal 
distributions. We chose a confidence level of 99.9%, and set 
6, to be 3.5 times the standard deviation of the distribution: 
Algorithm 3: Selection of the Thresholds 

t E Wi [ ( r , ~ )  - ( r , c i ) [  5 6i (3) 

4.4 Construction of the Rejector 
One of the design criteria in Section 2.2 was that each 

component rejector should have a small number of out- 
puts. We achieve this by partitioning [-1, 11 into buckets, 
b l ,  . . . , b,, where Vj ,  bj  = [cutj-l, cutj], cub = - 1, and 
cutm = 1. (See Figure 3 for an illustration.) The bucket 
end-points, cutj , are referred to as a cut-point. Once we have 
decided upon the buckets, we associate with each bucket a 
set of classes. The set of classes contains those for which the 
class projection intersects the bucket: 

classes(bj) = {i : b j  n [ ( r ,  c i )  - 6;, ( r ,  c i )  + S i ]  # 0) (4) 

) 

classes (b,) = ( 5  J classes (4) = { 1.41 classes (b,) = (2,3 J 

Figure 3. The interval [- 1 11 is partitioned into buckets, 
separated by cut-points. Each bucket is associated with a set 
of classes; those whose projection intersects the bucket. The 
rejector is defined to retum the set of classes of the bucket, 
into which the measurement vector is projected. 

It follows from equations (3) & (4) that: 

2 E Wi and ( r , ~ )  E b j  + i E clases(bj) ( 5 )  
So long as equation (3) holds, defining +(z) = classes(b,), 
where (r, z) E b, , is then a valid definition of a rejector; i.e. 
2 E Wi 3 i E +(z) is true. 

The reason for introducing buckets is so that we may 
carefully select them to follow the design guidelines in Sec- 
tion 2.2. In the following algorithm, step l(c) aims to min- 
imize the intersection between the output subsets, and step 
l(d) aims to maximize the balance between output subsets. 
Algorithm 4: Construction of the Rejector 

1. Select the set of cut-points, J: 
(a) S e t , J = { - l , l ) , a n d , M = { ( r , c i ) - 6 i :  i =  

1 , 2  ,..., n } U { ( r , c i ) + 4 :  i =  1 , 2  ,... ] n } .  
(b) Sort the set M ,  and for each consecutive pair of 

numbers in M, store their mean in the set M'. 
(c) For each point, z E M', in turn, insert z into J 

if and only i f  V i ,  z e [ ( T ,  c i )  - 6j, (r,  ci) + 6;] 
(d) If [JI = 2, add to J the point in M' which 

maximizes: min(l{i : y < ( r , c i )  - & } I ,  I{i : 
Y > (TI C i )  + &}I) 

2. Create the buckets: 
(a) Sort the set of cut-points, J. 
(b) For each pair of neighboring points in J ,  

(cutj-1 < cut, E J), create a bucket, b j  = 

(c) For each b j  compute classes(bj) using equa- 
tion (4). 

(d) Store the buckets together with their associated 
classes, in an array in increasing cut-point order. 

[cut3 - 1 cutj], 

4.5 Application of the Rejector 
The data stored by a rejector consists of two parts: the 

rejection vector, r ,  and the array computed in step 2(d) of 
Algorithm 4. Given a novel measurement vector, z, we apply 
the rejector using: 
Algorithm 5: Application of the Rejector 

1 .  
2. 

3. 

Compute the projection, (2, r). 
Perform a binary search on the array of buckets to find 
the bucket, b j ,  containing (z, r). 
Return classes( b j  ). 
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Figure 4. The 20 objects (classes) used in the recognition 
experiment. There are 72 images of each object with neigh- 
boring image pairs separated by 5' of pose. The data set is 
that used in [Murase and Nayar 951. 

4.6 Construction of a Composite Rejector 
Component rejectors may be reached by more than one 

path in the composite rejector. So that it can check for 
duplicates in step 2(b), we assume that Algorithm 6 maintains 
a hash table of the component rejectors it has constructed. 
Algorithm 6: Construction of a Composite Rejector 

1. Construct a simple rejector for the current set of nodes 

2. For each bucket, bj ,  of the rejector just constructed: 
using Algorithms 1,2,3, & 4. 

(a) If Iclasses(bj)( = 1, or if no classes can be 
rejected (classes(bj) equals the current set of 
classes) create a leaf node; i.e. a rejector which 
immediately returns classes(bj). 

(b) If a component rejector has already been created 
for classes(bj), just add a link to that rejector. 

(c) Otherwise recursively call Algorithm 6 with 
classes(bj) as the current set of nodes. Then, 
add a link from the current rejector to the com- 
ponent rejector created in step 1 of the recursive 
call. 

5 Example Applications 
Our objective is to demonstrate the generality and effi- 

ciency of our rejection algorithms. As examples, we have 
chosen two problems in computational vision, namely, 3-D 
object recognition and feature detection. These problems 
were selected as they can, under certain assumptions, be cast 
as classical pattern recognition problems. Furthermore, both 
problems often need to be solved with high efficiency. 

5.1 3D Object Recognition 
We follow the appearance matching approach, first de- 

scribed in [Murase and Nayar 951. Object recognition is re- 
duced to pattern recognition by first segmenting the object 
and then scale normalizing it to an image of size 128 x 128 
pixels. The image is then treated as a 16,384 dimensional 

1191 / \  151 

Figure 5. A repmentation of the composite rejector. Each 
interior node denotes a single rejector, and is labeled with the 
set of objects that it is designed to act on. At each node, only 
one dot product and a binary search need to be performed. 
(See Algorithm 5.) Each leaf denotes a possible output of 
the composite rejector. 

measurement vector in the classification space, S = !J?161384, 

by reading the pixells in a raster scan fashion. Finally, the 
vector is intensity normalized to lie on the unit sphere, B. 

The data set that we used (see Figure 4) consists of 20 
objects (classes). It (contains 72 images of each object sepa- 
rated by 5 O  intervals of pose. The images were divided into a 
training set and a tesl! set each comprising 36 images of every 
object. The training set is then treated as the samples of the 
classes and used to implement the composite rejector, a rep- 
resentation of which is presented in Figure 5.  As it happens, 
every leaf of the composite rejector contains a single class, 
and hence the composite rejector can fully discriminate be- 
tween the 20 objects. (We would have regarded the rejector 
as successful even if each leaf had contained 2-3 objects.) 

We found that thie composite rejector responded 100% 
correctly for both the training and test sets. Based on the as- 
sumption that each image in the data set is equally likely to 
appear, we calculated the average number of rejectors used in 
the composite rejector to be just 6.43. Since the time taken at 
each node is essentially the cost of one inner product (convo- 
lution), the efficiency compares very favorably with the re- 
sults obtained by Murase and Nayar [Murase and Nayar 951. 
Their implementation required 20 inner products, followed 
by a sophisticated search procedure. 

Using the same image database, we compared the per- 
formance of the composite rejector against that of Fisher's 
discriminant analysis [Fisher 361. Again, we followed the 
same test procedure, namely, setting aside half of the data, 
and using the other half to construct the classifier. We con- 
structed Fisher spaces [Duda and Hart 731 of different di- 
mensionality. In Fisher space the classes consist of tight 
clusters, which we modeled as multivariate normal distri- 
butions. We compu1.d the mean and covariance matrix of 
each of these distributions. Then, each novel measurement 
vector was classified by finding its closest cluster, i.e. the 
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Figure 6. Results of applying Fisher’s discriminant anal- 
ysis to the data set in Figure 4. On the abscissa we plot 
the dimension of the Fisher space used, and on the ordinate 
the percentage of test images correctly classified. The peak 
performance is just under 97%, and to obtain this level of 
accuracy 11 discriminant vectors are needed. In contrast, the 
composite rejector gives perfect (100%) classification with 
just 6.43 rejection vectors. 

cluster whose mean is closest to the vector. We used both 
the Mahalanobis and Euclidean distances. 

Figure 6 shows the results for the combined performance 
on the training and test sets. Even for the Mahalanobis dis- 
tance, the classification results are not perfect. In fact, after 
around dimension 1 1, the accuracy remains approximately 
constant and just below 97%. This compares poorly with 
the 100% classification obtained by the composite rejector, 
using an average of just 6.43 rejection vectors. 

5.2 Local Feature Detection 
We constructed a composite rejector for a feature detector 

of the type proposed in [Nayar et al. 961. (The algorithms 
used in this case are slightly different to those presented in 
Section 4. The reason for the difference is that here there is 
only one pattern class corresponding to the one feature being 
detected. The details of the algorithms used may be found 
in [Baker and Nayar 951.) The output of the composite re- 
jector is used as input to the feature detector, and consists 
of pixels at which further processing is deemed worthwhile. 
Although the technique is applicable to general parametric 
features, we only have space to display our results (see Fig- 
ure 7) for edge detection. 

6 Discussion 
There is a relationship between our algorithm for choos- 

ing the rejection vector in Section 4.2 and Fisher’s discrimi- 
nant analysis [Duda and Hart 731. In particular, Algorithm 2 
tends to choose a vector that maximizes between-class scat- 
ter, while keeping within-class scatter fixed at a low level. 
The difference between our algorithm and discriminant anal- 
ysis is that discriminant analysis is presented as a single level 
of processing. On the other hand, the composite rejector has 
a hierarchical structure, which leads to superior performance. 

Figure 7. The edge rejector applied to 3 noisy synthetic 
images. The top row shows the noisy images whose pixels 
the rejector is applied to. The image on the left has added 
Gaussian noise of standard deviation 1 grey level, the middle 
image has noise of 2 grey levels, and the rightmost image has 
noise of 4 grey levels. The bottom row shows the output im- 
ages produced by the edge rejector. Each output image con- 
sists of rejected pixels (marked black) and candidate pixels 
(marked white). In the least noisy image an average (com- 
puted over the whole image) of 1.6 1 rejectors were used. For 
the more noisy images, an average of 1.82 rejectors and 2.34 
rejectors were used, respectively. 

In particular, the relative performance is accounted for by the 
fact that each rejector in the composite rejector is individu- 
ally constructed for a subset of classes which is as small as 
possible. Since all the Fisher vectors are computed for the 
entire collection of classes, their discriminatory power is not 
as great. 
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