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Abstract 
We propose a class of benchmarks for  edge detector 

evaluation that require no ground truth. Each benchmark 
consists of a large number of images of a carefully designed 
scene for  which we enforce a constraint on the edges, for  
example, that they are co-lineal: We sample the space of 
edge appearances as densely as possible by capturing the 
images under widely varying imaging conditions. Not only 
do we change the viewing geometry and the illumination 
direction, but we also vary the camera parameters and the 
physical properties of the objects in the scene. We show 
that the degrees to which the constraints hold in the output 
edge-maps can be used as highly discriminating measures 
of edge detector performance. The code, images, and re- 
sults which form our benchmarks are all available from the 
website http://www.cs.columbia.edu/CAVE/. The code and 
images enable a user to compare any new detector against 
several previous ones with minimal effort. 

1 Introduction 
Assessing the performance of an edge detector is an impor- 
tant task that has recently received considerable attention. 
For example, Cho et al. [19971 proposed using a statistical 
technique known as bootstrap, Heath et al. [19971 used hu- 
man ability to recognize the scene from the edge-map, Shin 
et al. [19981 used the performance of an edge-based struc- 
ture from motion algorithm, Doughtery and Bowyer 119981 
used human marked ground truth, and Steeger [19981 stud- 
ied sub-pixel localization in an industrial inspection task. 
For a review of earlier work, the reader is referred to the 
excellent survey in [Heath et al., 19971. 

An important issue that was not addressed by any of 
these approaches is how to sample the space of edge ap- 
pearances thoroughly. As we shall show (see Figure 3), 
the performance of most edge detectors is highly dependent 
upon the viewing direction, the illumination conditions, the 
camera settings, and the physical properties of the scene. In 
this paper, we propose a set of benchmarks for edge detec- 
tor evaluation that allow us to do two things: 

1. Average over a wide range of imaging conditions, and 

2. Compare performance across different conditions. 
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Each of our benchmarks is based upon a constraint on 
the edges in the scene, for example, that they are co-linear. 
After applying the edge detector, the degree to which the 
constraint holds in the output edge map is estimated and 
used as the measure of performance. For the co-linearity 
constraint mentioned above, the measure of performance 
is a measure of the extent to which the detected edges are 
co-linear. Since the benchmarks are functions of how well 
the detected edges satisfy some scene constraint, we refer 
to them as global measures of coherence. In this paper, we 
describe four different global measures of coherence. 

To sample the space of edge appearances densely, we 
carefully construct a scene for which the appropriate con- 
straint holds. We then use robots to capture a large num- 
ber of images, independently varying the viewing direc- 
tion, the illumination conditions, and the camera parame- 
ters. By constructing similar scenes from different materi- 
als, we can also vary the reflectance properties of the ob- 
jects, as well as shape properties such as the roundedness 
of the surface normal edge discontinuities. (It is possible to 
sample the space of images just as widely using synthetic 
images, however these images would not take into account 
the sources of noise that corrupt real images.) 

Because our scene constraints are all based upon projec- 
tive geometric structures, such as points, lines, and conics, 
there is a close relationship between our benchmarks and 
the approach of Coehlo et al. [19921 who suggested eval- 
uating edge detectors using their performance estimating 
projective invariants. Besides their not attempting to sam- 
ple the space of edge appearances, the other major differ- 
ence between our approach and theirs is that their technique 
requires the precise measurement of quantities in the scene. 
On the other hand, our approach requires no ground truth. 
Further advantages of our approach include: 
Ease of use: Many of the evaluation methodologies that 

have been proposed for edge detectors may never 
be used solely because doing so is too time con- 
suming. All a designer of an edge detector has to 
do to evaluate their detector using our benchmarks 
is download the code and images from the web- 
site http://www. cs.columbia. eddCAVW, modify their 
edge detector to output the edges in the correct for- 
mat, and finally run a script. In all, at most 2-3 hours 
is required. All of the results for the four detectors that 
we tested are also available for comparison. 

Representative of a class of applications: We feel that 
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Figure 1: Cropped regions exhibiting the four constraints: (a) all 
edges are co-linear, (b) all edges intersect at a single point, (c) all 
edges are parallel in the scene, and (d) all edges lie on an ellipse. 
These constraints hold true irrespective of the imaging and illu- 
mination conditions. 

it is probably impossible to devise an evaluation 
methodology that is appropriate for all applications, 
On the other hand, application specific techniques are 
of little use to the designer of a new edge detector. 
We feel that the correct balance is probably a collec- 
tion of easy-to-use benchmarks, each designed for a 
subclass of applications. In this paper, we will argue 
that our benchmarks are appropriate for applications 
requiring precise sub-pixel localization and orienta- 
tion estimation, good examples of which include the 
Hough transform, stereo matching, structure from mo- 
tion, and the estimation of projective invariants. 

2 Four Global Measures of Coherence 
In this section, we introduce our four global measures of 
coherence. Each measure is derived from a constraint on 
the edges in the scene. The four constraints are illustrated 
in the cropped regions of Figure 1 : in (a) all of the edges are 
co-linear, in (b) all of the edges intersect at a single point, 
in (c) all of the edges are parallel in the scene, and in (d) all 
of the edges lie on an ellipse. Note that there are a number 
of variants of our measures. We mention a couple that do 
not require knowledge of the orientations of the edges, but 
otherwise do not discuss the numerous alternatives. 

As input to compute the measures, we assume the edge 
detector has yielded a set of edges: 

E = {ei = ( z i , y i , & )  I i = 1 , .  . . ,n} ,  ( 1 )  

where n is the number of edges. We assume that the ith 
edge ei = (xi, yi, 64) passes through the point (xi, yi) in 
the image, and the normal to this edge makes an angle 0, 
with the positive y-axis. 

2.1 All Edges are Co-Linear 
The first constraint is that all of the edges are co-linear. 
Such a scene can be constructed by placing a convex polyg- 
onal object with uniform reflectance in front of a perfectly 
black background. If an image of such a scene is cropped 
so that only one depth or surface normal discontinuity is 
visible, all of the edges will be co-linear. See Figure l(a) 
for an example image of such a scene. 

The fact that co-linear edges in the scene project onto 
co-linear edges in the image relies upon the implicit as- 
sumption that the camera adheres to pure perspective pro- 
jection. In fact, all of the measures rely upon this as- 
sumption. We applied Tsai's algorithm [Tsai, 19861 to 
estimate the radial distortion, but found it to be negligi- 
ble (61 = -2.0 x 10-6pixels-2) for the focal length 
used. (Note that measures similar to ours have been used in 
the past to perform camera calibration for radial distortion 
[Brown, 19711 [Becker and Bove, 19951.) 

Given one of the edges e, = (z,, y,, e,) E E, it is pos- 
sible to estimate the line that all of the edges lie on. In 
the projective geometric notation of [Faugeras, 19931, the 
representation of this line is: L, 3 (Z:, 1:,1,") 

= ( z i , y i , l ) ~ ( x i  +cos8i,yi +s in&,1)  
= (-sin 64, cos Bi, xi sinei - yi cos&) . (2) 

A minor difficulty that needs to be addressed at this point is 
that equality is only defined up to a constant multiplicative 
factor in projective spaces [Faugeras, 19931. There are two 
aspects to this problem: 
Sign of L,: Adding 180" to 8% does not change the line, 

but reverses the sign of L,. Enforcing 0, E [0,180") 
does not solve this problem on its own. Note that, 
a small perturbation, say from 8, = 0.1" to 8, = 
179.9", results in a large change in 1:. To solve the 
problem, we choose 8, to be whichever of 8, or 
8, + 180" makes 1," 2 0. (This can also cause a prob- 
lem when the line passes close to the origin, however 
we simply make sure that this does not occur in any of 
the images used in the benchmark.) 

Scale of L,: One way to fix the scale of a line, that does 
not lie at infinity, is to require (1:) + (1:) == 1.0. 
This is already the case in Equation (2). 

We would like to use the sum of the variances of the three 
line coordinates as the basis for the first measure. A natural 
question, however, is: how should the three components be 
weighted? Since the natural use of L, is to test whether a 
point x = (a:, y, 1) lies on the line using x.L,  = 0, a sensi- 
ble choice for the ratio of the weights is : ( E Y ) ~  : 1, 
where Ea: denotes the expected value of 1x1 and Ey denotes 
the expected value of IyI. To avoid any dependence on the 
distance units, we define the first global measure of coher- 
ence to be: GMCl = 

2 2 

1 
EX.  Ey . 0 2 ( 1 1 )  + ( E Y ) ~  . ( ~ ~ ( 1 ~ )  + a2(Z3)] (3) 
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Then, we define the second measure of coherence to be: where fork = 1,2 ,3 :  

is the variance of the kth coordinate of Li. There are sev- 
eral ways that Ex and Ey  could be estimated. We define: 

A variant of the first global measure of coherence can 
be estimated without using the angle 0,. Suppose e, = 
(z,,y,, 0,) E E and e, = (x3,y3,e3) E E are two edges. 
The line that passes through them is: L,, (12'3 , 1 2  , 12") 

= (%Yz,1)A(s,lY,ll)  
= (Yz - Y,, 2, - Y, 7 xz . Y, - x, . Y d .  (6) 

Then, Equation (3) can be used to re-estimate the first 
global measure of coherence. However, the way the vari- 
ances were computed in Equation (4) must be modified, If 
the two edges that are used to compute L,, are very close to 
each other, the estimate of L,, will be unnecessarily noisy. 
We only allow edges to contribute to the measure if they 
are more than 5 pixels apart. In particular, consider the set 
of edge index pairs: PI = 

{ (i , j)  I a < j and (xi - xj)2 + (yi - ~ j ) ~  > 52} . (7) 

Then, the variances for the second variant of G M C l  are: 

r 1 2  

2.2 
The second constraint is that all of the edges intersect at a 
single point. See Figure l(b) for an example image of such 
a scene. Given two of the edges ei = (xi, yi, Oi), e j  = 
(xj, yj, 0,) E E that are not parallel, it is possible to 
estimate the point where the edges intersect. If Li = 
(It, l:, 1:) and Lj = ( l ; ,  13, 1;) are the projective repre- 
sentations of the two edges, they intersect at the point: 

(9) 

Since the lines Li and Lj are not parallel, p:j # 0. Hence, 
Pij can be divided by its third coordinate to give the nor- 
malized point of intersection: 

All Edges Intersect at a Single Point 

p . .  %, = - (p! .  , , ,p;j ,p?j)  = ( l ~ , Z ? , ~ ? )  A (1jlz;,lj). 

where fork = 1,2: 

r 1 2  

is the variance of the kth coordinate of pij, 
pZ = { ( i , j )  : lei - @ I  > 150)~ (13) 

is the set of edge index pairs that are not too close to paral- 
lel, and Ex and Ey are defined in Equation (5). 
2.3 All Edges are Parallel 
The third constraint is that all of the edges are parallel in 
the scene. See Figure l(c) for an example image of such a 
scene. Unlike the previous two constraints, parallel edges 
in the scene do not always remain parallel in an image be- 
cause of perspective foreshortening effects. However, if the 
camera adheres to perspective projection, parallel edges in 
the scene are projected onto edges that intersect at a single 
point in the image, namely the vanishing point. 

We begin in the same way as Section 2.2 by estimating 
the intersection of the lines passing through two edges ei = 

and Lj = (lj' , 1; , lj") are the two lines, they intersect at the 
vanishing point: 

v..  23 = - ( ~ 1 . ~ ~ 2 .  23 a,? ~ 3 . )  22 = ( l ~ , l ~ , ~ ~ )  A (lj,l?,l:). (14) 

The vanishing point Vij may or may not lie at infinity, so 
U$ may or may not equal 0. If Vij does lie at infinity, 
which is approximately the case in the benchmark images, 
the only useful information is the angle that it makes with 
the x-axis: 

( Z ~ , Y ~ , B ~ ) , ~ ~  = (xj,yj,ej) E E. I fL i  = ( ~ : , l ? , l : )  

+ij = arctan (3) . 
The questions of weighting and distance units are not such 
an issue here, but the cyclic range of the arctan function 
is problematic; a vanishing point at one end of the range 
can easily be perturbed by noise to lie at the other end. The 
solution we adopted is to use the range [-goo, 90"], mak- 
ing sure that the correct vanishing point never lies close 
to either 90" or -90". Finally, we define the third global 
measure of coherence to be: GMC3 = 

r 

where: 

P3 = {(i,j) : 12; - Zi\ > 20pixels) (17) 
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and l j  = x2 sin 8, - yz cos 8, is the third line coordinate. 
P3 excludes any edge pairs that may lie on the same line. 
2.4 All Edges Lie on an Ellipse 
The fourth constraint is that all of the edges lie on an el- 
lipse. An example of such as scene is presented in Fig- 
ure I(d). An ellipse is defined by xAxT = 0, where 
x = (z, y, 1)  is a homogeneous vector of image coordi- 
nates, and: 

A = 1 2 ‘ a 1 1  a12 2 .a22  a23 ) (18) 

is a 3 x 3 symmetric matrix, as usual defined up to a scale 
factor [Faugeras, 19931. So, A has just five independent 
parameters. The fact that the ith edge e, = (E,, y,, e,)  E E 
lies on the ellipse provides one constraint on A: 

( a13 a23 2’a33 

( 2 2 ,  Yz, 1)A(G, Yz, = 0. (19) 

Since this constraint is linear in the six unknowns, the 
ellipse can be recovered using Gauss-Jordan elimination 
given the locations of five edges on the ellipse. We fix the 
scale factor and sign of A by enforcing a33 = 1.0, while 
using benchmark images for which the ellipse does not pass 
too close to the origin to ensure that the sign of a33 cannot 
be perturbed accidentally. 

Since xAxT = 0 is used to determine whether x = 
(z, y ,  1) lies on the ellipse, we define the fourth global mea- 
sure of coherence to be: GMC4 = 

(Ex)402(a11) + (E.)”’(a13) + ( E Y ) ~ ~ ~ ( Q ~ )  + 
(EY)202(a23) + (Ex)2(EY)202(a12) (20) 

where o2(uZ3) is the variance of uZ3. Since it  takes five 
edges to estimate the ellipse, the variances of the parame- 
ters uZ3 are all computed over the set of quintuples of edges, 
no pair of which are closer than 30 pixels apart. 

If the orientation of each edge is known, it is possible to 
estimate the ellipse parameters using just three edges. Each 
edge e, = (z,, y,, e,)  E E provides two constraints on the 
parameters. The first one is (z,,y,, l)A(z,, y,, 1) = 0, as 
above. The second one is that the tangent to the ellipse has 
orientation 8,. Differentiating xAxT = 0, setting & = 
tan e,, and reorganizing gives the tangency constraint: 

2zzall + a13 tYzal2 + [%,a22 + a23 + Xza121 tan(6,) = 0. 
(21) 

Since this constraint is also linear in the ellipse parame- 
ters, three ellipse constraints and two tangency constraints 
can be used to estimate the A second variant of the 
fourth measure of coherence can then be defined exactly as 
above, but with the variance now being computed across all 
triples of edges, no pair of which are closer than 50 pixels 
apart. Similarly, four ellipse constraints and one tangency 
constraint can be used to give a third variant. 
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Figure 2: Plots of the first measure of coherence against the num- 
ber of edges for two detectors. These plots were obtained by vary- 
ing the thresholds inherent in the detectors. The dotted curve lies 
below the solid one and hence represents superior performance. 

3 
3.1 Comparing Detectors Across Parameters 
Most edge detectors have various parameters or thresholds 
that must be set. For example, gradient based detectors usu- 
ally threshold on the magnitude of the gradient. Because 
the value of any performance metric will depend upon these 
parameters, comparing detectors independently of their pa- 
rameter settings requires some effort. 

In the simplest case, there is only one parameter. As this 
parameter is varied, more or less edges will be detected, 
and the global measure of coherence will change. Usually, 
as more edges are detected, the measure gets worse. So, by 
varying the parameter, a curve can be plotted of the number 
of edges detected against the global measure of coherence. 
Two detectors can be compared by plotting these curves. 
The closer the curve lies to the abscissa the better the per- 
formance. See, for example, Figure 2. 

For detectors with more than one parameter, the situ- 
ation is more complicated. As the parameters vary, both 
the number of edges detected and the global measure of 
coherence change, forming a “cloud” of performance mea- 
surements [Dougherty and Bowyer, 19981. Dougherty and 
Bowyer [19981 proposed searching the parameter space to 
convert this cloud of measurements into a curve defining 
the set of optimal parameter settings. For proof of concept, 
we simply used detectors with one threshold. Dougherty 
and Bowyer’s algorithm can be used for other detectors. 
3.2 Sampling the Space of Edge Appearances 
The appearance of an edge depends upon both the imaging 
conditions and the physical properties of the scene. There 
are several aspects to each of these variables: 

Computing Global Measures of Coherence 

0 The pose of the objects. 
0 The illumination conditions. 
0 The camera settings: e.g. zoom, aperture, and focus. 
0 The reflectance properties of the objects. 
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Figure 3: Plots of the first global measure of coherence against 
the number of edges for several different images, each cap- 
tured with different pose and illumination direction. These plots 
demonstrate the huge range of performance that is possible for 
a single detector. As can be seen, the standard deviation of the 
measure is comparable to the average value of the measure. 

0 The discontinuity type: e.g. depth or surface normal. 
0 The roundedness of the edge. 

In our experimental setup, any or all of these properties can 
be varied independently. The pose and illumination direc- 
tion were varied using robots and turntables. The camera 
settings were changed by hand. The objects were manufac- 
tured with three different surface properties, one approxi- 
mately Lambertian, one a diffuse metallic paint, and one a 
shiny plastic. The discontinuity type was varied by crop- 
ping different parts of the images. Lastly, for each type 
of reflectance property, multiple objects were created, each 
with edges having a different radius of curvature. The range 
of different performance levels across imaging conditions 
for a single detector is illustrated in Figure 3. 
3.3 Averaging over a Collection of Images 
As is illustrated in Figure 3, the variance of the global mea- 
sures of coherence over the imaging conditions is typically 
quite large. On the other hand, the relative performance 
across the detectors is significantly less dependent upon the 
imaging conditions. So, instead of comparing the average 
measures across the detectors, we consider: 

where GMCa is the global measure of coherence for de- 
tector i and GMCj is the measure for detector j. The 
relative global measure of coherence RGMC”j takes val- 
ues in [-1,1]. A positive value means that detector i is 
outperforming detector j, and vice versa. 

4 Empirical Validation of the Measures 
How do you empirically validate an evaluation methodol- 
ogy? Ideally, we would want to demonstrate a strong statis- 

tical correlation between the performance of a large num- 
ber of detectors on our measures and their performance in 
a wide range of applications. Doing so, however, would 
be hugely time-consuming. Therefore, as proof of concept, 
our goals are simply as follows: 

0 Demonstrate the range of performance: An evalua- 
tion methodology is useless unless the best detectors 
do substantially better than the worst. Our first goal, 
therefore, is to show that a wide range of different per- 
formance levels are possible. To do so, we consider 
both quite good detectors and relatively poor ones. On 
the other hand, if we only tested good detectors, we 
would never know the full range of performance. 

0 Demonstrate consistency between intuitive ranking 
and actual ranking: If the results of our measures dis- 
agree with the general perception of the quality of the 
detectors, there is something wrong. Our second goal, 
therefore, is to demonstrate that the results using our 
measures are in agreement with the general perception 
of the quality of the detectors tried. We make our task 
as easy as possible by selecting detectors for which 
the relative performance gap is as large as possible. 
Show that the measures are representative of certain 
tasks: As mentioned in the introduction, our measures 
are designed for tasks requiring precise sub-pixel lo- 
calization and orientation estimation. To demonstrate 
that they are indeed representative of such tasks, we 
aim to show that performance drops off substantially 
for detectors that are known to give poor sub-pixel lo- 
calization and orientation estimates. 

4.1 Detectors Considered 
We considered five detectors. For lack of space, we are 
only able to give very brief descriptions of the detectors: 

1. The Roberts’ cross operator, a very simple gradient 
operator [Pratt, 19911. Because it uses a 2 x 2 window, 
the Roberts’ cross operator should perform very badly. 

2. The 3 x 3 Sobel operator [Pratt, 19911. The Sobel op- 
erator should perform slightly better than the Roberts’ 
cross operator, but still quite poorly. 

3. A 5 x 5 Gaussian-smoothed gradient operator. This 
“Canny-like” operator should perform quite well. 

4. The Nalwa-Binford detector, a model-matching detec- 
tor based on a 5 x 5 window [Nalwa and Binford, 
19861. Like the other 5 x 5 operator, the Nalwa- 
Binford detector is expected to perform pretty well. 

5. A model-matching detector that uses a 7 x 7 win- 
dow [Baker ef al., 19981. Since this detector uses the 
largest window, we expect it to perform the best. 

4.2 Types of Comparison 
There are two types of experiments that we performed: 

1. Comparison of several detectors under the same set 
of imaging conditions: We vary some of the imag- 
ing conditions and compute the average performance 
of several detectors under those conditions. We then 
study the relative performance of the detectors. 
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Figure 4: Plots of the first measure of coherence against the num- 
ber of edges for five detectors. This measure clearly discriminates 
the better detectors from the poorer ones. 

2. Investigation of the change in performance of a detec- 
tor as one aspect of the imaging conditions changes: 
We choose one aspect of the imaging conditions, for 
example, the focus setting of the camera. For several 
different settings of it, we vary some of the other as- 
pects. We then compute the average performance of a 
single detector for each of the settings of the chosen 
aspect and study how the performance of the detector 
varies with that aspect of the imaging conditions. 

4.3 Results 
We only have room to present an illustrative sample of 
our results. The others are all similar and can be found 
at http://www.cs.columbia.eddCAVU. Figure 4 contains 
plots of the first global measure of coherence computed 
on average over 150 images, captured by varying both the 
pose and the illumination direction. As can be seen, the 
first measure captures a huge range of performance varia- 
tion. Moreover, the ranking of the detectors is completely 
consistent with general belief. As described above, how- 
ever, the variation across imaging conditions is large and 
the variance of the curves in Figure 4 is huge. In Figure 5 
we present the relative measure, computed on average for 
the same set of 150 images. The performance is relative 
to Nalwa-Binford. Here, the standard deviation is consid- 
erably reduced, to almost exactly 0.4 for all four detectors 
and for all numbers of edges. Figure 5 demonstrates that 
by our first measure, the Baker-Nayar-Murase detector per- 
forms substantially better than the Nalwa-Binford detector, 
and the Roberts' cross detector far worse. 

In Figure 6, we compare the performance of the Baker- 
Nayar-Murase detector across the two variants of the first 
measure of coherence. (The first variant fits a line to one 
edge location and orientation, whereas the second estimates 
the line from two edge locations.) We also compare the 
performance with and without sub-pixel localization turned 
on. As expected, these results demonstrate that sub-pixel 
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Figure 5 :  Plots of the relative measure of coherence for the same 
set of images used in Figure 4. The standard deviation of all the 
curves is approximately 0.4 for all numbers of edges. 
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Figure 6: Plots of the two variants of the first measure of coher- 
ence for a detector, both with an without sub-pixel localization. 
The fact that only the performance of the second variant is hugely 
improved using sub-pixel localization indicates that the second 
variant of the measure is representative of tasks requiring precise 
sub-pixel localizations. 

localization is very important for the second variant, but not 
for the first. Similar results show that orientation estimation 
is very important for the third global measure of coherence, 
whereas sub-pixel localization is not. 

Figure 7 contains results obtained by varying the aper- 
ture of the camera for the third measure. As might be ex- 
pected, the performance of both the Nalwa-Binford and 
Canny-like detectors gets significantly better as the aper- 
ture is widened from F4.0 to F1.8. Similar results show 
that performance also improves for more focused images. 

5 Discussion 
In this paper, we have presented global measures of co- 
herence as a method of benchmarking an edge detector for 
applications that require precise sub-pixel localization and 
orientation estimation. The major advantages of our ap- 

378 

http://www.cs.columbia.eddCAVU


Nalwa-Binford FI 8 - 
Nalwa-Binford F4.0 - - -  

Canny-IlkeFI 8 ----- 
Canny-like F4 0 - 0 

-0.8 1 
I '  " " ' " " ' 
0 50 100 150 200 250 3M) 350 400 450 500 

Number of Edges 

Figure 7: The third global measure of coherence plotted rela- 
tive to the performance for an F2.8 aperture. As the aperture gets 
larger, the performance of both detectors gets better. 

proach are: (1) it allows us to average over a large num- 
ber of images that span a wide range of imaging condi- 
tions, and (2) it does not require ground truth. Our exper- 
imental results demonstrate that the measures discriminate 
many different levels of performance. Moreover, we have 
shown that our approach can be used to compare perfor- 
mance across different imaging conditions. 

5.1 Limitations 
Like all evaluation methodologies, global measures of co- 
herence have limitations. Perhaps the most apparent is 
that the scenes used are very simple. Detecting the cor- 
rect edges should be straightforward for any decent edge 
detector. Our benchmarks are explicitly designed for ap- 
plications that use vision as a measurement tool, where de- 
termining the exact location and orientation of the edge is 
the most important goal. We would argue, however, that 
these applications are the ones for which applying an edge 
detector is the most appropriate. 

A second limitation is that interpreting the absolute val- 
ues of the measures is quite difficult because they are com- 
plex averages of the variances of projective quantities. Re- 
cent work on error propagation in projective spaces may 
help in understanding the precise meanings of our measures 
[Kanatani, 19931. 

5.2 Future Work 
We showed that our measures can be used to investi- 
gate how performance degrades as the camera parameters 
change. In particular, we varied the focus setting and the 
aperture. A large number of other experiments could have 
been performed. Conducting these experiments may lead 
to a far greater understanding of which physical effects ac- 
tually make edge detection difficult. This may then lead 
to more realistic edge models, physically validated noise 
distributions, and eventually better edge detectors. 
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