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Abstract 
The efficiency of pattern recognition is particularly 

crucial in two scenarios; whenever there are a large 
number of classes to discriminate, and, whenever recog- 
nition must be performed a large number of times. We 
propose a single technique, namely, pattern rejection, 
that greatly enhances efficiency in both cases. A re- 
jector is a generalization of a classifier, that quickly 
eliminates a large fraction of the candidate classes or 
inputs. This allows a recognition algorithm to dedicate 
its efforts to a much smaller number of possibilities. Im- 
portantly, a collection of rejectors may be combined to 
form a composite rejector, which is shown to be far more 
effective than any of its individual components. A sim- 
ple algorithm is proposed for the construction of each 
of the component rejectors. Its generality is established 
through close relationships with the Karhunen-Lodve 
expansion and Fisher’s discriminant analysis. Compos- 
ite rejectors were constructed for two representative ap- 
plications, namely, appearance matching based object 
recognition and local feature detection. The results 
demonstrate substantial efficiency improvements over 
existing approaches, most notably Fisher’s discriminant 
analysis. 

1 Introduction 
The efficiency of a pattern recognition algorithm be- 

comes ever more vital as the number of pattern classes 
increases. Of particular importance is the growth rate 
of the recognition time as a function of the number 
of classes. Appearance matching based object recogni- 
tion [Murase and Nayar 951 is one example application 
where the computational dependence upon the number 
of classes (objects) is the key to a real time solution. 
Another such application in computational vision is face 
recognition [Pentland et al. 941 [Sirovich and Kirby 871 
[Turk and Pentland 911. High efficiency also proves 
critical whenever the recognition algorithm must be ap- 
plied a large number of times. This is the case in local 
feature detection [Nayar et al. 961, where the feature 
detector must be applied at every pixel in an image. 

We propose a general theory that results in substan- 
tial efficiency improvements in both of the above scenar- 
ios. The central concept is that of rejector. A rejector is 
an algorithm that  quickly eliminates a large percentage 
of the candidate classes (e.g. objects in recognition) or 
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inputs (e.g. local image brightness values in feature de- 
tection). The notion of a rejector is fundamental since 
it leads to  the following important observations: 

1. The definition of correctness for a rejector is less 
constraining than that for a classifier (recognizer). 
As a result, rejectors can be constructed that are 
far more efficient than corresponding classifiers. 

2.  Although, in general, a single rejector does not 
provide a final solution to  the pattern recognition 
problem, it significantly reduces the number of pos- 
sible classes or inputs. Consequently, the recog- 
nizer can dedicate its computational resources to  a 
much smaller number of candidates. 

3 .  A collection of rejectors can be combined in a tree- 
like structure to form a much more effective rejec- 
tor, which we term a composite rejector. At each 
node of the composite rejector is a simple rejector 
that is specifically tuned to the reduced subset of 
classes not eliminated by the previous rejector. 

4. It is possible to analyze the performance of com- 
posite rejectors. For instance, we derive condi- 
tions that guarantee logarithmic time complexity 
in terms of the total number of classes. 

5. We develop a very general algorithm for rejec- 
tor construction based on a single assumption, 
namely, the class assumpt ion .  The generality of 
the class assumption is established through a close 
connection with the Karhunen-Lobe expansion 
[Fukunaga 901. A relationship between the rejector 
construction technique itself and Fisher’s discrimi- 
nant analysis [Duda and Hart 731 is also shown. 

We demonstrate the utility of pattern rejection 
via experiments on appearance matching based object 
recognition [Murase and Nayar 951 and feature detec- 
tion [Nayar et al. 961. First, we constructed a compos- 
ite rejector for a widely used image database of 20 ob- 
jects. Each object appears in a large number of poses 
and constitutes a single pattern class. The composite 
rejector is able to completely (and without error) dis- 
criminate between all 20 objects with an efficiency that 
is a significant improvement over currently used tech- 
niques. We empirically illustrate logarithmic growth in 
the time complexity with the number of objects. Fur- 
ther, we compare the composite rejector with Fisher’s 
discriminant analysis and show rejection to be both sub- 
stantially more efficient as well as more accurate. Fi- 
nally, we constructed a composite rejector for the task of 
feature detection. The result is a very efficient method 
of preprocessing an image to  identify pixels that truly 
deserve the application of a full-fledged feature detec- 
tor, such as the one proposed in [Nayar et al. 961. 
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1.1 Relationship with Previous Work 
The recursive structure of the composite rejec- 

tor constitutes a decision tree, (or more generally 
a directed acyclic graph). A survey of the pat- 
tern recognition literature that uses such a structure 
is beyond the scope of this paper, but a small se- 
lection is [Henrichon and Fu 691 [Payne and Meisel 771 
[Weng 941. For a brief discussion of decision bees see 
[Duda and Hart 731. Connections can also be made 
between our results and the large body of work on 
computationally motivated nearest neighbor classifiers 
[Friedman et al. 771 [Bentley 801 [Yianilos 931. Though 
the problem we address is similar, namely, efficient clas- 
sification, our setting is more general. 

A relationship can be established between our algo- 
rithm for rejector construction and Fisher’s discrimi- 
nant analysis [Fisher 361 [Duda and Hart 731. In par- 
ticular, our choice of rejection vectors in Section 3.3 
will be seen to tend to  maximize between-class scat- 
ter, while keeping within-class scatter fixed at a low 
level. The major difference between rejection theory 
and discriminant analysis is that discriminant analysis 
is presented as a single level of processing. On the other 
hand, a composite rejector has a hierarchical structure, 
which leads to  superior performance. In particular, the 
relative performance is accounted for by the fact that 
each rejector in the composite rejector is individually 
constructed for a subset of classes which is as small 
as possible. Hence, the second and subsequent Fisher 
vectors can be regarded as suboptimal when compared 
to the rejection vectors used in the composite rejector. 
Weng [Weng 941 uses a similar hierarchical structure 
that takes advantage of this property. 

Another important characteristic of our approach is 
the central role played by the pattern classes. Existing 
work which is concerned with efficiency either models 
the classes as collections of points, or studies partitions 
of a feature space. Hence, our complexity results are in 
terms of the number of classes, rather than the number 
of sample points. Importantly, this class-centered ap- 
proach focuses attention on what we believe to be the 
key question: What properties must the pattern classes 
possess for recognition to be performed efficiently? The 
introduction of the class assumption is an attempt to 
answer this question. 

2 Theory 
2.1 Assumptions and Definitions 

A pattern recognition problem is based on a finite 
set of measurements of an underlying physical! process. 
Hence, we assume the existence of a classification space, 
S = g d ,  where d is the number of measurements. Ele- 
ments, x E S, will be referred to  as measurement vec- 
tors, or for convenience, vectors. Next, we assume the 
existence of a finite collection, Wl,  Wz, . . . , Wn C S of 
(pattern) classes. The classes themselves are defined by 
the application in question. We will therefore assume 

that the classes are given to  us a priori. We are now 
ready to  define a classifier: 

Definition 1 A classifier (or recognizer) is an algo- 
rithm, 4, that given an input, x E S ,  returns the class 
label, i ,  for which x E Wi. 
A rejector is a generalization of a classifier in the sense 
that it returns a set of class labels. This set must con- 
tain the correct class, but may also contain others: 
Definition 2 A rejector is an algorithm, $, that given 
an input, x E S,  returns a set of class labels, 4 ( x ) ,  such 
that z E Wi j i E $(x) (or equivalently i $Z $(x) + 

The name rejector comes from the equivalent definition: 
i @ $(x) 3 II: @ Wi. That is, if i is not in the output 
of the rejector, we can safely reject the possibility that 
x E Wi. We then define the rejection domain for Wi to  
be the set of all x E S for which i does not appear in 
the rejector output: 
Definition 3 If 11, i s  a rejector and Wi is a class, then 
the rejection domain, RY! of rejector, I), for class Wi 
is the set of x E S for whzch i $Z 4 ( x ) .  
Then, the following important properties haold: 

2 $Z Wi). 

1. Subject to  RY n Wi = 0, we are free to  choose the 
rejection domains and still conform with the cor- 
rect definition of a rejector. This freedom to choose 
rejection domains with “simple” decision bound- 
aries is what allows rejectors to  be efficient. 

2. The rejector, $, may be used to reject x E Wi iff 
x E RY. Hence, we should aim to choose the rejec- 
tion domains to  be as large as possible. However, 
there is a trade-off between maximizing the size of 
the rejection domains, ensuring Rf n 1Ni = 0, and 
using simple decision boundaries for elficiency. 

2.2 Rejection Based Classifiers 
Applying a rejector does not guarantee that we will 

be able to  uniquely solve the pattern recognition prob- 
lem. There may be more than one class in the output 
of the rejector. We deal with the potential ambiguity 
by adding a verification stage: 

Definition 4 A verifier for  a class, Wi, is a boolean 
algorithm that, given an input, x E S ,  returns the result 
T r u e  if x is a member of Wi and False otherwise. 
We form a rejection-based classifier by first applying a 
rejector, $, and then applying a verifier for each class 
label in the output of the rejector. Combining the re- 
sults, we can easily classify the input. The efficiency 
of a rejection-based classifier can immediakely be seen 
[Baker and Nayar 951 to  be given by: 

T a u ( d r b )  = Tau($) -I- E ~ E S ( ~ $ ( X ) ~ )  .Tu,, (1) 

where, Tav(qYb) is the average run time of the rejection- 
based classifier, Tau($), is the average run time of the 
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rejector, Eze.s(l$(x)l) is the expected cardinality of the 
rejector output, and Tu,, is the run time of each of the 
verifiers (assumed to  be the same for all verifiers). We 
now introduce a further definition: 

Definition 5 If $ is a rejector,  t h e  effectiveness of $ 
i s  ER($) = Ezcs!G(z)l) 

Note that a small numeric value of Eff($) corresponds 
to an “effective” rejector. Then, equation (1) shows 
that a rejection-based classifier will be efficient when, 
(a) rejection is e f i c i e n t ,  and (b) rejection is effective. 

2.3 Composite Rejectors 
As we will see, constructing very efficient rejectors is 

relatively straightforward, but in some applications, the 
rejectors tend to be less effective than might be hoped 
for. However, applying a rejector results in a subset of 
classes, and so a smaller instance of the original classifi- 
cation problem. Recursively applying another rejector, 
tuned to the smaller subset of classes, should enable us 
to  further narrow down the set of classes under consider- 
ation. Overall, we can expect a significant improvement 
in the combined effectiveness. This is the notion of a 
composite rejector: 
Definition 6 A composite rejector, Q, is a collection 
of rejectors, 4 = {G2 : 2 E S } ,  where 3 is a n  index  
set for 9,  and such  tha t ,  (a)  there  is a rejector in Q 
designed for t h e  complete set  of classes, and ( b )  for a n y  
rejector, $% E Q, and a n y  x E S, e i ther  $,(x) = 1 or 
there i s  a rejector in Q designed for $,(x). 

The composite rejector is laid out in the form of a 
directed acyclic graph. Each rejector, $, E Q, and the 
subset of classes for which it was designed, corresponds 
to a node in the graph. There is a directed edge from the 
node corresponding to  $% to  that corresponding to $J?, 

if and only if there is a vector, x E S, such that $ j  was 
designed for the subset of classes, {Wi : i E q ! ~ ~ ( x ) } .  
Then, the application of the composite rejector to a 
measurement vector corresponds to a path through the 
directed acyclic graph. At each node in the path, the 
associated rejector is applied and its output determines 
the edge that should be taken to leave the node. 

2.4 Time Complexity 
Intuitively, the recursive structure of the composite 

rejector lea.ds us to expect logarithmic time complex- 
ity for the resulting rejection-based classifier. Sufficient 
conditions to prove such a result are as follows: 

For all qb2 E Q, and for all 2 E S, either I$2(z)l = 1, 
or at least one class is eliminated by $,. 

With respect to the underlying a p r i o r i  probability 
density function from which the vectors are drawn, 
the rejection domains are mutually independent. 

The effectiveness of each of the rejectors is the 
same: Va E 3, Eff($,,) = E, say. 

Then, we can show (see [Baker and Nayar 951) that a 
rejection-based classifier using such a composite rejector 
runs on average in time: 

~ a u ( 4 ‘ ~ )  5 rlOgE-1 ’ ~ e j  + 2  ‘ T u e r  (2) 

where, Tr,j is the run time of each of the rejectors (as- 
sumed constant), and n is the number of classes. 
2.5 Space Complexity 

A potential problem with the composite rejector is 
that the number of component rejectors may be as large 
as 2^. To limit the growth in the size of 9, we must 
impose constraints on the design of each & .  We require 
that: (a) for each $$ E 4, the number of different pos- 
sible outputs is two, (b) the two possible outputs are of 
equal cardinality, and (c) the intersection between the 
outputs consists of a t  most a fraction, E E [O, l), of the 
classes for which that rejector was constructed. If we 
denote by M ( n ) ,  the maximum number of rejectors in 
Q that may be reached after, and including, the rejector 
constructed for a collection of n classes, it can be shown 
(see [Baker and Nayar 951) that M ( n )  is polynomial: 

(3) 
It is not always possible to completely satisfy the three 
requirements stated above. However, the following de- 
sign criteria may be used as guidelines while implement- 
ing each component rejector in Q: (a) avoid designs 
that produce a large number of outputs, (b) attempt to  
balance the output cardinalities, and (c) minimize the 
overlap between outputs. 

3 A Rejector Construction Algorithm 
We now assume that the norm of a measurement 

vector is unimportant for classification and restrict at- 
tention to the unit ball, B = {x E S : 11x(1z = 1). 

3.1 The Class Assumption 
Designing a rejector is equivalent to  deciding on the 

rejection domains. Since for correctness we require Ryn 
Wi = 0, the choice of the rejection domains depends 
heavily on the nature of the underlying classes. Hence, 
we make the following assumption (see Figure 1): 
The Class Assumption For each Wi, there  exzsts a 
vector,  ci E S,  a l inear subspace, Li SI and a thresh- 
o ld ,  6i > 0 ,  such  tha t  Vx E Wi, dist(x,ci + Li) < &. 
Further  w e  assume:  ( a )  dim(Li) << d ,  and ( b )  6i << 1. 

The class assumption is very general and is approxi- 
mately equivalent to  assuming that the K-L expansion 
results in a compact and accurate representation of the 
class. Suppose that M /  is the subspace spanned by 
the k most important K-L eigenvectors, and X i  are the 
decaying K-L eigenvalues, then we have: 

d 

E,€w,(dist(x, GJ€W,(Y) + M p )  = A, = 0. (4) 
s = k + l  
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Figure 1: An illustration of the class assumption for a low 
dimensional example, S = !I?'. The subspace, L, ,  is the 
2 dimensional subspace spanned by the vectors, {el ,  e z } .  
Every vector in W, can be approximated to within error, 6,, 
by the linear combination of cz and a vector in L,. 
Setting ci = EZEw,(x), and Li = M f ,  we see that the 
difference between the class assumption and the K-L 
expansion is one of expected versus maximum value. 
3.2 A General Purpose Rejector 

Starting from the class assumption, we now dcrivc a 
rejector and show that it may be computed efficiently. 
We begin by defining a rejection vector: 
Definition 7 Suppose the class assumption holds for 
the classes, W1, Wz,. . . , W,. Then a rejection vector is 
a unit vector, T E B,  for which r I 
If r is a rejection vector, it  follows immediately from 
orthogonality and the Cauchy-Schwarz inequality, that: 

Li. 

2 E wi 3 I ( T , 2 )  - ( T , C i ) J  5 Si (5) 

Equation (5) means that the rejection vector projects 
each class, W;, onto approximately a point, ( T ,  c i ) ,  
which is then characteristic of the class. So long as 
the points, ( r , c i ) ,  are well separated, the intervals 
[ ( r ,  ci)  - Si, ( r ,  ci)  + Si] will not intersect much. Then, 
we can use equation (5) to discriminate' between the 
classes. Hence, we define a derived rejector: 
Definition 8 Given that the class assumption holds for  
the classes, W1, Wz, . . . , W,, and that r E B is a rejec- 
tion vector, then, we define the derived rejector, +,. by: 
i E +r(x) e I(?,  2) - (r ,  ci)J 5 Sa 

The derived rejector may be implemented very effi- 
ciently as follows. After normalizing the input vector, 
x, we compute the projection with the rejection vector 
to give (r ,  x). Then, the set of class labels, i, for which 
( T ,  x) lies in the interval, [ (r ,  ci) -Si, (r ,  ci) + 633, can be 
computed with [log2(2n+ 1)1 comparisons andl a lookup 

]There is no guarantee that we will be able to find a rejection 
vector, r ,  that completely separates a given pair of classes. This 
does not effect the usefulness of a derived rejector, since a rejec- 
tor is intended to eliminate a large fraction of the classes, not 
necessarily every last one. 

1 1  12 13 14 

Figure 2: The 20 objects used in the recognition experi- 
ment, each of which constitutes a single pattern class. There 
are 72 images of each object, with each pair of images sep- 
arated by 5' of pose. The data set is that used in [Murase 
and Nayar 951. 

table. This is because the derived rejector is a precom- 
putable piecewise constant function and finding the con- 
stant segment in which ( T ,  , E )  lies takes [log2(2n + 1)1 
comparisons using binary search. 
3.3 

We have seen that the derived rejector can be applied 
efficiently. The reason we can expect it to be effective 
is because we have quite some freedom in choosing the 
direction of the rejection vector, r .  Thus far, r has 
only been constrained to lie orthogonally ]to Li.  
Clearly, we should choose the rejection vector to be 
the one that spreads out the centers of the intervals, 
[ ( r ,  ci)  - Si, ( r ,  ci)  + Si], as much as possible. This will 
reduce the size of l$,.(z)1, and so tend to optimize the 
effectiveness of the derived rejector. If variance is used 
to measure the spread of the points ( T , c ~ ) ,  the best 
rejection vector to choose is the first Karhunen-Lodve 
eigenvector' 

Choice of the Rejection Vector 

4 Implementation 
While implementing the composite rejector, several 

practical issues must be adidressed, including verifying 
the class assumption, estimating the thresholds, and 
avoiding the exponential growth in the space require- 
ments. See [Baker and Nayar 951 for more details. 

5 
5.1 3D Object Recognition 

We follow the appearance matching approach, first 
described in [Murase and Nayar 951. Objlect recogni- 

Example Applic- 8% t' ions 

2This choice of rejection vector is closely related to Fisher's 
discriminant analysis [Duda and Hart 731. By working orthogo- 
nally to L,, we are limiting the within-class scatter of each 
class. Spreading out the points (7, ci), maximizes the between- 
class scatter. The important difference, however, is that the 
derived rejector defers difficult decisions to subsequent rejectors 
which are more tuned to the reduced subset of classes. 
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Figure 3: A representation of the composite rejector. Each 
interior node denotes a single rejector, and is labeled with 
the set of objects that it is designed to act on. At each node, 
only one dot product and a couple of comparisons need to 
be performed. Each leaf denotes a possible output of the  
composite rejector. 

tion is reduced to pattern recognition by first segment- 
ing the object and then scale normalizing it to an image 
of size 128 x 128 pixels. The image is then treated as 
a 16,384 dimensional measurement vector in the classi- 
fication space, S ,  by reading the pixels in a raster scan 
fashion. Finally, the vector is intensity normalized to 
lie on the unit sphere, B. 

The data set that  we used (see Figure 2) consists 
of 20 objects (classes). It contains 72 images of each 
object separated by 5" intervals of pose. The images 
were divided into a training and a test set each com- 
prising 36 images of every object. The training set is 
then treated as samples of the classes and used to imple- 
ment the composite rejector, a representation of which 
is presented in Figure 3. As it happens, every leaf of 
the composite rejector contains a single class, hence the 
composite rejector can fully discriminate between the 
20 objects. (We would have regarded the rejector as 
successful even if each leaf had contained 2-3 objects.) 

We found that the composite rejector responded 
100% correctly for both the training and test sets. We 
calculated the average number of rejectors which the 
composite rejector applies to be just 6.43, based on the 
assumption that each image in the data set is equally 
likely to appear. Since the time taken a t  each node is 
essentially the cost of one inner product (convolution), 
the efficiency compares very favorably with the results 
obtained by Murase and Nayar [Murase and Nayar 951. 
Their implementation required 20 inner products, fol- 
lowed by a sophisticated search procedure. 

Next, we investigated the growth rate of the num- 
ber of rejectors required as a function of the number of 
classes. The results, in Figure 4, validate the hypothe- 
sized logarithmic growth in time complexity. 

Average number 
of rejectors Experimental data o 

-1.29+2.421o~o(Number of objects) - 

l o  t 

Figure 4: A graph of the number of objects against the 
average number of simple rejectors required to completely 
discriminate between those objects. The graph is plotted 
using a log scale on the abscissa, implying a logarithmic 
growth rate in the time complexity. 

Using the same image database, we compared the 
performance of the composite rejector against that 
of Fisher's discriminant analysis [Fisher 361. Again, 
we followed the same test procedure, namely, setting 
aside half of the data, and using the other half to 
construct the classifier. Then, we constructed Fisher 
spaces [Duda and Hart 731 of different dimensionality. 
In Fisher space the classes consist of tight clusters, 
which we model as multivariate normal distributions. 
We computed the mean and covariance matrix of each 
of these distributions. Then, each measurement vector 
was classified by finding its closest cluster, i.e. the clus- 
ter whose mean is closest t o  the vector. We used both 
the Mahalanobis and Euclidean distances. 

Figure 5 shows the results for the combined perfor- 
mance on the training and test sets. Even for the Maha- 
lanobis measure, the classification results are not per- 
fect. In fact, the highest correct classification rate of 
96.6% was attained for dimension 19. This compares 
poorly with the 100% classification obtained by the 
composite rejector, that required an average of just 6.43 
rejection vectors. The main reason for the rejector's 
superior performance is its hierarchical structure. The 
rejector used a t  each step is individually constructed for 
the classes it seeks to distinguish between. 

5.2 Local Feature Detection 
We constructed a composite rejector for a feature 

detector of the type proposed in [Nayar et al. 961. 
(The details of the implementation may be found 
in [Baker and Nayar 951.) The output of the compos- 
ite rejector is used as input t o  the feature detector, 
and consists of pixels at which further consideration 
is worthwhile. Although the technique is applicable to 
general parametric features, we only have space to dis- 
play our results (see Figure 6) for edge detection. 
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Figure 6: The edge rejector applied to a real image. The 
output on the right consists of those pixels which our re- 
jection algorithm has quickly decided are worthy of further 
consideration. On average 1.31 rejectors (each corresponding 
to a convolution) were applied at  each pixel. 

L 

2 4 6 8 10 12 14 

Dimension of the Fisher space 

Figure 5: Results of applying Fisher’s discriminant analy- 
sis to the data set in Figure 2. On the abscissa we plot the 
dimension of the Fisher space used, and on the o’rdinate the 
percentage of test images correctly classified. The peak per- 
formance is 96.6%, and to reach this 19 discriminant vectors 
are needed. In contrast, the composite rejector gives perfect 
(100%) classification with just 6.43 rejection vectors. Hence, 
by both measures, efficiency and robustness, the composite 
rejector outperforms discriminant analysis. 

6 Discussion 
Our goal has been to  introduce a computakional the- 

ory of pattern rejection. In this respect we have made 
considerable progress. We have introduced thie notion of 
a composite rejector, developed algorithms to construct 
one, and demonstrated superior accuracy and efficiency 
over commonly used pattern recognition algorithms. 

Pattern rejection works because, on average, given a 
large number of classes, discriminating between a ran- 
domly chosen pair of them is easy. Similarly, when ap- 
plying a recognition algorithm a large numbler of times, 
very often the problem instance does not liie close to  
the decision boundary and so classification can be per- 
formed with almost no computational effort. 
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