Chapter 6: Regulatory Networks

6.3 Boolean Network Models

Prof. Yechiam Yemini (YY)
Computer Science Department
Columbia University

Overview

- Boolean network models
- Sample applications
- Kaufmann’s theory of evolution
- Learning (reverse engineering) Boolean nets
Intro To Boolean Networks

Example: Thresholding Gene Expression

- Boolean model: discretize expressions to on/off model

![Diagram showing gene expression over time with on/off states for gene 1, gene 2, and gene 3.]

time (min)
Boolean Network Model

- A Boolean Network Model:
 - Nodes represent transcription factors
 - Edges represent regulatory input
 - Boolean gates (input functions) represent gene expression

\[
\begin{align*}
 f_A(A,B,C) &= A \text{ OR } C \\
 f_B(A,B,C) &= A \text{ AND } C \\
 f_C(A,B,C) &= \neg A \text{ OR } B
\end{align*}
\]

Dynamics

- Network State: \(X=(A,B,C,\ldots)\) is a Boolean vector
- State evolution: \(X(t+1)=f(X(t))=(f_A(X(t)), f_B(X(t)), \ldots)\)
 - E.g., \(X(t+1)=(\text{A OR C, A AND C, (NOT A) OR B})\)
 - \((0,1,1)\rightarrow(1,0,1)\)

This is discrete time synchronous dynamics
- State transitions occur through concurrent gates firings

Attractors
Noisy (Stochastic) Dynamics

- If gene-gates “fire” randomly
- The network becomes asynchronous
- The dynamics landscape changes

<table>
<thead>
<tr>
<th>X(t)</th>
<th>X(t+δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>001</td>
</tr>
<tr>
<td>001</td>
<td>011</td>
</tr>
<tr>
<td>010</td>
<td>001,000,011</td>
</tr>
<tr>
<td>011</td>
<td>101,111,001</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>101</td>
<td>110,111,100</td>
</tr>
<tr>
<td>110</td>
<td>101,111,100</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

Example: Boolean Repressilator

- Repressilator has three repressors in a loop:
 - $f_A(A,B,C)=A \text{ OR } C$
 - $f_B(A,B,C)=A \text{ AND } C$
 - $f_C(A,B,C)=(\text{NOT } A) \text{ OR } B$

Stable attractor
More Generally

- **Boolean Network:**
 - A digraph $G=<V,E>$; nodes = genes, edges=regulation
 - For each node assign a Boolean function over ingress neighbors

- **Attractors & cycles describe dynamics of expression**

- **Learning (reverse engineering; identification):**
 - Extract Boolean network model from expression levels

Example: Regulation of Drosophila Patterns

- **Fundamental question:** how do gene’s regulate spatial patterns?
Segmentation Is Regulated By A Cascade

- Genes are activated in precise temporal order
- Use regulatory interaction to coordinate development functions

Segmentation Is Regulated By A Cascade

- Pair rule genes initiate stripes
 - eve, ftz...
- Segment polarity genes control anterior/posterior structure
 - Engrailed, wingless

- Giant (gt) & kruppel (kr) control stripe 2

- knirps (kni) & hunchback (hb) control stripes 3-7
A Boolean Network Model

\[en_{i+1} = (W G_{i+1,1} \text{ or } W G_{i+1,2}) \text{ and not } S L P_i \]

\[hh_{i+1} = E N_i \text{ and not } C I R_i \]

\[p t c_{i+1} = C I A_i \text{ and not } E N_i \text{ and not } C I R_i \]

\[c l_{i+1} = \text{not } E N_i \]

\[E N_{i+1} = e n_i \]

\[W G_{i+1} = w g_i \]

\[C I R_{i+1} = c l_i \]

\[H H_{i+1} = h h_i \]

\[w g_{i+1} = (C I A_i \text{ and } S L P_i \text{ and not } C I R_i) \text{ or } \]

\[\{w g_i \text{ and } (C I A_i \text{ or } S L P_i) \text{ and not } C I R_i \} \]

Either of the activators can counter mRNA decay.

\[P T C_i^{+1} = p t c_i \text{ or } (P T C_i \text{ and not } H H_{i+1,1} \text{ and not } H H_{i+1,1}) \]

Free PTC does not decay.

Coordinated Regulation

Cadigan, Nussa, Genes & Development 11, 3256 (1997)
The Steady State (Attractor)

The model reproduces the wild type steady state

Compute Attractor Expression

Possible stable patterns

- wild type
- broad
- lethal
- double wg
- displaced
- displaced, 2 wg

The latter states have very small probability.
Mutations (Perturbations)

Kauffman’s Model

wg, en or hh mutations are lethal

ptc mutation broadens the stripes

The *wg, en and hh* stripes broaden, regardless of initial state.
Kauffman’s Model [60’s, 93]

- Study Boolean networks to describe evolution
- BN: a graph of “genes” each with a random Boolean function
 - N=# of nodes; k=connectivity
- BN traverses trajectories over the hypercube \([0,1]^n\)
- Converges to best fit response to random inputs

- Trajectories: series of state transitions
- Attractors: repeating trajectories
- Basin of Attraction: all states leading to an attractor

Evolution of Boolean Networks

- Nature evolves an ensemble of networks
 - Mutations change connectivity/gene-transition-function
- Genes select best-fitness transition functions
- What happens if k is large (e.g., k=N-1)?
 - \(X(t+1)\) is uncorrelated with \(X(t)\)
 - The number of attractors is very small; cycles are huge with period of some \(2^{0.5N}\)
 - Most genes would be oscillating
 - Network is very sensitive to small perturbations
- Need to keep k small
 - K=1: too small; gene’s do not interact
 - K=2: large number of attractors \(\sim N^{0.5}\); avg cycle \(N^{0.5}\)
Learning Boolean Nets
(“Reverse Engineering” “Identification”)

The Challenge

- Discretization: Given expression profiles vector X(t)
 - Set expression thresholds \(\tau \) (how?)
 - Extract a time-state map \(S(t) \); compute state transitions map \(M(x) \)

- Learning:
 - Given: state transition map \(M \)
 - Compute: a Boolean vector function \(f \) such that \(M(x) = f(x) \)
Akutsu Algorithm (99)

- Brute force search for f
- Fix k, and consider networks of max degree k
 - For each gene i, and for each subset of k ingress genes find all functions f_i that are compatible over this ingress set for all $\{S(r)\}$
 - i.e., $S'(r) = f_i(S'(r-1))$ where S' is the restriction of S to the ingress set
 - For k fixed: $O(k^2 n^{k+1} m)$; if k is not fixed, learning is NP complete.

Notes
- Works for small k...does not handle noise...
- Later improvements handle noise

Suppose the Network Graph is Known

- Given M and G, computing f is simple:
 - The truth table for $f_i(X)$ obtains by projecting M
 - The network graph G guides the projections

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>f_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$f_1(X) = X_1 \text{ OR } X_2$
How Do We Find The Network Graph?

An intuitive approach:
- \(f(X_1, X_2, X_3) \) depends on \(X_i \) iff \(f(1, X_2, X_3) \neq f(0, X_2, X_3) \) for some \((X_2, X_3) \)
- We call such values \(<X_i, X_2, X_3, f> \) “dependency”

An Intuitive Algorithm

- Repeat for all \(X_i \) and \(f_k \):
 - Scan \(M \) to find a dependency of \(f_k \) on \(X_i \); if found then add an \(X_i \to f_k \) edge to \(G \)
 - Else (no dependency found) then \(f_k \) is independent of \(X_i \)
REVEAL (98 Liang)

- Compute network graph from mutual information measure
- Base theory:
 - Let \(<X,Y> \) be an \(<input, output>\) stream
 - Consider \(H(Y) \), the entropy of \(Y \), and \(M(X,Y) \), the mutual information of \(X \) and \(Y \)
 - If \(M(Y,X) = H(Y) \) then \(X \) determines \(Y \) uniquely

\[
H(X) = -\sum p_i \log(p_i)
\]

- \(p_i \) is the probability that a random element of data stream \(X \) is \(i \)
- \(M(X, Y) = H(X) + H(Y) - H(X,Y) \)

REVEAL Algorithm

- Step 1: compute state transition \(<input, output>\) table

<table>
<thead>
<tr>
<th>Input stream</th>
<th>Output stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{i+1})</td>
<td>(A_i)</td>
</tr>
<tr>
<td>(B_{i+1})</td>
<td>(B_i)</td>
</tr>
<tr>
<td>(C_{i+1})</td>
<td>(C_i)</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 1 0</td>
</tr>
<tr>
<td>1 1 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 1 0</td>
</tr>
</tbody>
</table>
Step 2a: Compute Entropies

<table>
<thead>
<tr>
<th>Input stream value</th>
<th>Output stream value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{i-1}</td>
<td>B_{i-1}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[P(A_i = 0) = \frac{2}{8} = 0.25 \]
\[P(A_i = 1) = \frac{6}{8} = 0.75 \]

H(A_i) = -((0.25)\log(0.25) + (0.75)\log(0.75)) = 0.81

Step 2a: Compute Entropies

note: \(\lim_{x \to 0} x \cdot \log(x) = 0 \), therefore in the left-hand limit, \((0)\log(0) = 0\).

H(A_i) = -((0.25)\log(0.25) + (0.75)\log(0.75)) = 0.81
H(B_i) = -((0.75)\log(0.75) + (0.25)\log(0.25)) = 0.81
H(C_i) = -((0.5)\log(0.5) + (0.5)\log(0.5)) = 1
H(A_{i-1}) = H(B_{i-1}) = H(C_{i-1}) = -((0.5)\log(0.5) + (0.5)\log(0.5)) = 1
H(A_{i-1}, C_{i-1}) = -((0.25)\log(0.25) + (0.25)\log(0.25) + (0.25)\log(0.25) + (0.25)\log(0.25)) = 2
H(C_i, A_{i-1}) = -((0.5)\log(0.5) + (0.5)\log(0.5)) = 1
H(A_i, A_{i-1}, C_{i-1}) = -((0.25)\log(0.25) + (0.25)\log(0.25) + (0.25)\log(0.25) + (0.25)\log(0.25)) = 2
H(B_i, A_{i-1}, C_{i-1}) = -((0.25)\log(0.25) + (0.25)\log(0.25) + (0.25)\log(0.25) + (0.25)\log(0.25)) = 2

......

......
Step 2b: Compute Network

- First compute mutual information

 (I) $M(A_i, [A_{i-1}, C_{i-1}]) = H(A_i) + H(A_{i-1}, C_{i-1}) - H(A_i, A_{i-1}, C_{i-1}) = 0.81 + 2 - 2 = 0.81$

 $= H(A_i)$, therefore A_{i-1} and C_{i-1} determine A_i

 (II) $M(B_i, [A_{i-1}, C_{i-1}]) = H(B_i) + H(A_{i-1}, C_{i-1}) - H(B_i, A_{i-1}, C_{i-1}) = 0.81 + 2 - 2 = 0.81$

 $= H(B_i)$, therefore A_{i-1} and C_{i-1} determine B_i

 (III) $M(C_i, A_{i-1}) = H(C_i) + H(A_{i-1}) - H(C_i, A_{i-1}) = 1 + 1 - 1 = 1$

 $= H(C_i)$, therefore A_{i-1} determines C_i

- Use this to determine network graph

Step 3: Compute Boolean Functions

- Consider only network dependencies

<table>
<thead>
<tr>
<th>A_{i-1}</th>
<th>C_{i-1}</th>
<th>A_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_{i-1}</th>
<th>C_{i-1}</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_{i-1}</th>
<th>C_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$A_i = A_{i-1}$ OR C_{i-1}

$B_i = A_{i-1}$ AND C_{i-1}

$C_i = \neg A_{i-1}$
Consider the following expression scenario of 4 genes:

A threshold at 0.6 yields: 0010 → 1011 → 1001 → 1000 → 0100 → 0010
- Note: the intermediate state 0000 of the transition 1000→0000→0100 is ignored

The transition map is partial
- Can admit multiple Boolean net models
- Exercise: find 2 distinct Boolean net models

Exercise: use REVEAL to compute a network model

Computing A Partial Dependency Graph

Dependency means that g_4 must appear in any expression of f_1;
For a partial map f_1, may require other genes without depending on them.
Sensitivity Considerations & Noisy Maps

Consider again the 4 genes example

Different thresholds yield different Boolean dynamics:
- $Tr_{1/2/3/4}=0.6$: $0010 \rightarrow 1011 \rightarrow 1001 \rightarrow 1000 \rightarrow 0100 \rightarrow 0010 \ldots$
- $Tr_{1/2/3}=0.2$, $Tr_{4}=0.8$: $0010 \rightarrow 1010 \rightarrow 1011 \rightarrow 1000 \rightarrow 0110 \rightarrow 0100 \rightarrow 0110 \rightarrow 0010 \ldots$ (non-deterministic)
- $Tr_{1/2/3/4}=0.8$: $0010 \rightarrow 0011 \rightarrow 1000 \rightarrow 0000 \rightarrow 0100 \rightarrow 0000 \rightarrow 0010 \ldots$

Research Questions

- Extend the intuitive algorithm to handle partial noisy maps
- Extend REVEAL to handle partial noisy maps
- Probabilistic Boolean net models?
 - Max likelihood training...EM...?
- SVM based models... Boolean kernel machines...?
How Good Are Boolean Models?

Advantages

- Provide good \textit{qualitative} interpretation of regulation
- Particularly important for switching behaviors
 - Phage lysis...sporulation...Drosophila patterns...
 - Such systems are "robust" wrt exact expression values
- Useful connection with evolutionary behaviors

Disadvantages

- Boolean abstraction is poor fit to real expression data
- Cannot model important features:
 - Amplification of a signal; subtraction and addition of signals
 - Handling smoothly varying environmental parameter (e.g. temperature, nutrients)
 - Temporal performance behavior (e.g. cell cycle period)
 - Negative feedback control (Boolean model oscillates vs. stabilize)
<table>
<thead>
<tr>
<th>A Variety of Regulatory Network Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite-field models: (X(t+1)=p(X))</td>
</tr>
<tr>
<td>- (p) is a polynomial over finite field</td>
</tr>
<tr>
<td>- Generalizes the Boolean model</td>
</tr>
<tr>
<td>Differential equations models: describe (\frac{dX}{dt}=f(X))</td>
</tr>
<tr>
<td>- (f) describes non-linear control of change by neighbors</td>
</tr>
<tr>
<td>Linear model: (X(t+1)=W X+ B)</td>
</tr>
<tr>
<td>- (W) is a weight matrix; linear approximation near steady state</td>
</tr>
<tr>
<td>Neural network models: (x_i(t)=\sigma(WX_{\text{Neighbors}(i)}+B))</td>
</tr>
<tr>
<td>- Sigmoid non-linearity can be trained through gradient algorithm</td>
</tr>
<tr>
<td>- Comes with a learning algorithm</td>
</tr>
<tr>
<td>Bayesian network models…</td>
</tr>
</tbody>
</table>