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Abstract. In this paper, we develop and exploit the theorem that the
sequence of genus polynomials of any H-linear family {Gn} of graphs sat-
isfies a kth-order homogeneous linear recurrence system R for some k ≥ 1,
which is proved using the Cayley-Hamilton theorem. One way to derive
the coefficients for the recurrence R is based on the identification of imbed-
ding types and on the characteristic polynomial of the associated production
matrix. In another method, which does not involve a production matrix,
the coefficients of R are calculated as the solution set to a system of k
linear equations that can be formed from the initial values of the genus
polynomials for {Gn}. A computational benefit of using the recurrence R
to calculate the next genus polynomial in the sequence, instead of using a
production matrix, is that instead of needing k2 multiplications of polyno-
mials, we now need only k such multiplications. Moreover, having quick
access to the linear recursion R can facilitate proofs of real-rootedness and
log-concavity of the polynomials. We illustrate with examples.

1. Introduction

Let G be a graph, possibly with multi-edges and loops. For i = 0, 1, 2, . . . ,
let gi(G) denote the number of combinatorially distinct cellular imbeddings of
G in the orientable surface Si. Then the generating function

g0(G) + g1(G)z + g2(G)z2 + · · ·+ gγmax(G)(G)zγmax(G)

is called the genus polynomial of G and is denoted by ΓG(z). It is assumed
that the reader is familiar with the basics of topological graph theory, as found
in Gross and Tucker [GT87]. The degree of the genus polynomial equals the
maximum genus γmax(G) of the graph G. We observe that the genus polyno-
mial of a graph is an invariant of its homeomorphism type.
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By a linear sequence of graphs, we mean, roughly, a sequence {Gn} with
a specified initial graph G0 and where Gi is obtained from Gi−1 by pasting a
copy of some fixed graph H to Gi−1. When the graph H has been specified, we
may call the sequence an H-linear sequence. A more precise definition appears
below.

A finite sequence a0, a1, . . . , an of non-negative real numbers is said to be
log-concave if for every index i such that 0 < i < n, we have

ai−1ai+1 ≤ a2i .

A polynomial is said to be log-concave if its sequence of coefficients is log-
concave. The log-concavity conjecture for genus polynomials [GRT89]
asserts that every graph genus polynomial is log-concave.

Log-concavity and real-rootedness of polynomials are well-established topics
of interest among algebraic combinatorialists. See, for example, [St89, Bre89,
GMTW15, Las02, HuKa12].

Many of the papers on genus polynomials are concerned with the deriva-
tion of recursions for the genus polynomials of the graphs in linear sequences
and proofs of log-concavity. Usually such derivations have been based on par-
tial genus polynomials, as defined in Section 2, and a system of simultaneous
recursions for them.

This paper demonstrates how, via application of the Cayley-Hamilton the-
orem, we can derive a linear recursion with coefficients in the polynomial ring
Z[z], for the sequence of full genus polynomials, without explicit derivation of
the solutions to the simultaneous recursions for the partial genus polynomials.

This yields a new paradigm for proving log-concavity, based on the linear
recursion for the sequence {ΓGn(z)} of full genus polynomials of {Gn}. We
observe that the proofs of log-concavity here are shorter and less complicated
than typical proofs of log-concavity based on partial genus polynomials (e.g.,
[GMT14]).

1.1. Formal definition of an H-linear sequence. Let H be a graph whose
root-vertices are bi-partitioned into a rear subset U = {u1, u2, . . . , uk} and
a front subset V = {v1, v2, . . . , vk}, both of the same cardinality k. For
i = 1, 2, . . . , let Hi be an isomorphic copy of H, and let fi : H → Hi be an
isomorphism. For each i ≥ 1 and j such that 1 ≤ j ≤ k, let ui,j = fi(uj)
and let vi,j = fi(vj). We define an (H,U, V )-linear sequence of graphs, or
(H, u, v)-linear, when U and V are singleton sets {u} and {v}, respectively
by recursive amalgamation of some root-vertices:
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• Let G0 be a graph with root-vertices v0,1, v0,2, . . . , v0,k.
• For i ≥ 1, the graph Gi is constructed from the graph Gi−1 by amalga-

mating the vertex vi−1,j of Gi−1 with the vertex ui,j of (Hi, Ui, Vi), for
j = 1, 2, . . . , k.

Either when the designation of root-vertices is implicitly understood, or when
it does not matter, we may refer to an H-linear sequence of graphs.

Remark. The term “H-linear” was first used by [Stah91], based on examples
in [FGS89]. The construction of H-linear families given here, where front
vertices are amalgamated to back vertices, is not the same as in [GKMT18],
where edges are added between front roots and back roots. However, it is not
hard to interpret either construction in terms of the other.

Example 1.1. Figure 1.1 illustrates aK4-linear sequence of graphs. The upper
row contains both the initial graph G0, which we observe is homeomorphic
to K4 (so it has the same genus polynomial), and the iterated graph H, which
is also homeomorphic to K4. The lower row illustrates the graph G3.

G0

u1 v1v0,1

H1 H3H2G0

v3,1

H

Figure 1.1. A K4-linear sequence of graphs.

The recurrence for the sequence of genus polynomials of the K4-linear se-
quence illustrated in Figure 1.1 is

ΓGn(z) = (84z + 8)ΓGn−1(z) + (768z3 − 384z2)ΓGn−2(z)(1.1)

ΓG0(z) = 14z + 2

ΓG1(z) = 128z3 + 1112z2 + 280z + 16.

The two initial conditions are given in Table 4.2 of [GKP10]. The recursion
formula is derived here in Section 3, using Theorem 3.3.

To verify the accuracy of our calculations throughout, we have used MAPLE.
For relatively small graphs, it is possible, albeit tedious, to calculate genus
polynomials and production matrices by pencil and paper. We have used two
computer programs written by Imran Khan, one for the calculation of genus
polynomials of graphs (based on the “brute-force” Heffter-Edmonds algorithm)
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and the other for calculating a production matrix, based on the representation
of imbedding types as strings of root-vertices [Gro14, GKMT18].

In Section 2, we review imbedding types and production matrices for a lin-
ear family of graphs. In Section 3, we show how the Cayley-Hamilton theorem
leads us from a production matrix to a linear recurrence for the genus poly-
nomials of the given linear family. Additionally, we give a different method
for calculating that linear recurrence, in which there is no need to calculate
the production matrix. In Sections 4 and 5, we derive upper bounds for the
degrees of the coefficients of the preceding genus polynomials in the main re-
currence, for the special case of two 2-valent root-vertices, and we derive the
recurrences for two infinite varieties of linear families, and we prove that the
genus polynomials for all of their graphs are log-concave. In Section 6, we
generalize and strengthen the upper bounds from Section 4, when the iterated
graph H is upper-imbeddable; we also derive some bounds for maximum genus
that concern the graphs in H-linear sequences. In Section 7, we present some
research problems.

2. Imbedding Types and Production Systems

It has been explained in detail elsewhere (esp. [GKP10, Gro14, GKMT18])
how the set of imbeddings for a graph can be partitioned, according to imbed-
ding types (abbr. i-types) that correspond to incidences of face-boundary
walks at the root-vertices. We abbreviate “face-boundary walk” as fb-walk.
Our imbeddings are taken to be oriented.

The general idea is that an i-type of a graph with arbitrarily many root-
vertices can be represented by a list of cyclic strings of root-vertices. To each
fb-walk that is incident at one or more root-vertices, we associate the cyclic
string of occurrences of root-vertices. The number of occurrences of each root-
vertex in the string equals its number of occurrences on a complete traversal
of the corresponding fb-walk.

An algorithmic process is given in [GKMT18] for constructing such a par-
tition, and it is demonstrated that the number of i-types can be quite large,
even for relatively small valences at the root-vertices. We are sometimes able
to reduce the number of i-types by consideration of symmetries, for instance,
when two or more root-vertices are in the same orbit under the action of the
automorphism group.

When the front subset V of root-vertices for a linear family of graphs has
a single vertex v1 of valence 2, we can partition the imbeddings into the ori-
entable surface Si of each graph (Gn, un,1, vn,1) in the H-linear sequence into
two i-types:
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• the subset of imbeddings into Si such that two different face-boundary
walks are incident at the root-vertex vn,1, whose cardinality is denoted
by di(Gn);
• the subset of imbeddings into Si such that the same face-boundary walk

is twice incident at the root-vertex vn,1, whose cardinality is denoted
by si(Gn).

If we labeled the single root-vertex of the front subset V as 0, the formal
names of the i-types would be (0)(0) and (00). Here, we use the mnemonic
designators di and si, as in many previous papers on genus polynomials, with
di(G) + si(G) = gi(G).

The partial genus polynomials for Gn for this partitioning into imbed-
ding types are

ΓdGn
(z) = d0(Gn) + d1(Gn)z + d2(Gn)z2 + · · ·+ dγmax(G)(G)zγmax(G) and

ΓsGn
(z) = s0(Gn) + s1(Gn)z + s2(Gn)z2 + · · · + sγmax(G)(G)zγmax(G).

The column vector[
d0(Gn) + d1(Gn)z + d2(Gn)z2 + · · ·+ dγmax(G)(Gn)zγmax(G)

s0(Gn) + s1(Gn)z + s2(Gn)z2 + · · ·+ sγmax(G)(Gn)zγmax(G)

]
is called the pgd-vector, where “pgd” stands for “partial-genus-distribution”.
We observe that the sum of the coordinates of the pgd-vector is the genus
polynomial.

For instance, the pgd-vector for the graph G0 of Figure 1.1 is

(2.1) V0(z) =

[
2 + 8z

6z

]
.

To obtain the pgd-vectors for the iterated graphs after the initial graph of
an H-linear sequence, we derive a production for each imbedding type. In
this case, the production for imbedding type d is

di(Gn) → 8di(Gn+1) + 48di+1(Gn+1) + 24si+1(Gn+1) + 16si+2(Gn+1).

This production means that starting from a fixed imbedding Gn → Si of type d,
the imbeddings of Gn+1 obtainable by amalgamating the root vn,1 of Gn to the
root u1 of H can be inventoried as follows, relative to the root-vertex vn+1,1

of Gn+1 (details of hand-calculation given by (4.3) and (4.4) of [GKP10]):

• 8 type-d imbeddings in Si;
• 48 type-d imbeddings in Si+1;
• 24 type-s imbeddings in Si+1;
• 16 type-s imbeddings in Si+2.
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The sum of these counts is 96, which is equal to the product (i.e., 24) of the
numbers of rotations at all the non-root vertices of H times the ratio (i.e., 6)
of the number of rotations at the vertex vn,1 = u1 of Gn+1 to the number of
rotations at vn,1 in Gn. That sum is equal to the number of imbeddings of Gn

obtainable by extension (using H) from a given embedding of Gn.

A “short form” of the production for type d is

(2.2) di → 8di + 48di+1 + 24si+1 + 16si+2.

We also used a program written by Imran Khan to calculate this production
and others. Similarly, we have the following production for imbedding type s:

(2.3) si → 12di + 48di+1 + 36si+1.

If we apply productions (2.2) and (2.3) to the pgd-vector (2.1) for G0, we obtain
the pgd-vector for G1. A convenient way to apply a set of productions to a
pgd-vector is to form a production matrix by representing each production
as a column. For the K4-linear sequence of Figure 1.1, we have the production
matrix

(2.4) MK4(z) =

[
8 + 48z 12 + 48z

24z + 16z2 36z

]
.

Letting Vn(z) denote the pgd-vector of Gn, for n = 0, 1, 2, . . . , we have

(2.5) MK4(z)Vn(z) = Vn+1(z).

This approach can readily be generalized to arbitrarily many i-types. No
matter how many i-types, the genus polynomial of the graph Gn is the sum of
the coordinates of the pgd-vector Vn(z). When the number of i-types equals k,
each multiplication of the k-dimensional pgd-vector by the k × k production
matrix requires k2 multiplications of polynomials.

3. Linear Recursions for Genus Polynomials

In this section, we use the Cayley-Hamilton theorem to derive a method
to calculate genus polynomials for linear families with k i-types, that requires
only k multiplications of polynomials to proceed from ΓGn(z) to ΓGn+1(z).

Theorem 3.1 (Cayley-Hamilton Theorem). Let A be a k × k matrix over a
commutative ring, with characteristic polynomial ϕ(λ) = det(λI − A). Then

ϕ(A) = Ak + b1A
k−1 + · · ·+ bk−1A+ bkI = 0.(3.1)

That is, every square matrix satisfies its own characteristic equation. �
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Theorem 3.2. Let k be the number of imbedding types for an H-linear se-
quence of graphs {Gn}. Then there is an `th-order linear recursion for the
sequence of genus polynomials of these graphs, for some ` ≤ k,

(3.2) ΓGn(z) = c1(z)ΓGn−1(z) + c2(z)ΓGn−2(z) + · · ·+ c`(z)ΓG`
(z)

with coefficients cj(z) in the polynomial ring Z[z].

Proof. Suppose that the i-types of graph family {Gn} are denoted τ 1, τ 2, . . . , τ k.
The set of embeddings of type τ j of Gn into the surface Si is denoted τ ji (Gn). In
this notation, any of the k partial genus polynomials of (Gn, vn,1, vn,2, . . . , vn,s)
may be written as

ΓjGn
(z) =

∑
i≥0

|τ ji (Gn)|zi, for 1 ≤ j ≤ k.

By face-tracing, as indicated by [GKP10], or by string operations, as de-
scribed by [GKMT18], we can build a system of productions of the form

τ j(Gn−1) → cj,1(z)τ 1(Gn) + cj,2(z)τ 2(Gn) + · · ·+ cj,k(z)τ k(Gn).

From this system of productions, we can induce a system of k simultaneous
recursions of the following form:

Γ1
Gn

(z) = m11(z)Γ1
Gn−1

(z) +m12(z)Γ2
Gn−1

(z) + · · ·+m1k(z)ΓkGn−1
(z)(3.3)

Γ2
Gn

(z) = m21(z)Γ1
Gn−1

(z) +m22(z)Γ2
Gn−1

(z) + · · ·+m2k(z)ΓkGn−1
(z)

...

ΓkGn
(z) = mk1(z)Γ1

Gn−1
(z) +mk2(z)Γ2

Gn−1
(z) + · · ·+mkk(z)ΓkGn−1

(z)

where mij(z) ∈ Z[z] for i, j = 1, 2, . . . , k.

The system (3.3) is representable in vector form as

VGn(z) = M(z) · VGn−1(z).(3.4)

where VGn(z) is the pgd-vector and M(z) is the production matrix, which
generalizes (2.4). In an abstract combinatorial context (e.g., see [St86]), such
a matrix has been called a transfer matrix.

Let us now suppose that the characteristic polynomial of the production
matrix M(z) is

λk + b1(z)λk−1 + · · ·+ bk−1(z)λ+ bk(z).

Then it follows from the Cayley-Hamilton theorem that

M(z)k + b1(z)M(z)k−1 + · · · + bk−1(z)M(z) + bk(z) = 0.

Multiplying by the matrix M(z)n−k−1, we obtain

(3.5) M(z)n−1+b1(z)M(z)n−2+· · ·+bk−1(z)M(z)n−k+bk(z)M(z)n−k−1 = 0.
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Applying Equation (3.5) to the column vector VG1(z) yields

M(z)n−1VG1(z) + b1(z)M(z)n−2VG1(z) + · · · + bk−1(z)M(z)n−kVG1(z)(3.6)

+ bk(z)M(z)n−k−1VG1(z) = 0,

and, in turn,

(3.7) VGn(z) + b1(z)VGn−1(z) + · · ·+ bk−1(z)VGn−k+1
(z) + bk(z)VGn−k

(z) = 0.

Multiplying the preceding vector equation on the left by the k-dimensional
row-vector (1, 1, . . . , 1), we obtain the genus polynomial equation

ΓGn(z) + b1(z)ΓGn−1(z) + · · · + bk−1(z)ΓGn−k+1
(z) + bk(z)ΓGn−k

(z) = 0,

which is readily transformed into a kth-order homogeneous recursion of the
form

(3.8) ΓGn(z) = c1(z)ΓGn−1(z) + c2(z)ΓGn−2(z) + · · · + ck(z)ΓGn−k
(z). �

As described on p302 of [Hog14], we can elaborate on Recurrence (3.8):

Theorem 3.3. The coefficient cj(z) (associated with the production matrix
MH(z)) in Recurrences (3.2) and (3.8) is given by

cj(z) = (−1)j+1
∑

(all j × j principal minors of M). �(3.9)

When there are only two imbedding types, it follows from Theorem 3.2 that
the recursion takes the form

(3.10) ΓGn(z) = c1(z)ΓGn−1(z) + c2(z)ΓGn−2(z).

It follows from Theorem 3.3 that the coefficients in Recurrence (3.10) are

c1(z) = trace(MH(z)) and

c2(z) = −det(MH(z)).

Recalling from (2.4) that the production matrix

(3.11) MK4(z) =

[
48z + 8 48z + 12

16z2 + 24z 36z

]
.

has trace(MK4(z)) = 84z+ 8 and det(MK4(z)) = −768z3 + 384z2, we can now
confirm the correctness of the recurrence system:

ΓGn(z) = (84z + 8)ΓGn−1(z) + (768z3 − 384z2)ΓGn−2(z)

ΓG0(z) = 14z + 2

ΓG1(z) = 128z3 + 1112z2 + 280z + 16,

which we previously gave as Recurrence (1.1).



RECURRENCES FOR GENUS POLYNOMIALS OF GRAPHS 9

3.1. Another way to calculate the recurrence. It is possible to calculate
the recurrence for the genus polynomials of a linear sequence of graphs {Gn}
without calculating the production matrix. Let’s suppose that there are k
imbeddings types, and that we somehow know, e.g., by ad hoc methods, the
first 2k genus polynomials. Then the recurrence

(3.12) ΓGn(z) = c1(z)ΓGn−1(z) + c2(z)ΓGn−2(z) + · · · + ck(z)ΓGn−k
(z)

leads to a system of k simultaneous linear equations with k unknowns, which
are the coefficients c1(z), c2(z), . . . , ck(z). The need for 2k genus polynomials
is illustrated by Example 3.1.

Example 3.1. For instance, suppose that (H, u, v) is the graph (K4− e, u, v),
in which the two 2-valent vertices are the roots, as illustrated in Figure 3.1.

G1 = K4-e G3

u v

Figure 3.1. Sequence of (K4 − e)-chains.

As in Example 1.1, there are two i-types for each of the graphs (Gn, v), and
we have the recurrence

ΓGn(z) = c1(z)ΓGn−1(z) + c2(z)ΓGn−2(z)

with initial values (calculated by summing pgd-vectors)

ΓG1(z) = 2z + 2

ΓG2(z) = 24z2 + 56z + 16

ΓG3(z) = 288z3 + 1120z2 + 768z + 128

ΓG4(z) = 3456z4 + 19328z3 + 22784z2 + 8704z + 1024.

This leads us to the simultaneous equations

ΓG3(z) = c1(z)ΓG2(z) + c2(z)ΓG1(z)

ΓG4(z) = c1(z)ΓG3(z) + c2(z)ΓG2(z),

which we instantiate as

288z3 + 1120z2 + 768z + 128 = c1(z)(24z2 + 56z + 16) + c2(z)(2z + 2)

3456z4 + 19328z3+

22784z2 + 8704z + 1024 = c1(z)(288z3 + 1120z2 + 768z + 128)

+c2(z)(16 + 56z + 24z2),
with the solutions
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c1(z) = 20z + 8

c2(z) = −96z2.
Thus, our recurrence is

ΓGn(z) = (20z + 8)ΓGn−1(z) + (−96z2)ΓGn−2(z).

Example 3.2. We next examine a Ḋ3-linear family, illustrated in Figure 3.2.

u
0

u
0

1 11
u

0

Figure 3.2. Chains of copies of Ḋ3.

Although the number of i-types needed is not obvious, we may discover
that any production matrix for this linear family would have rank = 2, which
implies that various i-types could be combined, as described in [GKMT18].
We calculate the first four genus polynomials.

Γ1(z) = 2z + 2

Γ2(z) = 48z2 + 120z + 24

Γ3(z) = 1152z3 + 4992z2 + 2784z + 288

Γ4(z) = 27648z4 + 176640z3 + 185088z2 + 49536z + 3456.

Solving for the unknown coefficients c1(z) and c2(z) as in the previous example,
we obtain the recurrence

Γn(z) = (40z + 12)Γn−1(z) + (−384z2 + 192z)Γn−2(z).

4. (H, u, v)-Linear Sequences of Recurrence Type (p, q)

This section and the next section focus on H-linear sequences of graphs for
which the minimum number of imbedding types is two, and accordingly, the
associated linear recurrences are of order two. In general, when the he genus
polynomial ΓGn(z) are polynomials of degrees of the coefficients of the imme-
diate k predecessors ΓGn−1(z),ΓGn−2(z), . . . ,ΓGn−k

(z) of the genus polynomial
ΓGn(z) are, respectively,

d1, d2, . . . , dk,

we say that the recurrence and the associated H-linear sequence are of type
(d1, d2, . . . , dk). When k = 2, we often give the type as (p, q).

Proofs of log-concavity of the genus polynomials for linear graph families
(e.g.,[FGS89, GKP14, GMT14, Stah91, Stah97]) have mostly been based on
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the specific recurrences for those genus polynomials. A broader approach exem-
plified by [GMTW16a, GMTW16b], proves that under highly general algebraic
conditions, a recurrence for polynomials (with coefficients in Z[z], of type (0,1)
or type (1,0)) yields a sequence of real-rooted polynomials. For instance, the
recursions for the genus polynomials ladders and for the cobblestone paths are
of type (0,1) and satisfy the algebraic conditions.

A later concern in this section and the next is recurrences of type (1,1) that
result, respectively, from these two particular circumstances:

(1) Each of the two subsets U and V of the bipartition of the root-vertices
has a single 2-valent vertex, u1 and v1, respectively.

(2) The subset U has two adjacent 1-valent vertices u1 and u2, and the
subset V has two 2-valent vertices v1 and v2.

We will prove that for two infinite classes of linear families described in §4.1
and §4.2 that the associated genus polynomials are log-concave.

Theorem 4.1. Let (H, u, v) be a 2-connected graph whose root-vertices u and v
are 2-valent. Then an H-linear sequence is of type (p, q), with

(a) γmax(H) ≤ p ≤ γmax(H) + 1 and (b) q ≤ 2γmax(H) + 1.

Proof. In string notation, using 0 for u and 1 for v, the ten possible i-types for
(H, u, v) are

(0)(0)(1)(1), (0)(01)(1), (01)(01), (0)(0)(11), (0)(011),

(00)(1)(1), (001)(1), (00)(11), (0011), (0101).

In the notation of [GKP10], which offers some convenience here, they would
be written as

dd0, dd′, dd′′, ds0, ds′, sd0, sd′, ss0, ss1, and ss2,

respectively. Accordingly, the genus polynomial for (H, u, v) can be partitioned
into ten partial genus polynomials. In Table 4.1, we give a condensed set of pro-
duction rules for vertex-amalgamating the single-rooted graph (Gn−1, vn−1,1)
at the first root of the double-rooted graph (Hn, un,1, vn,1), adapted from Ta-
ble 2 of [GKP10]. A superscript bullet (•) is used when all variations of the
mainscript have the same consequence. For instance ss•j means that the rule

applies to ss0j , ss
1
j , and ss2j .

By applying the rules of Table 4.1, we obtain the production matrix

M(z) =

[
m11(z) m12(z)
m21(z) m22(z)

]
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Table 4.1. Productions for amalgamation (Gn−1, vn−1,1) ∗ (Hn, un,1, vn,1).

production

di(Gn−1) ∗ dd0j(Hn) → 4di+j(Gn) + 2di+j+1(Gn)
di(Gn−1) ∗ dd′j(Hn) → 4di+j(Gn) + 2di+j+1(Gn)
di(Gn−1) ∗ dd′′j (Hn) → 4di+j(Gn) + 2si+j+1(Gn)
si(Gn−1) ∗ dd•j(Hn) → 6di+j(Gn)
di(Gn−1) ∗ ds•j(Hn) → 4si+j(Gn) + 2si+j+1(Gn)
si(Gn−1) ∗ ds•j(Hn) → 6si+j(Gn)
di(Gn−1) ∗ sd•j(Hn) → 6di+j(Gn)
si(Gn−1) ∗ sd•j(Hn) → 6di+j(Gn)
di(Gn−1) ∗ ss0j(Hn) → 6si+j(Gn)
di(Gn−1) ∗ ss1j(Hn) → 6si+j(Gn)
di(Gn−1) ∗ ss2j(Hn) → 4si+j(Gn) + 2di+j(Gn)
si(Gn−1) ∗ ss•j(Hn) → 6si+j(Gn)

for an H-linear sequence, where

m11(z) = (4 + 2z)(dd0 + dd′) + 4dd′′ + 6(sd0 + sd′) + 2ss2

m12(z) = 6(dd0 + dd′ + dd′′ + sd0 + sd′)

m21(z) = 2zdd′′ + (4 + 2z)(ds0 + ds′) + 6(ss0 + ss1) + 4ss2

m22(z) = 6(ds0 + ds′ + ss0 + ss1 + ss2).

Each of the imbedding types for a graph corresponds to a polynomial invariant
of that graph in the indeterminate z; however, we have written dd′′ instead of
dd′′H(z), and so on, in order to fit each of the matrix entries onto a single line.

We can calculate that the trace of the production matrix M(z) equals

(4.1) (4 + 2z)(dd0 + dd′) + 4dd′′ + 6(ds0 + ds′ + sd0 + sd′ + ss0 + ss1) + 8ss2.

We observe that the degree of γmax(H) equals the maximum of the degrees of
the partial genus polynomials

dd0, dd′, dd′′, ds0, ds′, sd0, sd′, ss0, ss1, ss2,

since the genus polynomial ΓH(z) is the sum of those partial genus polynomials.
Moreover, since our Formula (4.1) for the trace of M(z) equals the genus
polynomial plus a sum of polynomials all of whose coefficients are non-negative,
it follows that the degree p of the trace of M(z) is at least as large as γmax(H).
We see also that the upper bound γmax(H) + 1 for p is achieved only when
the degree of dd0H(z) + dd′H(z) equals γmax(H). This completes the proof of
Inequality (a).
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We observe further that the degree of each of the terms of m11(z) is at
most one more than the degree of ΓH(z) and that the degree of each of the
terms of m22(z) is at most the degree of ΓH(z). It follows that the degree of
m11(z)m22(z) is at most 2γmax(H) + 1. Similarly, the degree of m12(z)m21(z)
is at most 2γmax(H) + 1. Thus,

q = deg(det(M(z))

= deg (m11(z)m22(z)−m12(z)m21(z))

≤ max {deg(m11(z)m22(z)), deg(m12(z)m21(z))}
≤ 2γmax(H) + 1. �

4.1. Closed necklaces. In this subsection, we seek to characterize the graphs
(H, u, v), where u and v are both 2-valent, such that an H-linear sequence is
of type (1,1). By Theorem 4.1, we know that γmax(H) ≤ 1. According to
Theorem 1 of [CG93], a 2-connected graph H with γmax(H) = 1 must either
be a member of an infinite family called necklaces, illustrated in Figure 4.1
(and defined below) or one of the five sporadic graphs shown in Figure 4.2.
(The name “PM” was chosen because the graph PM looks like a pac-man.)

u v

Figure 4.1. A double-rooted closed (2,3)-necklace.

D4

K4 PMB3

D3,1

Figure 4.2. The five sporadic graphs with maximum genus 1.

A closed (r, s)-necklace, first defined by [GKR93], is formed from a cycle
graph by attaching a loop at each of s vertices and doubling r of the cycle
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edges, so that none of the resulting vertices has valence larger than 4; here we
designate two of the 2-valent vertices as root-vertices, as shown in Figure 4.1.

Theorem 4.2. Let N be a closed (r, s)-necklace. Then the production matrix
and initial pgd-vector for the sequence of N-linear graphs are

Mr,s(z) =

[
2r4s+1 6 · 2r4s

(4r6s+1 − 2r4s+1)z (4r6s+1 − 6 · 2r4s)z

]
and V0 =

[
2r4s

(4r6s − 2r4s)z

]
.

This corresponds to the type-(1,1) recurrence

ΓNn(z) = trace(Mr,s)ΓNn−1(z)− det(Mr,s)ΓNn−2(z)(4.2)

ΓN1(z) = 2r4s + (4r6s − 2r4s)z

ΓN2(z) = 4r+2s+1 +
(
6 · 2r4s(4r6s − 2r4s) + 2r4s(4r6s+1 − 2r4s+1)

)
z

+ (4r6s+1 − 6 · 2r4s)(4r6s − 2r4s)z2,

where

trace(Mr,s) = 2r4s+1 + (4r6s+1 − 6 · 2r4s)z and(4.3)

det(Mr,s) = 2r4s+1
(
4r6s+1 − 6 · 2r4s

)
z(4.4)

−6 · 2r4s(4r6s+1 − 2r4s+1)z

= −12 · 8r · 24sz.

Proof. Let (Nn, vn) denote the chain of n copies of the (r, s)-necklace N . We
observe that the number of imbeddings N → S0 is 2r4s. Since the total number
of imbeddings of N is 4r6s, the initial pgd-vector is

V0 =

[
2r4s

(4r6s − 2r4s)z

]
.

Using ad hoc methods, such as drawing pictures of the face-boundary walks
incident at the root vertices and the effect of amalgamation on the number
of such walks, one can show that an amalgamation of an imbedding of N to
a given type-d imbedding of Nn, thereby forming an imbedding of Nn+1, has
imbedding type d if and only if the given imbedding of N is in S0 and the two
edge-ends incident at root-vertex u of N are adjacent in the rotation at the
amalgamated vertex vn,1 = u in the imbedding of Nn+1. Moreover, the genus
of the imbedding surface rises (in which case it rises by 1) if and only if the
resulting imbedding of Nn+1 is type s. Thus, there are m11(z) = 2r4s+1 ways
to amalgamate an imbedding of N to a given type-d imbedding of Nn so as
to obtain a type-d imbedding. Since the total number of ways to amalgamate
an imbedding of N to a given type-d imbedding of Nn is 4r6s+1, we can infer
that the number of ways to obtain a type-s imbedding is m21(z) = (4r6s+1 −
2r4s+1)z.

Continuing with ad hoc methods, one can show that an amalgamation of an
imbedding of N to a given type-s imbedding of Nn has imbedding type d if and
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only if the given imbedding of N is in S0. Moreover, the genus of the imbedding
surface rises (in which case it rises by 1) if and only if the resulting imbedding
of Nn+1 is type s. Thus, there are m12(z) = 2r4s ways to amalgamate an
imbedding of N to a given imbedding of Nn so as to obtain a type-d imbedding.
Since the total number of ways to amalgamate an imbedding of N to a given
imbedding of Nn is 4r6s+1, we can infer that the number of ways to obtain a
type-s imbedding is m22(z) = (4r6s+1 − 2r4s)z. �

Theorem 4.3. The polynomial ΓNn(z) is real-rooted for all n ≥ 0.

Proof. The leading coefficient of every genus polynomial is positive, so {ΓNn(z)}
is a sequence of standard polynomials. In Recurrence 4.2 the coefficients of
ΓNn−1(z) and ΓNn−2(z) are real. Furthermore. we can prove inductively that
deg(ΓNn(z)) = deg(ΓNn−1(z))+1. Moreover, the coefficients of ΓNn(z) are non-
negative, from the definition of a genus polynomial. By Theorem 4.2, we have
that − det(Mr,s(z)) = 12 · 8r · 24sz, which is non-positive for all z ≤ 0. Thus,
by Corollary 2.4 of [LW07], the polynomials {ΓNn(z)} are real-rooted. �

Corollary 4.4. The polynomial ΓNn(z) is log-concave for all n ≥ 0.

Proof. It follows by Newton’s real-roots theorem that every real-rooted poly-
nomial is log-concave. �

We recall that the nth Chebyshev polynomial Un(x) of the second kind
is defined as follows:

Un(x) = 2xUn−1(x)− Un−2(x),

with the initial values U0(x) = 1 and U1(x) = 2x. Moreover, the explicit
formula for Un(x) is given by

Un(x) =

bn/2c∑
k=0

(
n− k
k

)
(−1)k(2x)n−2k.(4.5)

Theorem 4.5. Let i2 = −1, d = 2
√

3
√

8
r√

24
s√
z and t = 2r2s(2s+2+6(2r3s−

2s)z). Then

ΓNn(z) = (id)n−1
[
Un−1

(
t

2id

)
ΓN1(z)− idUn−2

(
t

2id

)
ΓN0(z)

]
,

where

ΓN0(z) = 2r4s + (4r6s − 2r4s)z

ΓN1(z) = 4r+2s+1 +
(
6 · 2r4s(4r6s − 2r4s) + 2r4s(4r6s+1 − 2r4s+1)

)
z

+ 6(4r6s − 2r4s)2z2,

and Um is the mth Chebyshev polynomial of the second kind.
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Proof. By Theorem 4.2, we have that

ΓNn(z)

(id)n
=

t

id

ΓNn−1(z)

(id)n−1
−

ΓNn−2(z)

(id)n−2
, n ≥ 2.

Hence, by induction on n, we have

ΓNn(z) = (id)n−1 (Un−1(t/(2id))ΓN1(z)− idUn−2(t/(2id))ΓN0(z)) ,

as required. �

Theorem 4.6. Let G be any of the five sporadic graphs of Figure 4.2, and
let root-vertices u and v be inserted as subdivision points of any edge or pair
of edges. Then the degree of the determinant of the production matrix of the
(G, u, v)-linear sequence is at least 2.

Proof. This is demonstrated by checking cases, preferably with a computa-
tional aid. �

Thus, whereas Theorem 4.2 implies that all the recurrences of closed (r, s)
necklaces are of type (1, 1), Theorem 4.6 establishes that none of the possible
H-linear sequences where H is any of the five sporadic graphs corresponds to
a recurrence of type (1, 1).

4.2. A recurrence of type (1, 2). In this subsection, we consider the B2-
linear family of graphs illustrated in Figure 4.3, where B2 denotes the bouquet
with two loops. Its induced recurrence is of type (1, 2). We prove that all of
its genus polynomials are real-rooted.

Figure 4.3. A B2-linear family of graphs.

The B2-chain of Figure 4.3 has the production matrix

(4.6) MB2(z) =

[
20z + 40 28z + 56

60z 36z

]
,

which induces the recursion

ΓGn(z) = (56z + 40)ΓGn−1(z) + (960z2 + 1920z)ΓGn−1(z)(4.7)

ΓG0(z) = 2z + 4(4.8)

ΓG1(z) = 160z2 + 400z + 160.(4.9)

Since ΓG0(−2) = ΓG1(−2) = 0, it follows from the recursion that ΓGn(z) = 0
when z = −2, for all n ≥ 0.
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Theorem 4.7. All the genus polynomials for the B2-linear family of Figure 4.3
are real-rooted.

Proof. By a simple induction on n, we can show that deg(ΓGn(z)) = n + 1
and that ΓGn(−2) = 0. Another straightforward induction argument shows
that (−1)n−1ΓGn(z) > 0, for all n ≥ 0 and for any z < −2. Noticing that
960z2 + 1920z < 0 for all −2 < z < 0, we infer from Corollary 2.4 of [LW07]
that the polynomials {ΓGn(z)} are real-rooted for all n ≥ 0. �

5. (H, {u1, u2}, {v1, v2})-Linear Sequences of Recurrence Type (p, q)

In this section, the rear root-vertices u1 and u2 of (H, {u1, u2}, {v1, v2}) are
1-valent and the front root-vertices v1 and v2 are 2-valent. We shall see how the
corresponding H-linear sequence can be of type (1,1). Our exposition proceeds
largely in parallel with Section 4.

Theorem 5.1. Let (H, {u1, u2}, {v1, v2}) be a 2-connected graph with 1-valent
rear root-vertices and adjacent, 2-valent front root-vertices. Then an H-linear
sequence is of type (p, q), with

(a) γmax(H) ≤ p ≤ γmax(H) + 1 and (b) q ≤ 2γmax(H) + 1.

Proof. We observe that the graph obtained by amalgamating the 1-valent ver-
tices u1 and u2 to adjacent 2-valent vertices v1 and v2, respectively of some
previous copy of H is exactly the same as the graph that would be obtained
by first joining u1 and u2 with a new edge and then performing an edge-
amalgamation of edge u1u2 with edge v1v2. Accordingly, we can use the ten
imbedding types described in [PKG10] for a doubly edge-rooted graph such
that each endpoint of each root-edge is 2-valent.

dd0, dd′, dd′′, ds0, ds′, sd0, sd′, ss0, ss1, and ss2.

We see that the names of these imbedding types are the same as for two
2-valent vertex roots. However, the corresponding productions, adapted from
[PKG10], are different from those in Table 4.1.

By applying the rules of Table 5.1, we obtain the production matrix

M(z) =

[
m11(z) m12(z)
m21(z) m22(z)

]
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Table 5.1. Productions for amalgamating the graph (Gn−1, vn−1,1, vn−1,2)
with the graph (H, {u1, u2}, {v1, v2}).

production

di(Gn−1) ∗ dd0j(Hn) → 2di+j(Gn) + 2di+j+1(Gn)
si(Gn−1) ∗ dd0j(Hn) → 4di+j(Gn)
di(Gn−1) ∗ dd′j(Hn) → 2di+j(Gn) + 2di+j+1(Gn)
si(Gn−1) ∗ dd1j(Hn) → 4di+j(Gn)
di(Gn−1) ∗ dd′′j (Hn) → 2di+j(Gn) + 2si+j+1(Gn)
si(Gn−1) ∗ dd′′j (Hn) → 4di+j(Gn)
di(Gn−1) ∗ ds•j(Hn) → 2si+j(Gn) + 2si+j+1(Gn)
si(Gn−1) ∗ ds•j(Hn) → 4si+j(Gn)
di(Gn−1) ∗ sd•j(Hn) → 4di+j(Gn)
si(Gn−1) ∗ sd•j(Hn) → 4di+j(Gn)
di(Gn−1) ∗ ss0j(Hn) → 4si+j(Gn)
di(Gn−1) ∗ ss1j(Hn) → 4si+j(Gn)
di(Gn−1) ∗ ss2j(Hn) → 2di+j(Gn) + 2si+j(Gn)
si(Gn−1) ∗ ss•j(Hn) → 4si+j(Gn)

for an H-linear sequence, where

m11(z) = (2 + 2z)(dd0 + dd′) + 2dd′′ + 4(sd0 + sd′) + 2ss2

m12(z) = 4(dd0 + dd′ + dd′′ + sd0 + sd′)

m21(z) = 2zdd′′ + (2 + 2z)(ds0 + ds′) + 4(ss0 + ss1) + 2ss2

m22(z) = 4(ds0 + ds′ + ss0 + ss1 + ss2).

As before, each of the imbedding types for a doubly rooted graph with two
2-valent roots is representable as a polynomial-valued invariant of the graph H
in the indeterminate z.

We can calculate that the trace of the production matrix M(z) equals

(5.1) (2 + 2z)(dd0 + dd′) + 2dd′′ + 4(ds0 + ds′ + sd0 + sd′ + ss0 + ss1) + 6ss2.

We observe here again that the degree of γmax(H) equals the maximum of the
degrees of the partial genus polynomials

dd0, dd′, dd′′, ds0, ds′, sd0, sd′, ss0, ss1, ss2,

since the genus polynomial ΓH(z) is the sum of those partial genus polynomials.
Moreover, since our Formula (5.1) for the trace of M(z) equals the genus
polynomial plus a sum of polynomials all of whose coefficients are non-negative,
it follows that the degree p of the trace of M(z) is at least as large as γmax(H).
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We again see also that the upper bound γmax(H) + 1 for p is achieved only
when the degree of dd0H(z) + dd′H(z) equals γmax(H).

The proof of Inequality (b) is similar to the proof of the analogous inequality
in Theorem 4.1. �

The open (r, s)-necklace (N, {u1, u2}, {v1, v2}) can be formed from a closed
(r,s)-necklace (N, u, v) by splitting (i.e., reverse contraction) the front root v
into two adjacent 2-valent roots v1 and v2 and also splitting the rear root u
into two adjacent 2-valent roots u1 and u2, followed by deletion of the edge
joining u1 and u2. Figure 5.1 illustrates the open necklace formed from the
closed necklace of Figure 4.1.

v1u1
u2

v2

Figure 5.1. An open (2,3)-necklace.

Theorem 5.2. Let N be an open (r, s)-necklace. Then the production matrix
and initial pgd-vector for the sequence of N-linear graphs are

Mr,s(z) =

[
2r+14s 2r4s+1

(4r+16s − 2r+14s)z (4r+16s − 2r4s+1)z

]
and V0 =

[
2r4s

(4r6s − 2r4s)z

]
.

This corresponds to the type-(1,1) recurrence

ΓNn(z) = trace(Mr,s)ΓNn−1(z)− det(Mr,s)ΓNn−2(z)

ΓN0(z) = 2r4s + (4r6s − 2r4s)z

ΓN1(z) = 2 · 4r+2s +
(
2r4s+1(4r6s − 2r4s) + (4r6s+1 − 2r+14s)2r4s

)
z

+ (4r6s+1 − 2r4s+1)(4r6s − 2r4s)z2.

Proof. Let (Nn, vn) denote the chain of n copies of the open (r, s)-necklace N .
Let N be the closed necklace obtained from N by joining the root-vertices u
and v. The initial graph for the N -linear sequence is the same as for N . Thus,
the pgd-vector for N is the same as for N , i.e.,

V0 =

[
2r4s

(4r6s − 2r4s)z

]
.

As in the proof of Theorem 4.2, drawing pictures as in [PKG10] (or other ad
hoc method) can yield the entries of the production matrix Mr,s(z). �
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Theorem 5.3. Let (N,U, V ) be an open (r, s)-necklace and let {Nn} be the
sequence of N-linear graphs. Then the polynomial ΓNn(z) is real-rooted for all
n ≥ 0.

Proof. By Theorem 5.2, we know that − det(Mr,s(z)) = 8r+1 · 24sz, which is
non-positive for all z ≤ 0. It follows from Corollary 2.4 of [LW07], as in the
proof of Theorem 4.3, that the polynomials {ΓNn(z}) are real-rooted. �

Corollary 5.4. The polynomial ΓNn(z) is log-concave for all n ≥ 0.

Proof. This follows by Newton’s theorem that every real-rooted polynomial is
log-concave. �

Theorem 5.5. Let i2 = −1, d =
√

8
r+1√

24
s√
z and t = 2r+12s+1(2s−1 +

(2r3s − 2s)z). Then

ΓNn(z) = (id)n−1
[
Un−1

(
t

2id

)
ΓN1(z)− idUn−2

(
t

2id

)
ΓN0(z)

]
,

where ΓN0(z) and ΓN1(z) are given in Theorem 5.2, and Um is the mth Cheby-
shev polynomial of the second kind.

Proof. By Theorem 5.2, we have that

ΓNn(z)

(id)n
=

t

id

ΓNn−1(z)

(id)n−1
−

ΓNn−2(z)

(id)n−2
, n ≥ 2.

Hence, by induction on n, we have

ΓNn(z) = (id)n−1 (Un−1(t/(2id))ΓN1(z)− idUn−2(t/(2id))ΓN0(z)) ,

as required. �

Theorem 5.6. Let G be any of the five sporadic graphs of Figure 4.2, and
let root-vertex pairs u1, u2 and v1, v2 be inserted as subdivision points of any
edge or pair of edges, such that u1 and u2 are adjacent and also v1 and v2 are
adjacent. Then the degree of the determinant of the production matrix of the
(G, u, v)-linear sequence is at least 2.

Proof. Once again, we can check cases with a computational aid. �

Analogous to Theorem 4.6, Theorem 5.6 excludes another possible way that
any of the five sporadic graphs might H-linear sequences where H is corre-
sponds to a recurrence of type (1, 1).
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6. Upper-Imbeddable Iterated Graphs

A graph G is said to be upper-embeddable if γmax(G) = bβ(G)
2
c, where

β(G) denotes the cycle rank of G.

When the iterated graph (H, u, v) is upper-embeddable, we can strengthen
Theorem 4.1, by dropping the limitations on valences of the roots, and by
giving exact values for the maximum genera. It follows from a theorem of
[Kun74] that almost all graphs are upper-imbeddable. The bounds obtained
for the coefficients in the genus polynomial recursion depend on the parity of
the cycle rank of H.

Theorem 6.1. Let (H, u, v) be an upper-imbeddable graph, in which the cy-
cle rank β(H) is even. Then the maximum genus of each graph Gn in the
corresponding H-linear sequence {(Gn, vn), n ≥ 1} is nγmax(H).

Proof. Since the cycle rank of H is even, it follows that |VH | − |EH | is odd. In
order that the Euler characteristic be even, it is necessary that the the number
of faces of every orientable imbedding be odd. Since H is upper-imbeddable,
it follows that a maximum imbedding has only one face.

Suppose that some maximum imbedding of G1 has the rotation

v1. e1, e2, . . . , er

and that some maximum imbedding of H has the rotation

u. f1, f2, . . . , fs.

We consider the imbedding of (G2, v2) formed by merging the vertices v1 and u,
so that the rotation at v2 is

v2. e1, e2, . . . , er, f1, f2, . . . , fs,

and all other rotations are as in the contributory imbeddings of G1 and H.
This merges the fb-walk of G1 with the fb-walk of H, thereby creating an
imbedding of G2 with only one face, making it a maximum imbedding. More-
over, it follows from Euler-characteristic considerations that the genus of that
maximum imbedding of G2 is the sum 2γmax(H) of the genera of the two
contributory imbeddings. Continuing inductively, we see that a maximum
imbedding of each graph Gn in the H-linear sequence has one face, and is of
genus nγmax(H). �

Corollary 6.2. Let (H, u, v) be an upper-imbeddable graph of even cycle rank,
whose associated linear family {Gn} is of type (d1, d2, . . . , dk). Then we have
d1 = γmax(H), and for j = 2, 3, . . . , k, we have dj ≤ jγmax(H).
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Proof. From Theorem 3.2, we have

ΓGn(z) = c1(z)ΓGn−1(z) + c2(z)ΓGn−2(z) + · · ·+ ck(z)ΓGn−k
(z),

with coefficients cj(z) in the polynomial ring Z[z]. It follows that

deg(ΓGn) = max{deg(cj(z)) + deg(ΓGn−j
(z)) | j = 1, 2, . . . , k}.

By Theorem 6.1, we obtain
nγmax(H) = max{dj + (n− j)γmax(H) | j = 1, 2, . . . , k},

and consequently,
nγmax(H) ≥ dj + (n− j)γmax(H), for j = 1, 2, . . . , k.

It follows that dj ≤ jγmax(H), for j = 1, 2, . . . , k. �

Remark. Theorem 6.1 and Corollary 6.2 could be adjusted so that the initial
graph for the linear sequence is an arbitrary graph G0 with suitable root-
vertices.

An odd component of the edge-complement G − T of a spanning tree T
for a graph G is a component with an odd number of edges. The deficiency
of a graph G is the minimum number ξ(G) of odd components, taken over all
spanning trees. A spanning tree that achieves this minimum is called a Xuong
tree. Xuong [Xu79] proved the following theorem:

Theorem 6.3 ([Xu79]). Let G be any graph. Then

(6.1) γmax(G) =
1

2
(β(G)− ξ(G)) .

We define property P, whose presence or absence assigns any upper-imbeddable
doubly rooted graph H to one of two categories:

P: There is a Xuong tree T in H such that the odd component of H −T
is incident on both roots.

Theorem 6.4. Let (H, u, v) be an upper-imbeddable graph in which the cycle
rank β(H) is odd. If H satisfies Property P, then for each graph Gn in the
corresponding H-linear sequence {(Gn, vn), n ≥ 1}, we have

(6.2) γmax(Gn) = nγmax(H) +
⌊n

2

⌋
.

Otherwise,

(6.3) γmax(Gn) = nγmax(H).

Proof. Since the cycle rank of H is odd, it follows that |VH | − |EH | is even. In
order that the Euler characteristic be even, it is necessary that the number of
faces of every orientable imbedding ofH be even. SinceH is upper-imbeddable,
it follows that a maximum imbedding has two faces.
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Let T be a Xuong tree for H. We consider the imbedding of (G2, v2) formed
by amalgamating the root-vertex v1 of G1 with the root-vertex u of a copy of H.
This merges the Xuong tree (T, v1) of (G1, v1) with the Xuong tree (T, u) in
(H, u), resulting in the amalgamated spanning tree T ∗v1=u T (denoted T ∗ T ,
for short) for the graph G2.

Case 1. Suppose that H has property P. Then amalgamating G1 and H
also merges the only odd component of G1 − T with the only odd component
of H − T , thereby yielding an even component of G2 − T ∗ T . It follows that
T ∗ T is a Xuong tree for G2 and that

γmax(G2) =
β(G2)

2
= 2γmax(H) + 1.

Next we consider the imbedding of (G3, v3) formed by amalgamating the
root-vertex v2 of G2 with the root-vertex u of a copy of H. This merges the
copy of the Xuong tree T ∗ T of G2 with the copy of T in H, resulting in a
spanning tree T ∗ T ∗ T for the graph G3. We observe that by the merger, the
only odd component of H − T becomes an odd component of G3 − T ∗ T ∗ T .
We see that T ∗ T ∗ T is a Xuong tree for G3 and that

γmax(G3) =
β(G3)

2
= 3γmax(H) + 1.

Continuing inductively, we see that a sequence of maximum imbeddings of the
graphs Gn alternates between one-face and two-face imbeddings, and satisfies
Equation (6.2).

Case 2. Suppose that H does not have property P. We observe that the
graph G2−T ∗T has two odd components, one in G1, and the other in H. We
assert that T ∗T is a Xuong tree, which would imply that γmax(G2) = 2γmax(H).
Suppose, to the contrary, that T ′ is a spanning tree for G2 such that G2 − T ′
has no odd components. Then the spanning tree T ′ ∩ H for H has no odd
components, which contradicts the assumption that T is a Xuong tree for H.
Indeed, it follows by induction that the spanning tree T (n) — i.e., the result
of amalgamating n copies of (T, u, v) — is a Xuong tree for G−n and that its
edge-complement in Gn has n odd components, one in each copy of H, along
with Equation (6.3). �

Remark. Requiring that the odd component of H − T be incident at both
roots is necessary, as illustrated by the H-linear family in Figure 6.1.

We observe that H is upper-imbedable, that γmax(H) = 1, and that the odd
complement of the only Xuong tree (thickened edges) is not incident at the
roots u and v. We also observe that the graph G2 is not upper-imbeddable.
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u v

H

u v

G2
Figure 6.1. Chain of copies of a type-(0, 2)-necklace.

Corollary 6.5. Let (H, u, v) be an upper-imbeddable graph of odd cycle rank,
whose associated linear family {Gn} is of type (d1, d2, . . . , dk). If H satisfies
Property P, then for j = 1, 2, . . . , k, we have dj ≤ jγmax(H) +

⌊
j+1
2

⌋
. Other-

wise, for j = 1, 2, . . . , k, we have dj ≤ jγmax(H).

Proof. From Theorem 3.2, we have

ΓGn(z) = c1(z)ΓGn−1(z) + c2(z)ΓGn−2(z) + · · ·+ ck(z)ΓGk
(z),

with coefficients cj(z) in the polynomial ring Z[z]. It follows that

deg(ΓGn) = max{deg(cj(z)) + deg(ΓGn−j
(z)) | j = 1, 2, . . . , k}.

If Property P holds, then by Equation (6.2), we obtain

nγmax(H) +
⌊n

2

⌋
= max{dj + (n− j)γmax(H) | j = 1, 2, . . . , k},

and consequently,

nγmax(H) +
⌊n

2

⌋
≥ dj + (n− j)γmax(H) +

⌊
n− j

2

⌋
for j = 1, 2, . . . , k.

It follows that dj ≤ jγmax(H) +
⌊
j+1
2

⌋
, for j = 1, 2, . . . , k. Alternatively, if

Property P does not hold, then by Equation (6.3), we have

nγmax(H) = max{dj + (n− j)γmax(H) | j = 1, 2, . . . , k},

and consequently,
nγmax(H) ≥ dj + (n− j)γmax(H), for j = 1, 2, . . . , k.

It follows that dj ≤ jγmax(H), for j = 1, 2, . . . , k. �

7. Research Questions

Research Question 7.1. Recalling the remark at the end of Section 3, we
ask the following: Given an H-linear sequence of graphs and a recurrence for
their genus polynomials, is there a set of imbedding types for the graphs and
a production matrix whose characteristic polynomial coefficients match the
coefficients of the given recursion?
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Research Question 7.2. Let G be a 3-connected graph and let e be an edge
of G. Is it possible that there is no maximum-genus imbedding of G such that
both sides of e lie on the same face? What if G is 2-connected, but not a cycle
graph?

Research Question 7.3. We have explained why two imbedding types are
sufficient when the rooted graph (H,U, V ) satisfies either the premise of The-
orem 4.1 or the premise of Theorem 5.1. We can generalize the premise of
Theorem 5.1 by allowing the forward roots u1, u2, . . . , uk to be 2-valent and
to lie consecutively along a path in H. Are there any other restrictions on
(H,U, V ) such that two imbedding types would be sufficient?

Research Question 7.4. Suppose that (d1, d2, . . . , dk) is the type of the linear
recursion for the genus polynomials of a linear family of graphs. Is it necessary
that d1 ≤ d2 ≤ · · · ≤ dk? In general, the degrees of the coefficients of the
characteristic polynomial in λ of a matrix over Z[z] need not be non-descending
according to descending powers of λ. For instance, the 2× 2 matrix

M(z) =

[
8 12

4z + 12 6z + 6

]
has 6z + 14 (degree 1) as its trace and −96 (degree 0) as its determinant. We
observe that both the column sums of the matrix M(1) are 24, that is, exactly
the same, as we have for any production matrix. Accordingly, a proof that
the answer to the question is affirmative would have to follow from some other
property of production matrices for linear graph sequences.

Remark. We observe that the choice of i-types can lead to a production
matrix with a determinant of zero. That would imply that k < ` in Theorem
3.2, in which case we would have

ck+1(z) = ck+2(z) = · · · = c`(z) = 0.

In giving the type of the corresponding linear recurrence, we stop at dk. Thus,
this kind of example is not a negative answer to Research Question 7.4.

Research Question 7.5. We consider Research Question 7.4 for the special
case k = 2. Is it always true in this circumstance that d1 ≤ d2?
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