
xPF: Packet Filtering for Low-Cost Network Monitoring

S. Ioannidis
�

K. G. Anagnostakis
�

J. Ioannidis
�

A. D. Keromytis
�

�
CIS Department, University of Pennsylvania�

anagnost,sotiris � @dsl.cis.upenn.edu
�
AT&T Labs – Research

�
CS Department, Columbia University

ji@research.att.com angelos@cs.columbia.edu

Abstract
The ever-increasing complexity in network infrastruc-

tures is making critical the demand for network monitor-
ing tools. While the majority of network operators rely on
low-cost open-source tools based on commodity hardware
and operating systems, the increasing link speeds and com-
plexity of network monitoring applications have revealed
inefficiencies in the existing software organization, which
may prohibit the use of such tools in high-speed networks.
Although several new architectures have been proposed to
address these problems, they require significant effort in
re-engineering the existing body of applications.

In this paper we present an alternative approach that
addresses the primary sources of inefficiency without sig-
nificantly altering the software structure. Specifically, we
enhance the computational model of the Berkeley Packet
Filter (BPF) to move much of the processing associated
with monitoring into the kernel, thereby removing the
overhead associated with context switching between kernel
and applications. The resulting packet filter, called xPF,
allows new tools to be more efficiently implemented and
existing tools to be easily optimized for high-speed net-
works. We present the design and implementation of xPF
as well as several example applications that demonstrate
the efficiency of our approach.

1 Introduction

Network monitoring is becoming an increasingly impor-
tant function in a modern IP-based network infrastructure.
This is mostly due to the stateless nature of the IP ser-
vice, which requires appropriate control loops to be im-
plemented by observing and responding to network behav-
ior. For the majority of networks, such functions are im-
plemented using commodity components: PC workstations
or servers running free operating systems and open-source
monitoring tools [2, 10, 12, 15, 22, 1, 21, 5]. Most of these
tools rely on the Berkeley Packet Filter (BPF) facility [18],
which allows them to capture packets from the network in-

terface.

However, as the speed of network links continues to in-
crease, the use of commodity components and BPF is be-
coming inefficient [9, 20, 23]. Additionally, the increas-
ing complexity and sophistication of network monitoring
tools further adds to the processing burden of a monitor-
ing system. Finally, BPF performance degrades rapidly
as the number of concurrent applications increases [5].
There have been several studies on optimizing the packet
filter [8], efficient network interface access [20], as well
as system architectures designed specifically for network
monitoring [6, 17, 15, 4]. Most network monitoring appli-
cations, however, do not need elaborate packet filters (and
therefore cannot take advantage of the aforementioned op-
timizations) to demultiplex packet streams into different
processes; instead, a single process receives all the pack-
ets and does its own packet handling. On the other hand,
monitoring-specific system architectures provide a rich and
complex set of functions, but require significant effort for
re-implementing the existing body of tools. Finally, these
architectures are not widely available, and are thus less
likely to be mature enough to be adopted in the near future.

In this study we attempt to provide efficient network
monitoring capabilities with minimal changes to existing
infrastructure. This is achieved by using BPF itself as the
engine for executing monitoring applications, rather than
a mechanism for demultiplexing packets to applications in
user-space. To make this possible, we enhance BPF by en-
riching the computing model it provides. Specifically, we
introduce persistent memory support and remove the re-
striction of forward-only branches. In this way, monitoring
applications execute inside the packet filter and only need
to communicate with user-space code in order to perform
functions such as storing or communicating data to the user
or higher-level applications. The resulting system achieves
high performance and low system overheads without alter-
ing the general system structure. At the same time, the
simplicity, portability and compatibility with existing tools
and the appealing maturity and stability of existing infras-
tructure are retained.



2 Design

The principal goal of our design is to reduce the context
switching overheads associated with the BPF approach by
moving as much of the packet processing as possible into
the filter machine. In essence, we use BPF as a virtual ma-
chine to execute monitoring applications inside the kernel,
rather than as a tool for demultiplexing packets to appli-
cations. There are two primary restrictions in the current
design of BPF that do not allow this. The first one is that
filters cannot maintain state across invocations (remember
that filter code is invoked with every packet arrival). This
makes it hard to write any BPF “programs” that maintain
state, unless such state is communicated to user-space with
every filter invocation. The second restriction is the lack
of backward jump support, which significantly limits the
development of more sophisticated filters. For example,
looking up a value in a table, or any program that uses
loops cannot be implemented in BPF. We have extended
the BPF filter machine to remove these two restrictions;
we provide persistent memory for each filter, mechanisms
for memory management, and support for safely allowing
backward jumps using lightweight run-time checks.

Adding memory The original BPF filter architecture
involves a very simple filter interpreter that executes
assembly-like instructions; there is an accumulator, an in-
dex register, an implicit program counter, some scratch
memory, and, of course, the actual filter program. The
scratch memory in the original BPF code is small (usually
64 bytes), as it is only meant to be used during a single
filter execution. We have added the ability to have mem-
ory that is maintained between subsequent calls to the BPF
filter code, so that state can be kept.

This persistent memory is accessed using the age-old
concept of bank switching. Two of the unused opcodes
in the original BPF interpreter are redefined to switch the
active memory bank to either the original scratch mem-
ory area, or the persistent memory; their mnemonics are
BPF BSS and BPF BSP (for “Bank Switch to Scratch” and
“Bank Switch to Persistent,” respectively). This allows
the same instructions to be used for accessing the mem-
ory, with all the addressing modes provided by the BPF
code. These, however, are not enough; we add indexed
load and store instructions; thus, when the addressing mode
BPF NDX is used, the memory location pointed to by the
contents of the X register, offset by the immediate operand,
are recalled into or stored from the accumulator. Natu-
rally, before the memory is accessed, the effective address
is checked to verify that it lies within the bounds of what
was allocated, or within the bounds of the scratch mem-
ory as in the original code. Since packet filter code can
be written that effectively discards the copy of the packet
it received, multiple invocations of the filter code can hap-

pen and computations performed based on the contents of
each packet without having to pay the penalty of a con-
text switch to user-mode. Since there is no difference in
the execution speed between scratch memory accesses and
persistent memory accesses, and the scratch memory is not
initialized to anything upon filter invocation anyway, there
is no need to keep switching between the two; if a filter
wants to use persistent memory, it simply bank-switches to
it at the beginning of its execution; some part may be used
as scratch, and some other part as permanent storage. The
code that uses the scratch memory is retained for compat-
ibility with older programs that do not use the persistent
memory feature, so that some scratch memory will always
be present without having to explicitly allocate any.

Persistent memory is allocated for each open instance of
the BPF device (effectively, once per file descriptor since
BPF file descriptors are rarely dup()-ed). This memory is
managed with a set of ioctl() system calls. The first BIOC-
MALLOC call allocates a block of memory and returns a
handle, a small integer that is used by subsequent calls to
refer to the allocated block of memory. Two calls, BIOCM-
READ and BIOCMWRITE are used to read from and write
to the block of memory specified by a handle which is
also passed as an argument. Finally, the BIOCMSWITCH

call sets the active block of memory that is to be used by
the packet filter. There are three options for this call: the
newly switched-to block can be left untouched (to keep
whatever contents it had since the last time it was acti-
vated), set to zeroes, or get a copy of the contents of the
currently-active block. Note that only one such block can
be accessed by the BPF code at any time; the BPF code’s
bank-switching selects between the internal scratch and the
currently-active persistent block. The user-level switching
selects between alternate persistent blocks. This is useful
because the switching happens atomically and definitely
not while a filter is executing; thus we can have a filter exe-
cuting and populating statistics or timestamps in one block
while a user level program is manipulating another, effec-
tively having the equivalent of double-buffering.

The persistent storage can be used for a number of pur-
poses. The most obvious is to use it for keeping statistics
counters, timestamps, etc., which can be periodically read
from a user-level program. Another use is to use part of it
as a look-up table, since the table can be pre-computed by
the user-level program and loaded into the filter. Look-up
tables can also be used to compute complicated functions.

Eliminating branch restrictions Bounding execution
time in BPF is ensured by eliminating backward jumps.
This has the advantage of providing us with an upper bound
for the execution time: linear to the length of the program.
However, such a programming model is hard to program in
and rather limiting. Another possible approach is to ex-
ecute each installed filter as a kernel thread and context



0

10000

20000

30000

40000

50000

60000

70000

010000200003000040000500006000070000

M
ax

im
um

 lo
ss

-f
re

e 
ra

te
 (

pa
ck

et
s 

pe
r 

se
co

nd
)

Filter processing load (instructions per packet)

xPF
BPF

Figure 1: Performance of BPF vs. xPF

switch between threads when they exceed their allocated
time slot. This approach is too heavy weight for our pur-
poses, which is round-robin execution of monitoring func-
tions on incoming packets.

Notice that the filter is effectively an interpreted virtual
machine, with an outer loop doing an “instruction fetch”
at the current “program counter” and interpreting it. Thus,
our solution is to simply have a counter of how many BPF
“instructions” have been executed since the filter started
running, and take an “exception” when the number is ex-
ceeded. The exception handler jumps to a predefined lo-
cation in the filter code, where a cleanup operation can be
performed before terminating the filter; during the execu-
tion of the exception handler, only forward jumps are al-
lowed, so that its execution time is finite.

3 Experiments

A prototype of xPF has been implemented as part of
the OpenBSD [3] operating system. We demonstrate the
performance benefits of xPF and describe three sample fil-
ter programs for NetFlow-like accounting, trajectory sam-
pling, and round-trip time estimation respectively. These
modules were originally implemented on the FLAME ar-
chitecture [4] and were re-implemented in xPF.

3.1 Measurements

For outlining the performance and scalability of xPF,
we have implemented a simple benchmark application that
simply counts packets received by the filter. In standard
BPF, every packet needs to be passed to the application
to increment the counter. Using xPF, the counter is incre-
mented inside the filter, eliminating the need for context
switching for each packet. In addition to incrementing the

counter, we instruct the filter to consume an arbitrary num-
ber of processing cycles, in order to infer the system moni-
toring capacity, as we describe next.

Our test platform consists of two 1GHz Pentium III PCs
with 256MB SDRAM, and 1 Gbit/s Ethernet interfaces
(NetGear GA620 32-bit PCI based with Alteon chipset).
One PC is used as the traffic generator and the other one
runs xPF, the filter described above and instrumentation
tools. We measure the maximum loss-free rate of traffic that
the system can receive and process for different processing
loads per packet. The results are presented in Figure 1,
showing the improvement of xPF which becomes larger as
the traffic rate increases, demonstrating the scalability of
our approach.

3.2 Applications

NetFlow-like accounting Implementing an accounting
package such as NetraMet [10] for providing per-flow ac-
counting similar to NetFlow [11] using BPF requires ev-
ery packet to be copied to user-space. The user-space part
would then take care of looking up the flow associated with
the packet, and incrementing the appropriate counters. It
is possible to perform all computation inside the kernel, by
instrumenting xPF with the appropriate functionality, for
maintaining the flow database, looking up packets and in-
crementing counters. In certain intervals, the packet filter
would need to call the user-space function to collect the
current data and pass them on to the user for further pro-
cessing or storage.

Trajectory sampling Trajectory sampling, developed by
Duffield and Grossglauser[13], is a technique for coor-
dinated sampling of traffic across multiple measurement
points, effectively providing information on the spatial flow
of traffic through a network. The key idea is to sample
packets based on a hash function over the invariant packet
content (e.g., excluding fields such as the TTL value that
change from hop to hop) so that the same packet will be
sampled on all measured links. Network operators can
use this technique to measure traffic load, traffic mix, one-
way delay and delay variation between ingress and egress
points, yielding important information for traffic engineer-
ing and other network management functions. Although
the technique is simple to implement, we are not aware
of any monitoring system or router implementing it at this
time.

We have implemented trajectory sampling as an xPF fil-
ter that works as follows. First, we compute a hash func-
tion ���	��

��������
�������� on the invariant part ���	��
 of the
packet. If ������
���� , where � ��� controls the sampling
rate, the packet is not processed further. If ���	�!

�"� we
compute a second hash function #$�	��
 on the packet header
that, with high probability, uniquely identifies a flow with a



label (e.g., TCP sequence numbers are ignored at this stage,
since they change over the lifetime of the TCP connection).
If this is a new flow, we create an entry into a hash table,
storing flow information (such as IP address, protocol, port
numbers etc.). Additionally, we store a timestamp along
with ���	�!
 into a separate data structure. If the flow already
exists, we do not need to store all the information on the
flow, so we just log the packet. For the purpose of this
study we did not implement a mechanism to transfer logs
from the kernel to a user-level module or management sys-
tem; at the end of the experiment the logs are stored in a
file for analysis.

Passive RTT estimator We have implemented a simple
application for measuring the round-trip delays observed
over a network link by TCP connections. Round-trip de-
lays are an important metric for understanding end-to-end
performance, mostly due to its central role in TCP con-
gestion control[16]. Additionally, measuring the round-trip
times observed by users over a specific ISP provides a rea-
sonable indication of the quality of the service provider’s
infrastructure, as well as its connectivity to the rest of the
Internet. Finally, observations on the evolution of round-
trip delays over time can be used to detect network anoma-
lies on shorter time scales, or to determine the improvement
(or deterioration) of service quality over longer periods of
time. For example, an operator can use this tool to de-
tect service degradation or routing failures in an upstream
provider, and take appropriate measures (e.g., redirecting
traffic to a backup provider), or simply have answers for
user questions.

The implementation of this application is fairly simple
and efficient. We watch for TCP SYN packets passing
through the monitored link, indicating a new connection
request, and then watch for the matching TCP ACK packet
in the same direction. The difference in time between these
two packets is a reasonable approximation of the round-trip
time between the two ends of the connection. For every
SYN packet received, we store a timestamp into a hash-
table. As the first ACK after a SYN usually has a sequence
number which is the SYN packet’s sequence number plus
one, this number is used as the key for hashing. Thus, in
addition to watching for SYN packets, the application only
needs to look into the hash table for every ACK received.
The hash table can be appropriately sized depending on the
number of flows and the required level of accuracy.

4 Related Work

The concept of a packet filter was first proposed by
Mogul et al. more than ten years ago in [19]. There has
been extensive research in the area since then, trying to re-
fine the filtering model. The most widely used packet fil-

ter is BPF [18] which uses a register-model instruction set,
unlike the stack machine model used by [19]. Each filter
is run on every incoming packet which imposes high over-
head on user-level programs using it. The Mach Packet Fil-
ter (MPF) [24] enhances the BPF model by demultiplexing
filter specifications to recognize when two filters use simi-
lar patterns. If MPF detects similarities, it merges the pred-
icates forming a single predicate. PathFinder [7] improved
on MPF with a re-designed filtering engine that was better
matched to the pattern-matching transformation. Another
approach, DPF [14], employs dynamic-code generation to
exploit run-time knowledge to achieve even better perfor-
mance. Finally, BPF+ [8] allows for packet filters to be
expressed in a high level language and be compiled down
to native code using just-in-time compilation. It utilizes a
verifier to guarantee the safety properties of the resulting
code.

There is a fundamental difference in the goals of our en-
hanced BPF and in the scope of the above efforts. The
enhancements to BPF proposed in this paper provide capa-
bilities that are specific to the application domain of net-
work monitoring, where the BPF machine is used more to
compute rather than filter. Hence, although some specific
optimizations such as the just-in-time compiler of [8] could
easily be incorporated to make network monitoring appli-
cations even more efficient, the above efforts are mostly
orthogonal to our enhanced BPF design.

5 Summary and concluding remarks

We have shown that efficient network monitoring is pos-
sible, to some extent, without introducing complex new
infrastructure. This is accomplished using simple exten-
sions to the Berkeley Packet Filter (BPF) that allow the
filter mechanism to perform monitoring functions. In this
way, monitoring functions can safely and efficiently exe-
cute in the system kernel, hereby eliminating the system
overheads associated with context switching. xPF can be
used to support existing and new applications while allow-
ing commodity systems to satisfy the growing demand for
network monitoring at increasing network speeds.

Acknowledgements

This work was supported by the DoD University Re-
search Initiative (URI) program administered by the Office
of Naval Research under Grant N00014-01-1-0795, and
DARPA under Contracts F39502-99-1-0512-MOD P0001
and F30602-01-2-0537. We would also like to thank the
anonymous reviewers for their constructive review, and
Jonathan Smith for his valuable comments and suggestions
throughout the course of this work.



References

[1] EtherReal. http://www.etherreal.org/.

[2] Tcpdump/Libpcap Web page.
http://www.tcpdump.org/.

[3] The OpenBSD Operating System.
http://www.openbsd.org/.

[4] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioan-
nidis, M. B. Greenwald, and J. M. Smith. Efficient
packet monitoring for network management. In Pro-
ceedings of the 8th IEEE/IFIP Network Operations
and Management Symposium (NOMS), April 2002.

[5] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, and
J. M. Smith. Practical network applications on a
leightweight active management environment. In
Proceedings of the 3rd IFIP International Work-
ing Conference on Active Networks (IWAN), October
2001.

[6] J. Apisdorf, k claffy, K. Thompson, and R. Wilder.
OC3MON: Flexible, Affordable, High Performance
Statistics Collection. In Proceedings of the 1996 LISA
X Conference, October 1996.

[7] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peter-
son, and P. Sarkar. Pathfinder: A pattern-based packet
classifier. In Proceedings of the First USENIX Sym-
posium on Operating System Design and Implemen-
tation, pages 115–123, November 1994.

[8] A. Begel, S. McCanne, and S. L. Graham. BPF+:
Exploiting global data-flow optimization in a gener-
alized packet filter architecture. In Proceedings of
SIGCOMM, pages 123–134, August 1999.

[9] B. Bershad et al. Extensibility, safety and perfor-
mance in the SPIN operating system. In Proc. 15-th
Symposium on Operating Systems Principles, pages
267–284, December 1995.

[10] N. Brownlee. Traffic Flow Measurement: Experi-
ences with NeTraMet. RFC2123, March 1997.

[11] Cisco Corporation. NetFlow services and applica-
tions. http://www.cisco.com/.

[12] L. Deri and S. Suin. Effective Traffic Measure-
ment using ntop. IEEE Communications Magazine,
38(5):138–145, May 2000.

[13] N. Duffield and M. Grossglauser. Trajectory sampling
for direct traffic observation. In Proceedings of SIG-
COMM, pages 271–282. August 2000.

[14] D. R. Engler and M. F. Kaashoek. DPF: Fast, flexible
message demultiplexing using dynamic code gener-
ation. In Proceedings of SIGCOMM, pages 53–59,
August 1996.

[15] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch,
and k claffy. The Architecture of CoralReef: An Inter-
net Traffic Monitoring Software Suite. In PAM 2001
Workshop, April 2001.

[16] T. V. Lakshman and U. Madhow. The performance
of TCP/IP for networks with high bandwidth-delay
products and random loss. IEEE/ACM Transactions
on Networking, 5(3):336–350, June 1997.

[17] G. R. Malan and F. Jahanian. An Extensible Probe
Architecture for Network Protocol Performance Mea-
surement. In Proceedings of SIGCOMM, September
1998.

[18] S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-level Packet Capture. In
Proceedings of the Winter 1993 USENIX Conference,
pages 259–270, January 1993.

[19] J. Mogul, R. Rashid, and M. Accetta. The Packet Fil-
ter: An Efficient Mechanism for User-level Network
Code. In Proceedings of the Eleventh ACM Sympo-
sium on Operating Systems Principles, pages 39–51,
November 1987.

[20] J. C. Mogul and K. K. Ramakrishnan. Eliminating
receive livelock in an interrupt-driven kernel. ACM
Transactions on Computer Systems, 15(3):217–252,
August 1997.

[21] V. Paxson. Bro: a system for detecting network
intruders in real-time. Computer Networks, 31(23-
24):2435–2463, 1999.

[22] M. Roesch. Snort - Leightweight Intrusion Detection
for Networks. In Proceedings of the 1999 LISA Con-
ference, November 1999.

[23] Steve Muir and Jonathan Smith. AsyMOS - An Asy-
metric Multiprocessor Operating System. In Pro-
ceedings of the 1998 IEEE 1st Conference on Open
Architectures and Network Programming (OPE-
NARCH’98), April 1998.

[24] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B.
Moss. Efficient packet demultiplexing for multiple
endpoints and large messages. In Proceedings of the
1994 Winter Usenix Conference, pages 153–165, Jan-
uary 1994.


