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Abstract. In this paper, we propose a novel part-pair representation
for part localization. In this representation, an object is treated as a col-
lection of part pairs to model its shape and appearance. By changing the
set of pairs to be used, we are able to impose either stronger or weaker
geometric constraints on the part configuration. As for the appearance,
we build pair detectors for each part pair, which model the appearance
of an object at different levels of granularities. Our method of part local-
ization exploits the part-pair representation, featuring the combination
of non-parametric exemplars and parametric regression models. Non-
parametric exemplars help generate reliable part hypotheses from very
noisy pair detections. Then, the regression models are used to group the
part hypotheses in a flexible way to predict the part locations. We eval-
uate our method extensively on the dataset CUB-200-2011 [32], where
we achieve significant improvement over the state-of-the-art method on
bird part localization. We also experiment with human pose estimation,
where our method produces comparable results to existing works.

Keywords: part localization, part-pair representation, pose estimation

1 Introduction

As a fundamental problem in computer vision, object part localization has been
well studied in the last decade. Previous methods have been applied to different
tasks, such as facial landmark detection [22, 9, 16, 10, 3, 7], human pose estima-
tion [26, 19, 34, 24, 25], and animal part localization [2, 6, 20, 8]. In this paper, we
use birds and humans as the test cases to design a unified framework for object
detection and part localization, further improving the performance.

Existing works mainly focus on two directions: one is to build strong part
detectors, and the second is to design expressive spatial models. To model the
appearance of local parts that are variable and inherently ambiguous, mixture
of components [34, 36], and mid-level representations [24, 25] are used. As for the
spatial model, pictorial structure [18] and its variants have been proved to be
very effective in different domains including human pose estimation. However,
the pair-wise constraints in pictorial structure are sometimes not strong enough
to combat detection noise, as shown in [20]. As a non-parametric spatial model,
exemplar [3, 35, 20] has great success on the human face and birds. But as shown
in Sec. 6.3, [20] does not work very well on the human pose, presumably due to
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Fig. 1. Illustration of our method. (a) A testing image. (b) Pair detections for differ-
ent pairs in different orientations. Each dashed line denotes a detected part pair. (c)
Exemplar-conditioned part response maps. The exemplar is shown on the right side
of the testing sample. (d) Candidate part detections. (e) Predicted part configuration.
The brightness of colors indicates the confidence. Please see Fig. 6(a) for the color code

insufficient training exemplars and the limitations of the Consensus of Exemplars
approach.

To better model the appearance and shape of an object, we propose part-
pair representation where the object is represented as a set of part pairs. For
the appearance, we build an ensemble of pair detectors, each of which targets
a pair of parts. For the shape, we use the orientations and scales of the pairs
to represent the global part configuration. The part-pair representation has two
benefits. First, the ensemble of pair detectors cover overlapping regions on an
object at different levels of granularities, thus capturing rich visual information.
In spirit, pair detectors share some similarities with Poselet detectors [5]. But
as pair detectors explicitly target pairs of parts, they are more suitable for our
part-pair representation. Second, as the part-pair representation uses a complete
graph to connect the parts, we have the luxury of adjusting the set of pairs to
be considered when enforcing geometric constraints, making it either stronger
(more rigid) or weaker (more flexible). Such flexibility is missing in the original
exemplar-based models [3, 20].

Using the part-pair representation, our method harnesses non-parametric
exemplars and parametric models. As shown in [3, 20], the exemplars help enforce
relatively strong geometric constraints to suppress false part detections. But
our instantiation of the idea is quite different, as we only expect to obtain an
accurate estimation for a particular part, rather than for the global shape. After
obtaining such part-centric hypotheses, the parametric regression models score
pair-wise hypotheses to select the best ones to infer the global configuration.
Such composition is flexible, as it only uses a subset of part predictions from
each hypothesis that are likely to be correct.
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In this paper, we use birds as the example to explain our method. Fig. 1
illustrates the pipeline of our method. Given a testing image, pair detectors
scan the images over scales (Sec. 3). Exemplar-conditioned super part detectors
are constructed, generating hypotheses for each part (Sec. 4). These hypotheses
are then integrated to predict the global part configuration through parametric
regression models (Sec. 5).

Our work makes the following contributions:

1. We propose a novel part-pair representation to model the rich visual and
geometric features of an object.

2. We show how to apply the part-pair representation to localize individual
parts using an exemplar-based framework. It generates reliable part hypothe-
ses, facilitating the subsequent procedure.

3. We design a flexible strategy to integrate the part hypotheses.
4. Our method produces state-of-the-art results on bird part localization, as

well as comparable results on human pose estimation.

2 Related Work

An important component in part localization is the appearance model, which
has been studied in the context of object detection. Haar-like wavelets have
been used in AdaBoost classifier [31] for human face detection. Subsequently,
the paradigm of Linear SVMs trained on HOG features proved very popular [11,
5, 17]. A sufficiently fast non-linear detector which combines soft cascade with
integral channel features is studied in [15, 14, 13]. Higher-level features have also
shown promising results on object detection [27]. Recently, deep neural network
has been applied to pedestrian detection and general object detection [23, 30]. In
our work, we follow [14, 13] to build pair detectors that capture the appearance
of geometrically rectified pair of parts. Note that our pair detectors differ from
“pairs” of detectors in [28] which capture the mutual position of two indepen-
dently learned part detectors.

Various shape models have been proposed in facial landmark detection. Sta-
tistical shape models [22, 9, 21] use multivariate Gaussian distribution to model
the shape and appearance of a face. To better capture the shape and appear-
ance variations, Constrained Local Models [3, 1, 35] constrain the global shape
on top of local part detections, while tree-structured models jointly optimize the
appearance and spatial terms to infer the part locations [18, 16, 36]. Shape re-
gression [7] also works well on the human face, which is attributed to the strong
correlation between low level features like pixel values and the shape increment.

As for human pose estimation, the tree-structured model has gained favor due
to its generalization ability and efficiency. More importantly, the tree structure
fits the kinematic skeleton of the human body, enabling effective modeling of
the spatial relations. Starting from the work of [18], variants of the method
have been developed [26, 19, 34, 29, 24, 25]. To learn the model with large-scale
datasets, a fast structured SVM solver is introduced in [6]. Recently, Poselet
detectors are incorporated to capture additional mid-level information [33, 24,
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25]. [33] designs a complex hierarchical model by organizing the Poselets in a
coarse-to-fine hierarchy. [24, 25] extends the pictorial structure by using Poselet
dependent unary and pairwise terms. Our pair detectors share some similarities
with the original Poselet detectors [5], but as pair detectors explicitly target
pairs of parts rather than a random set of multiple parts, they can be easily
manipulated to predict the part locations under the part-pair representation.

However, the tree-structured model does not work very well in the case where
the parts to be estimated do not follow a kinematic tree, and the object resides in
a cluttered scene with unknown position and size, as shown in [20]. The reason
is that the first-order spatial constraints from tree-structured models are not
strong enough to combat noisy detections. [20] manages to impose stronger and
more precise constraints through exemplar-based models. But the rigidity of the
models and the requirement of sufficiently large number of training samples limit
its efficacy in human pose estimation, which will be shown in Sec. 6.3.

To combine the merits of tree-structured models and exemplars, we propose
a novel part-pair representation. Under such representation, we employ exem-
plars to generate high quality hypotheses for each part. Then we design para-
metric models that exploit part-pair scores to combine these hypotheses in an
optimal way. Our method demonstrates good performance on two challenging
datasets [32, 19].

3 Part-Pair Representation

Unlike part-based models that treat an object as a collection of parts, the part-
pair representation breaks down the object into part pairs, forming a complete
graph connecting the parts. Under such representation, the shape and appear-
ance modeling focuses on the pairs (i.e., the edges of the graph).

3.1 Shape Modeling

Assuming an object X has n parts with xi denoting the location of part i, then
part-pair representation treats X as a set of n(n−1)/2 part pairs {(xi, xj)|i, j ∈
[1, n], i 6= j}. For each pair (i, j) of X, we record its center location cij , orien-
tation θij , and length lij . Ideally, as any set of n − 1 pairs that span all the
parts uniquely define the global part configuration, the other pairs seem to be
redundant. In practice, such redundancy allow us to adjust the strength of the
enforced geometric constraints by changing the set of pairs to be considered,
which will be addressed in Sec. 4 and Sec. 5.

3.2 Appearance Modeling

We build pair detectors to model the appearance of each pair (pair detectors
can be seen as specialized Poselet detectors [5], aiming at localizing two parts
simultaneously). These detectors cover different regions on an object at different
levels of granularities, with possibly significant overlap. For this reason, we have
a rich representation of the object appearance.
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Fig. 2. Training samples after normalization. The left figure is for the pair (Left Eye,
Belly), and the right figure corresponds to (Left Leg, Back). In each figure, sample
frequencies over 15 orientations are visualized as blue sectors in the pie chart. The red
arrow superimposed over the sample image of each figure indicates the pair orientation

Mixtures of Pair Detectors. To deal with rotation variations of the pairs,
we discretize the rotation space in 15 different bins, corresponding to a span of
24 degrees. We then build one detector for each pair and each orientation1. For
efficiency, we measure the sample frequencies in each orientation bin, and ignore
the bins with frequencies smaller than 1%. So we have 776 rather than 1, 575
detectors altogether for the bird dataset [32] where the number of parts is 15.

Inspired by POOF [4], we normalize the samples for each pair detector by
rotating and rescaling the images, so that they are aligned at the two corre-
sponding parts. Please see Fig. 2 for some aligned examples. For rotation, the
rotation angle is determined based on the center of the target orientation bin.
For rescaling, we rescale the samples of different pairs to different reference sizes,
as they contain different granularities of information. For example, (Eye, Fore-
head) pair is typically much smaller than (Eye, Tail) pair in an image, resizing
the (Eye, Tail) samples to a very small size may lose useful information.

To automate the process of deciding the reference sizes, we first estimate
the average length l̄ for each pair from the training data. After that, we know
the minimum and maximum average lengths l̄min and l̄max among all the pairs.
Assuming that the normalized length lies in the range [l̂min, l̂max], we use a

linear function f(l) to map the range [lmin, lmax] to [l̂min, l̂max]. Therefore, the

reference size for pair (i, j) is f(l̄ij). We empirically set l̂min = 24 and l̂max = 52
to ensure reasonable image quality and avoid up-sampling the images too much.

1 In our work, we use a single non-linear detector to handle pose & appearance vari-
ations within the same orientation bin. Alternatively, one can build multiple linear
detectors (e.g., Linear SVM + HOG) to explicitly decompose the visual complexity.
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Training and Testing. After normalization, we use the toolbox [12] to extract
the first-order integral channel features within an outer bounding box (i.e., fea-
ture window) that contain both parts inside. Note that the feature window is
placed at the center of the corresponding pair. We randomly generate up to
2, 000 rectangles to compute the features, and follow [13] to build a soft cascade
detector with constant rejection thresholds. The details are as follows.

We build a cascade with T = mT0 weak classifiers, and each weak classifier
is a depth-two decision tree. m = 30 is the number of rounds of bootstrapping.
After each round, we mine up to 400 hard negatives, and increase the number of
weak classifiers by T0 = 50 to build an AdaBoost classifier. Instead of performing
a rejection test at every weak classifier, we check it after every T0 weak classifiers
(to accumulate enough observations). Assuming the score of a sample s at the
kT0-th weak classifier is Hk(s) =

∑
j≤kT0

αjhj(s) where αj > 0 and hj(s) is the
output of the j-th weak classifier, then the threshold is set as τk = b

∑
j≤kT0

αj
(b = 0.45 in our experiment).

At the testing stage, we build an image pyramid with 6 scales per octave,
and apply the pair detectors in a sliding-window paradigm (with stride 4 pix-
els). To facilitate the following procedures, we normalize the scores so that
an early rejected sample will not be penalized too much. To do this, we use

H̄k(s) = Hk(s)∑
j≤kT0

αj
, and the normalized score H̄k(s) is within the range [0, 1]

(early rejected samples will have scores below 0.45). Note that we do not apply
Non-Maximum Suppression to the detection results; instead, we cache them as
response maps at each scale.

4 Super Part Detector

Our method of part localization follows a bottom-up paradigm, and an important
step is to generate reliable estimations for each part. In detection and localization
tasks, the output from a single detector is usually very noisy. Therefore, addi-
tional contextual information such as the output from other related detectors
is needed. Part-pair representation allows us to exploit such context, featuring
the use of exemplar-based models. The motivation is that there are multiple
pair detectors sharing the same part, and exemplars guide which pair detectors
should be used (a way of imposing geometric constraint). In [3, 20], the basic
element of an exemplar is the part, and exemplars are used to dictate plausible
global configuration of parts. In building super part detector, however, the basic
element of an exemplar is the part pair, and exemplars provide an example of
relevant pairs to a particular part (please see Fig. 3(a)).

4.1 Part Response Maps

Given the detection output from the pair detectors (in the form of pair response
maps), our goal is to generate the response map for each part. The idea is similar
to Hough Voting: a part pair activation votes for the positions of its two related
parts. However, to gather the votes for a particular part i, exemplars are used
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Beak Left WingBeak & Left Wing

Nape Left WingNape & Left Wing

Exemplar 1

Exemplar 2

(a) Part-pair graph (c) Part response maps (b) Shifted pair response maps  (d) Candidate Detections

Fig. 3. (a) shows the part-pair representation as a complete graph for an object with 6
parts. To build the super part detector for a part (solid circle), only the pairs sharing
the part are considered (solid lines). (b) illustrates the shifting of pair response maps.
(c) shows the response maps for Left Wing conditioned on two exemplars. (d) shows
the candidate detections for Left Wing

to specify which pairs, orientations, and scales should be used. Assuming Xk is
an exemplar being scaled to a particular size, we can obtain the response map
for part i conditioned on Xk as follows.

Let Rij(x) denote the response maps for pair (i, j) where x is the pixel
location in the testing image, then the exemplar Xk specifies the particular
response map to use (at certain scale and orientation), which is denoted as
Rijk (x). To vote for part i based on the detections of pair (i, j), we can simply

shift Rijk (x) to obtain the corresponding map for part i, as illustrated in Fig. 3(b):

rijk (x) = Rijk (x+ o), o = cijk − x
i
k, (1)

where o is the shifting offset, computed from ci,jk – the center location of pair
(i, j), and xik – the location of part i. In our implementation, we quantize the
offset o based on the discretization of pair rotations after normalizing the scales
(please refer to Sec. 3.2). During testing, we pre-shift and cache the response
maps using the quantized offset o. Therefore, given an exemplar Xk, we can
easily retrieve its corresponding map rijk (x).

As exemplar Xk tells all the visible pairs (i.e., both parts of a pair should be
visible) sharing part i, the part response map for part i is then estimated as

Rik(x) =
1

N i
k

∑
j

rijk (x), (2)

where N i
k is the number of visible pairs containing part i. Assuming there is a

detector that directly generates such response map, then we name it as Super
Part Detector, which is conditioned on a particular exemplar. Fig. 3(c) shows
two such maps from two exemplars.
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4.2 Part Hypotheses

In this section, we will describe how to generate part hypotheses from the super
part detectors. As described in Sec. 4.1, different exemplars give us different
super part detectors for part i. However, only the detectors from exemplars that
match the testing sample at the part are meaningful. By “match at the part”, we
mean that the exemplar has similar configuration of parts in the neighborhood
of the target part; by “meaningful”, we mean that the detector has reasonably
high score at the correct part location rather than the background. Therefore,
we simultaneously find the good exemplars and possible part locations.

A reasonable indicator about the goodness of an exemplar is the peak value
of its corresponding part response map. So, for part i, score of Xk is

Sik = max
x

Rik(x). (3)

To search for good exemplars, a naive way is to go through all the training
exemplars, rescale them to each possible scale, evaluate their scores with Eq. 3
and keep the top-scoring ones. This process can be made faster using a heuristic
strategy: we compute the upper bound of Sik with much lower cost, and obtain an
initial set of promising exemplars. Then we use Eq. 3 to recompute their scores.
The upper bound is computed as Ŝik = 1

Ni
k

∑
j maxx r

ij
k (x), where the addend

can be reused to evaluate different exemplars. In our experiment, we keep the
best 100 exemplars for part i, and extract up to five local maximas from each
corresponding part response map. The locations and scores of these maximas
form the candidate part detections as in Fig. 3(d).

We have a by-product from the above procedure. As the candidate part
detections indicate where to place the exemplar in the image, we also obtain the
predictions for the other parts. For instance, given Xk and a candidate detection
of part i at x0, the location of part j is x0−xik+xjk with confidence value rijk (x0).

4.3 Discussion

The super part detector demonstrates one way of using part-pair representation,
where a subset of up to n− 1 pairs are used to impose the geometric constraints
(please see Fig. 3(a)). Because multiple pair detections are accumulated, the
super part detector is tolerable to the noise from certain pairs. Because of the
discretization in the spatial domain, rotation space, and scale space, the super
part detector is also tolerable to the displacement between the exemplar’s parts
and the testing sample’s parts, especially for the distant parts with respect to
the target part. For these reasons, the strength of geometric constraint from
exemplars is weaker than that in [3, 20]. In other words, exemplars that do not
match the testing sample globally can still be useful in localizing a particular
part.
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5 Predicting Part Configuration

Recall that in Sec. 4.2, we obtain a set of hypotheses for each part. Each hy-
pothesis consists of the candidate part detection, as well as the corresponding
exemplar. Then we need to use the hypotheses to predict the global part config-
uration. We have two approaches, one is rigid and the other if more flexible.

5.1 Rigid Method

The idea is similar to [20]: assuming we place the exemplar Xk at a position in
the testing image, then we evaluate the overall score of the exemplar as Sk =
1
Nk

∑
i,j R

ij
k (cijk ), where Nk is the number of visible pairs.

To predict the global configuration, we evaluate the overall scores for all
the candidate exemplars (i.e., the exemplars placed in the testing image at the
corresponding candidate part locations). Once we obtain the best N = 30 ex-
emplars, we follow [20] to predict the visibilities and locations of all the parts
using Consensus of Exemplars (CoE). As can be seen here, the method is very
rigid, expecting the exemplars to match the testing sample globally; also, the
strength of geometric constraints is very strong, as all the pairs in the part-pair
representation are used. Therefore, it may fail if good matches to the testing
sample do not exist in the training data, which is likely to happen when we do
not have a large set of representative training samples.

5.2 Flexible Integration

One limitation of the rigid method is that all the parts from a single exemplar
are taken into consideration at the consensus stage, some of which are purely
distractors. The simple non-linear consensus operation is likely to fail if such
noise is above a certain level. In our flexible method, we attempt to filter out
the noise in a more effective way.

To do this, we construct a number of groups of part hypotheses, with at most
one hypothesis corresponding to a particular part in each group. We evaluate
these groups, and use the best one to predict the global part configuration. As
the top-scoring hypotheses already have very high accuracy as shown in Tab. 1,
we only keep a few of them (15 in our experiment) for each part.

Grouping Hypotheses. Following the discussion in Sec. 4.3, we first define
the UR (uncertainty region) for each part inherited from an exemplar in a part
hypothesis. Assuming we have a hypothesis for part i, then the uncertainty region
for part j is a circle with radius equal to a fraction (20% in our experiment)
of the distance between part i and j. Given this definition, we claim that two
part hypotheses agree on a particular part if its two corresponding URs are close
enough to each other (based on the center distance divided by the larger radius).
To control the strength of geometric constraint, we require that two hypotheses
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Fig. 4. (a) shows a Back hypothesis, which predicts the locations of all the parts in the
form of uncertainty regions marked by white circles. The corresponding exemplar is
shown on the right. (b) shows a Crown hypothesis. (c) shows eight parts on which the
two hypotheses in (a) and (b) agree. (d) shows the features of this pair of hypotheses

to be paired should agree on at least N parts including themselves, where N can
be tuned. Fig. 4 shows two part hypotheses and the parts they agree on.

To make the problem tractable, we group the hypotheses in a pair-wise man-
ner. To evaluate the goodness of two paired hypotheses for parts i and j, we
design a feature vector with 2× n entries where n is the total number of object
parts. The first n entries correspond to the scores of part pairs in the hypothesis
of part i, with the k-th value to be the pair score of (i, k). The second n entries
are formed in the same way. We zero out the entries for the parts the two hy-
potheses do not agree on. One example of such feature is shown in Fig. 4(d).
Using a held-out validation set, we train a logistic regression model that map the
features to the percentage of correctly predicted parts: if two hypotheses agree
on m parts, and the ground-truth locations for those parts are close enough to
the mean predictions, then the percentage is m

n . As the features carry semantic
meaning, we build different regression models for different pairs of parts.

The pair-wise grouping procedure is as follows. Initially, each part hypothe-
sis forms a group. Starting from the initial group, we sequentially add another
hypothesis that can be paired with an existing hypothesis in the group. We keep
track of the parts the newly paired hypotheses agree on (by marking them as
detected), and subsequent pairing should have new parts detected. The proce-
dure terminates when there is no more hypothesis to add. In the end, we obtain
a number of groups. The score of each group is computed as S = 1

M

∑
p αps(p),

where p is the paired hypotheses, s(p) is the output of the regression model, M
is the total number of detected parts and αp is the percentage of newly detected
parts from the parts the paired hypotheses agree on.

Predicting the Part Locations. Given the highest-scoring group, we directly
use the candidate part detections from the hypotheses as the final results; for
each of the other detected parts, we use the mean prediction from the correspond-
ing paired hypotheses; for each of the undetected parts, if there are hypotheses
in this group having a related part pair with scores above 0.5, then we use the
predicted location with the highest pair score; Otherwise, the part is marked as
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invisible. If there does not exist group with more than one hypothesis (which is
unlikely to happen), we use the part predictions from the exemplar in the best
part hypothesis. As can be seen here, the parameter N controls the strength of
geometric constraints. Smaller N indicates weaker constraints as it allows more
dissimilar exemplars to contribute by only using their promising part predictions.
In our experiment, we find N = 5 gives the best result.

6 Experiments

We evaluate our part localization method on the bird dataset CUB-200-2011 [32]
and the human pose dataset LSP (Leeds Sports Poses) [19]. For all the experi-
ments, we use the train/test split provided by the dataset. We withhold 15% of
the training data as the validation set.

To evaluate the localization performance, we mainly use the PCP measure
(Percentage of Correct Parts). For bird part localization, a correct part estima-
tion should be within 1.5 standard deviation of an MTurk workers click from
the ground truth part location. For human pose estimation, correct part should
have end points within 50% of the part length from the ground truth end points.

6.1 Performance of Super Part Detector

To have an idea about the importance of the super part detector in our method,
we evaluate its performance in localizing a particular part, and compare it with
that of regular part detector and our pair detector. In the experiment, we do
not try to reach an optimal solution for all the parts jointly. Instead, we predict
the location of a single part, assuming it’s visible.

For the regular part detector, we use the pose detectors designed by [20],
where there are 200 detectors for each part. At the testing stage, the best five
activations across all the pose detectors are outputted. As for the pair detector,
recall that the activation of a pair detector casts a vote for its related parts. As
such, to localize a part, we run all the relevant pair detectors (up to 14× 15 =
210 detectors), and collect the highest-scoring predictions. For the super part
detector, we use the best five candidate part detections obtained in Sec. 4.2.
Note that we do not use Non-Maximum Suppression for all the detectors, and
the activations are just local maximas in the response maps.

The PCPs for each part as well as the total PCP are listed in Tab. 1. We
also report the top-5 accuracy, where at least one of the best five predictions
is correct. From the comparison between pair detectors and pose detectors, we
can see that using the different features and classifiers from [20] does not give
us much better raw detectors. However, after building the super part detector
from the pair detectors, we achieve significant improvement. This is reasonable
as the super part detectors are context-aware. What we want to emphasize is
that by imposing geometric constraints at an early stage, we have high quality
part hypotheses which make it promising to design effective integration method.
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Table 1. Comparison of different detectors in localizing individual parts. The super
part detectors produce very reliable part activations. From left to right, the parts are:
Back, Beak, Belly, Breast, Crown, Forehead, Eye, Leg, Wing, Nape, Tail, and Throat

PCP Ba Bk Be Br Cr Fh Ey Le Wi Na Ta Th Total

Part 23.4 23.8 31.1 28.1 35.0 28.8 11.5 17.3 18.3 29.4 10.0 34.7 23.9
Pair 27.2 28.4 39.7 31.8 21.4 28.4 5.3 14.5 13.2 38.6 17.9 44.7 25.1
SupP 62.2 57.3 66.4 61.4 74.2 65.6 40.1 40.9 53.5 66.9 34.9 71.5 57.1

Part-top5 49.1 47.2 56.2 55.7 62.3 51.1 23.9 37.9 43.9 53.5 26.6 59.1 46.7
Pair-top5 50.1 54.0 66.1 57.0 44.5 49.4 15.2 29.6 31.8 64.7 37.0 68.7 46.1
SupP-top5 76.9 75.8 79.8 77.1 86.3 81.7 66.0 56.1 66.9 81.4 48.3 83.8 72.5

Table 2. Comparison of part localization results on CUB-200-2011 [32]. Our method
outperforms state-of-the-art techniques on all the parts

PCP Ba Bk Be Br Cr Fh Ey Le Wi Na Ta Th Total

DPM [6] 34.6 26.0 42.0 37.0 47.9 28.7 48.2 - 55.0 41.8 22.4 42.4 40.7
CoE [20] 62.1 49.0 69.0 67.0 72.9 58.5 55.7 40.7 71.6 70.8 40.2 70.8 59.7
Ours-rigid 59.7 59.0 69.5 67.3 77.1 72.2 67.9 39.9 69.7 75.2 34.7 76.7 63.1
Ours-flex 64.5 61.2 71.7 70.5 76.8 72.0 70.0 45.0 74.4 79.3 46.2 80.0 66.7

6.2 Predicting the Part Configuration

We evaluate our rigid and flexible methods (i.e., Ours-rigid and Ours-flex) on
predicting the global part configuration, including the visibilities. We compare
with DPM implemented by [6] and exemplar-based method [20].

Tab. 2 shows the comparisons. DPM [6] has much lower accuracy possibly for
two reasons: there is very large intra-class variability to be captured by few DPM
components (14 detectors per part); the first-order spatial constraints in DPM
are not strong enough to combat the detection noise. Although Ours-rigid does
not outperform CoE [20] by a large margin, the improvement is still remarkable.
First, we do not use subcategory labels; Second, the pair detectors does not
have better performance than pose detectors as shown in Tab. 1. We attribute
such improvement to the aggregation of a much richer set of appearance models
that largely suppresses the false detections from individual detectors. Ours-flex
further improves the overall PCP over Ours-rigid by about 3.6%. It clearly shows
the benefit of adding some flexibility to the estimation of global configuration
on top of the part hypotheses. Fig. 5 shows similar comparisons. As exemplars
usually sacrifice Tail to match other parts, the improvement of Ours-flex over
Ours-rigid on Tail is very large.

Fig. 6(a) shows some qualitative results. We can see that Ours-rigid fails
to accurately localize the parts with large deformation. Because the constraints
in the rigid method strongly restrict the prediction of part configuration, the
estimations from Ours-rigid respect the exemplars much more than the particular
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Fig. 5. Detection rates of Back, Beak, and Tail given varying degrees of localization
precision. 1.5 is the threshold for a correct detection

Table 3. Comparison of part localization results on LSP dataset [19]. Our flexible
method generates comparable results to the state-of-the-art works

PCP Torso Upper leg Lower leg Upper arm Forearm Head Total

Strong-PS [25] 88.7 78.8 73.4 61.5 44.9 85.6 69.2
Poselet-PS [24] 87.5 75.7 68.0 54.2 33.9 78.1 62.9
CoE [20] 83.4 69.0 61.7 47.5 28.1 79.3 57.5
Ours-rigid 84.2 69.3 61.5 48.7 28.5 79.9 58.0
Ours-flex 87.6 76.4 69.7 55.4 37.6 82.0 64.8

testing image, which is problematic when the exemplars do not match the testing
sample well. Our flexible method mitigates this issue by allowing more flexible
composition of part hypotheses.

Similar to [20], we conduct the experiment of species classification using the
localized parts from our method. On the 200-species dataset, the mAP (mean
average precision) is 48.32%; on the 14-species subset, the mAP is 65.18%.

6.3 Human Pose Estimation

We also apply our method to human pose estimation using LSP dataset [19].
Similar to [25], we use observer-centric (OC) annotations. The pair detectors
are trained in the same way as those for bird dataset, and altogether we have
796 pair detectors. We also implement [20] with only pose consistency on this
dataset.

The quantitative results are listed in Tab. 3. [20] and Ours-rigid do not work
well on human pose estimation. Compared with the bird dataset, the number
of training samples is much smaller in LSP, and human body is generally more
articulated. These factors make the Consensus of Exemplar framework less ef-
fective in this experiment. Also note that the rigid method has only marginal
improvement over [20]. One possible reason is that the images in the LSP dataset
have already been rescaled and cropped (unlike [32]), making the effect of better
suppressing false detections not prominent.

Tab. 3 also shows that Ours-flex method significantly improves over Ours-
rigid. It also outperforms one state-of-the-art technique [24]. Compared with the
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Back Beak

ThroatTailRight WingRight LegRight EyeNapeLeft Wing

Left LegLeft EyeForeheadCrownBreastBelly

(a) (b)

Fig. 6. (a) Qualitative results on CUB-200-2011 [32]. The color codes of the bird parts
are at the bottom. (b) Qualitative results on LSP [19]. In both subfigures, the first
two columns compare Ours-rigid (left) with Ours-flex (right), the other columns show
more examples from Ours-flex. Failures are denoted with red frames

well-constructed method [25], which employs many strong appearance models
(some are tailored to human body), our method produces comparable results.
The experiment demonstrates that our part-pair representation can be applied
to the categories with large articulated deformation.

Some qualitative results are shown in Fig. 6(b). Similar to the comparison in
Fig. 6(a), Ours-flex achieves more accurate localization by balancing the shape
prior from exemplars and the detector activations in the testing image.

7 Conclusions

In this paper, we propose a part-pair representation to model an object, and
study its application to part localization. Such representation enables us to
capture rich visual information of the object, and impose adjustable geomet-
ric constraints on the part configuration. By combining part-pair representation
with exemplars, we construct very powerful super part detectors, generating re-
liable part hypotheses. We also show that adding flexibility to the integration of
part hypotheses largely improve the performance. Our method produces state-
of-the-art results on bird part localization and promising results on human pose
estimation.
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