
A General Approach for Efficiently Accelerating Software-based Dynamic
Data Flow Tracking on Commodity Hardware

Kangkook Jee1, Georgios Portokalidis1, Vasileios P. Kemerlis1, Soumyadeep Ghosh2,
David I. August2, and Angelos D. Keromytis1

1Columbia University, New York, NY, USA
2Princeton University, Princeton, NJ, USA

Abstract

Despite the demonstrated usefulness of dynamic data
flow tracking (DDFT) techniques in a variety of security
applications, the poor performance achieved by avail-
able prototypes prevents their widespread adoption and
use in production systems. We present and evaluate a
novel methodology for improving the performance over-
head of DDFT frameworks, by combining static and dy-
namic analysis. Our intuition is to separate the program
logic from the corresponding tracking logic, extracting
the semantics of the latter and abstracting them using a
Taint Flow Algebra. We then apply optimization tech-
niques to eliminate redundant tracking logic and min-
imize interference with the target program. Our op-
timizations are directly applicable to binary-only soft-
ware and do not require any high level semantics. Fur-
thermore, they do not require additional resources to im-
prove performance, neither do they restrict or remove
functionality. Most importantly, our approach is orthog-
onal to optimizations devised in the past, and can de-
liver additive performance benefits. We extensively eval-
uate the correctness and impact of our optimizations, by
augmenting a freely available high-performance DDFT
framework, and applying it to multiple applications, in-
cluding command line utilities, server applications, lan-
guage runtimes, and web browsers. Our results show a
speedup of DDFT by as much as 2.23×, with an average
of 1.72× across all tested applications.

1 Introduction

Fine-grained dynamic data flow tracking (DDFT) has
been shown to be a useful tool for a broad variety of ap-

plication domains, including software security [14, 22,
10], information flow control [39, 45, 25, 44], data life-
time analysis [8], software and configuration problem
diagnosis [2, 12], and others. As there is no explicit sup-
port for DDFT in commodity hardware, the only prac-
tical means for applying these techniques are various
software-based implementations. Unfortunately, these
exhibit prohibitive performance overhead, ranging from
3× to 100× when applied to pure binaries, and 1.5× to
3× when inserted during compilation [41, 21]. Efforts
to alleviate the high cost of DDFT include exploiting
parallelization, applying the instrumentation selectively,
and dynamically deactivating it when no data needs to
be tracked [32, 28, 36, 7, 17, 29, 20]. Despite improve-
ments, the overheads remain significant. Additionally,
some optimizations require availability to source code,
additional resources (e.g., CPU cores), or only perform
well under certain conditions (e.g., when the tainted data
are seldom accessed). Consequently, these shortcuts are
generally seen as too impractical, or undesirable, except
for specific scenarios.

Existing binary-only DDFT systems operate by in-
dividually instrumenting each program instruction that
propagates data, adding one or more instructions that
implement the data tracking logic. Higher-level seman-
tics are not available and cannot be easily extracted so,
for example, it is not possible to automatically determine
that a function copies data from one buffer to another,
and directly generate the tracking code for that. This
introduces a lot of redundant instructions and greatly re-
duces the proportion of “productive” instructions in the
program. The problem is exacerbated in register-starved
architectures like Intel’s x86, where the program and
data tracking logic compete for general purpose regis-
ters.

We present a novel optimization approach to DDFT,
based on combining static and dynamic analysis, which
significantly improves its performance. Our method-
ology is based on separating program logic from taint
tracking logic, extracting the semantics of the latter, and
representing them using a Taint Flow Algebra. We ap-
ply multiple code optimization techniques to eliminate
redundant tracking logic and minimize interference with
the target program, in a manner similar to an optimizing
compiler. We draw on the rich theory on basic block
optimization and data flow analysis, done in the context
of compilers, to argue the safety and correctness of our
algorithm using a formal framework.

We evaluate the correctness and performance of our
methodology by employing a freely available DDFT
framework libdft [19] and show that the code generated
by our analysis behaves correctly when performing dy-
namic taint analysis (DTA) [27]. We evaluate the per-
formance gains achieved by our various optimizations
using several Linux applications, including commonly
used command-line utilities (bzip, gzip, tar, scp,
etc.), the SPEC CPU 2000 benchmarks, the MySQL
database server, the runtimes for the PHP and JavaScript
languages, and web browsers. Our results indicate per-
formance gains as high as 2.23×, and an average of
1.72× across all tested applications.

The main contributions of this paper are:

• We demonstrate a methodology for segregating
program logic from data tracking logic, and op-
timizing the latter separately using a combination
of static and dynamic analysis techniques. Our ap-
proach is generic and can benefit most binary-only
DDFT approaches.
• We define a Taint Flow Algebra that we use to rep-

resent the tracking logic of programs to assist the
analysis process.
• We demonstrate the application of classical com-

piler optimization techniques to the defined Taint
Flow Algebra. For instance, dead code elimina-
tion, copy propagation, and algebraic simplification
are implicitly performed in the course of our static
analysis.
• The resulting optimized taint tracking code is up

to 2.23× faster than unoptimized data tracking.
Furthermore, our optimizations are orthogonal to
other performance improvement approaches, and
can provide additive benefits. Although the overall
performance impact of DDFT remains significant,
we believe that it has come much closer to becom-
ing practical for (certain) production environments.

The rest of this paper is organized as follows. Sec-
tion 2 presents background information (also placing re-
lated work in context) and introduces our approach. Sec-

tion 3 describes the Taint Flow Algebra and our opti-
mizations. We discuss the tools developed and interfac-
ing with an existing DDFT framework in Section 4. We
evaluate our proposal in Section 5. Discussion and fu-
ture work are in Section 6 and Section 7. We conclude
the paper in Section 8.

2 Background and Overview

We briefly describe some of the many uses of DDFT
in the security field, as a core motivation for our work.
We also discuss the limiting factors regarding perfor-
mance, casting the problem in terms of code optimiza-
tion and proposing a new methodology based on com-
bining static and dynamic analysis to coalesce and min-
imize tracking code.

2.1 Dynamic Data Flow Tracking

DDFT is the process of accurately tracking selected
data of interest, as they flow during program execu-
tion. Among other uses, DDFT has been employed to
provide insight in the behavior of applications and sys-
tems [14, 8, 25, 12], and to assist in the identification
of configuration errors [2]. Most prominently, it has
been used in the security field to defend against vari-
ous software exploits [27, 18, 31, 3, 41], and to enforce
information flow by monitoring and restricting the use
of sensitive data [39, 24]. For the former, the network is
usually defined as the source of interesting or “tainted”
data, while the use of tainted data is disallowed in cer-
tain program locations (e.g., in instructions manipulat-
ing the control flow of programs, such as indirect branch
instructions and function calls). For the latter, the devel-
oper or the user is responsible for specifying the data
that needs to be tracked and the restrictions on their use.

The specifics of DDFT can vary significantly depend-
ing on ones goals, performance considerations, and de-
ployment platform. One possible classification of ex-
isting mechanisms can be made based on the means
by which the tracking logic is augmented on regular
program execution. For example, DDFT can be per-
formed by inserting data tracking logic statically during
the compilation of software, or by performing source-
to-source code transformation [33, 21, 5]. It can also
be applied dynamically by augmenting instrumentation
code on existing binaries using dynamic binary instru-
mentation (DBI) [9, 32] or a modified virtual machine
(VM) [31, 17]. Finally, DDFT can be also performed in
hardware [11, 38, 13, 40].

A different classification can be made depending on
the granularity of the tracking, which can be fine- or
coarse-grained. Assuming a single-bit tag that can be ei-
ther “on” or “off”, fine-grained mechanisms frequently

assign one tag per byte or four-byte word. Larger tags
that enable the tracking of different types, or “colors”,
of data are also possible, but they complicate the pro-
cess and significantly raise overhead. On the other hand,
coarse-grained mechanisms may track data at the file
level and tag entire processes [43]. Additionally, data
tracking can be restricted to explicit data dependencies,
or extend to implicit dependencies [9, 39]. For exam-
ple, in count += len, the variable count depends
explicitly on variable len as its value is the result of an
arithmetic operation with len. However, in if (len
> 0) then count += 1, variable count only de-
pends implicitly on len because its value is not the re-
sult of a direct operation with len, even though it is only
increased when len > 0. The tracking of implicit data
flows was introduced in Dytan [9], but it results in an
excessive amount of false positives (i.e., over-tainting).
DTA++ [18] attempts to address taint-explosion by al-
lowing the user to only track certain implicit flows.

Compiler-based DDFT systems incur lower over-
heads than dynamic systems, but are not applicable
to binary-only software. Considering the huge num-
ber of legacy software and third-party libraries, this
greatly limits the applicability of such systems in a large
class of software. In contrast, dynamic systems oper-
ate on binaries, but incur high runtime overheads. The
most practical solutions (i.e., fast and work with bina-
ries) require hardware support, which is not available.
This paper aims to provide a general methodology for
improving the performance of software (DBI- or VM-
based) fine-grained dynamic data flow tracking for bina-
ries. Our approach can handle both explicit and implicit
data dependencies. However, for simplicity and lack of
space, the examples we use only show explicit depen-
dencies. We do not consider coarse-grained tracking
mechanisms, since they incur little overhead, and are
significantly different in nature and purpose from their
fine-grained counterparts.

2.2 Previous Optimization Approaches

DDFT approaches that operate on binary-only soft-
ware typically incur high slowdowns ranging from 3×
to 100× on CPU-intensive workloads [32, 8]. Much re-
search focused on the overhead of DDFT for systems
using binary instrumentation and virtualization, which
suffer the largest overheads. Important paths explored
by previous research include:

Additional resources Data tracking is decoupled from
program execution and is offloaded to one or more
CPUs [28, 35] or even to remote hosts [7, 30].
These techniques can also parallelize the tracking
itself and scale to multiple cores.

Static analysis The application is statically analyzed
before inserting the tracking code to avoid injecting
redundant tracking instructions [21]. The speed-up
can be considerable when narrowing down the data
tracking to particular elements of a program [36],
while the analysis can also be user assisted [45].

Intermittent tracking Performance is improved by dy-
namically deactivating data tracking under certain
conditions (e.g., when the program does not oper-
ate on tagged data [32, 17]). Data tracking can also
be applied on-demand based on CPU usage, or due
to manual activation [29]. Tracking only parts of
an application also reduces overhead [20].

Many of these approaches improve performance, but
are not always costless. For instance, approaches utiliz-
ing additional hardware resources do not always scale
(i.e., adding CPUs does not further improve perfor-
mance). Also, static analysis methods frequently require
access to source code, and oftentimes sacrifice function-
ality and/or accuracy. Intermittent tracking offers sig-
nificant performance improvements on certain favorable
scenarios, but the cost of activating and deactivating it
can actually increase overhead on unfavorable ones.

The optimizations we describe in this paper are based
on statically and dynamically analyzing program bina-
ries. More importantly though, they can be combined
with some of the approaches listed above to offer addi-
tive performance benefits. For example, our approach
can optimize the tracking logic that runs on itself on
spare core or remote host. It can also be combined with
other static analysis approaches. For instance, Saxena
et al. [36] use static analysis to recover the high-level
semantics of a program (e.g., local variables, stack con-
ventions, etc.). Their approach is not applicable to all bi-
naries, but it is orthogonal to ours. Finally, our method-
ology can also benefit intermittent tracking approaches
to accelerate the tracking logic when it is activated.

Moreover, fast DDFT systems have been also created
by approaching the problem from a systems perspective.
libdft [19] carefully utilizes the Pin [23] DBI frame-
work to provide customizable DDFT with low overhead.
Minemu [3] introduces a new emulation framework for
DDFT, that sacrifices virtual address space and utilizes
the SSE extension on x86 and x86-64 CPUs to achieve
very low overhead. These approaches can also benefit
from our optimizations as both approaches focus on the
cost for each metadata access while our optimization re-
duces the frequency of those accesses.

2.3 Still not Fast Enough

Despite the various improvements in speed, the cost
of DDFT is still considerably high for use in produc-
tion systems. To better understand the limiting factors,

we examine some of its basic characteristics. First, addi-
tional memory is required to mark the data being tracked
(i.e., data tags). The minimum amount of memory re-
quired is one bit for every tagged piece of data, which
can be a bit, byte, or larger. Second, tracking instruc-
tions to propagate tagged data are inserted in the pro-
gram. This introduces overhead because additional code
is executed, but also stresses the runtime. For instance,
the same eight general purpose registers of the x86 ar-
chitecture are now used to implement both the original
program and data tracking logic, which leads to register
spilling (i.e., temporarily saving and restoring a regis-
ter to/from memory) and adds pressure to the instruction
and data cache.

Furthermore, instrumentation usually occurs on a per
instruction level, ignoring higher level semantics. As a
consequence, all instructions and values are being in-
strumented, even if they could be eventually ignored.
Consider the following code snippet (left is C code and
right the corresponding data propagation, where T(A)
indicates the tag of A):

Listing 1: Assignment through temporary
1 tmp1 = array1[idx1]; T(tmp1) = T(mem[array1+idx1])
2
3 array2[idx2] = tmp1; T(mem[array2+idx2]) = T(tmp1)

Copying a value from array1 to array2 uses
the intermediate variable tmp1. This can occur fre-
quently, either because tmp1 is modified in some way
before being copied (for example, its bits are rotated),
or because the underlying architecture (e.g., x86) does
not provide a memory-to-memory instruction. If T(n)
represents the tag of n, this example requires two tag
propagations, instead of one T(array2[idx2]) =
T(array1[idx1]). The wastefulness of naively in-
strumenting this code snippet is made more apparent, if
we look at how it is translated to binary code:

Listing 2: x86-like assembly of Listing 1
1 mov reg0,mem[array1+idx1] mov reg1,T[array1+idx1]
2 mov T[reg0],reg1
3
4 mov mem[array2+idx2],reg0 mov reg1, T[reg0]
5 mov T[array2+idx2],reg1

The compiler allocates a register to store tmp1, but
its tag T(tmp1) is stored in memory. As memory-to-
memory instructions are not available, this will result in
one additional register and two instructions to perform
each propagation.

Injecting the instrumentation code during or be-
fore compilation can take advantage of the compiler’s
optimizations to circumvent some of these problems.
For example, the compiler could determine that mov
reg1,T[reg0] of line 4 is redundant. Furthermore,
taint operation mov T[reg0],reg1 of line 2 could

Analyzer

Dynamic

profiler

Static

profiler

Control flow + basic block

information

Optimized tracking

code

Program

augmentation

with DDFT

Unprocessed

basic blocks

Figure 1: Overview. We extract basic blocks and control flow
information, combining dynamic and static analysis to produce
optimized data tracking code.

also be removed, if the taintedness of intermediate vari-
able (tmp1) is not needed from subsequent executions.
However, we cannot benefit from such optimizations
when applying DDFT on binaries.

2.4 Optimization Through a Taint Flow Alge-
bra (TFA)

Figure 1 shows a high-level overview of our approach
for optimizing data tracking. We start by dynamically
and statically profiling the target application to extract
its basic blocks and control flow information. A ba-
sic block of code consists of a sequence of instructions
that has only one entry point and, in our case, a single
exit point. This means that no instruction within a ba-
sic block is the target of a jump or branch instruction,
and the block is only exited after its last instruction exe-
cutes. These properties are desirable for various types of
analysis, like the ones performed by compilers. The con-
trol flow information describes how the basic blocks are
linked. It is frequently impossible to obtain the complete
control flow graph (CFG) for an entire program, but for-
tunately our analysis does not require a complete CFG.
Nonetheless, the combination of dynamic and static pro-
filing provides us with a significant part of the CFG,
including the part that dominates in terms of execution
time, and would benefit the most from optimization.

The analyzer receives the profiler information and ex-
tracts data dependencies from the code, separating pro-
gram from data tracking logic. It then transforms the
latter to an internal representation, based on the Taint
Flow Algebra (TFA) described in Section 3.1, which
is highly amenable to various optimizations. The op-
timizations performed by the analyzer are described in
Section 3, and include classic compiler optimizations
like dead-code elimination and copy propagation. Our
goal is to remove redundant tracking operations, and re-
duce the number of locations where tracking code is in-
serted. Finally, the analyzer emits optimized tracking
code, which is applied on the application. Note that the
type of tracking code generated depends on the original
tracking implementation to be optimized. In our imple-

Basic block

information

TFA

representation

Control flow

information

Inner

optimization C
o
d
e
 r

e
d
u
c
ti

o
n

Input from

profilers

Analyzer

Code

generation

Figure 2: TFA analysis. After transforming the data depen-
dencies to the taint flow algebra, three optimizations are per-
formed: inner, outer, and TFA.

mentation, as it operates on binary programs the ana-
lyzer produces primitive C code, which can be compiled
and inserted into the application using a DBI framework
such as Pin [23].

It is possible that the profiling of the program is in-
complete, so when running it through a DBI framework
we may encounter basic blocks that have not been yet
optimized/analyzed, which will be instrumented with
unoptimized data tracking code. We can assist the pro-
filer by exporting the unprocessed blocks, so that they
be added to the analysis. This process establishes a
feedback loop between the runtime and the analyzer, as
shown in Figure 1.

There are a number of interesting previous work
closely related to our analysis. Ruwase et al. [34] pro-
posed a decoupled analysis similar to ours but it sim-
ply batch-processed the tracking logics and generated
a synchronization issue between the original execution
and tracking logic. A primitive form of TFA was imple-
mented by Chen et al. [6] to complement their hardware
solution. Ruwase et al. [35] again proposed a system
that utilized data dependency extracted from a binary to
maximize a parallelization of tracking logics.

3 Static Analysis

This section presents a formal definition of the opti-
mizations performed. Figure 2 shows the various analy-
ses we perform to generate optimized data flow tracking
instrumentation code. Throughout this section, we con-
sider the basic block (BB), a set of instructions with a
single entry and exit, as the primitive unit for profiling,
analyzing, and executing a binary. 1

1To be persistent across separate analysis stages, a basic block
identifier (BBID) is computed by hashing the full path name of the
binary image it belongs to and adding its offset from the image’s base
address. This facilitates TFA to identify blocks that begin from differ-
ent entry points but exit at the same point as separate ones, and makes
each block have its own optimization result.

: variable-name unsigned
: ‘[’ mem-expr ‘]’
: reg | mem | const

: ‘|’ | ‘&’
: ‘~’
: ‘:=’
: ‘r (’ var | expr | statement ‘)’

: (reg |const) |{ ‘×’ | ‘+’ | ‘−’ (reg|cost)};
: var | expr {var binary-opr} | ‘(’ expr ‘)’
 | unary-opr expr
: (reg | mem) assign-opr expr

reg
mem
var

binary-opr
unary-opr
assign-opr
rng-map

mem-expr
expr

statement

Figure 4: The abstract syntax tree used by our Taint Flow Al-
gebra.

Furthermore, we assume that single-bit tags are in
use, and the smallest amount of information that can
be tracked is a byte. To assist the reader better com-
prehend the various steps of this process, as we present
them in detail below, we employ the code sample de-
picted in Figure 3. It demonstrates how we process
a given x86 block of binary code as it goes through
the different analyses. As a result of our optimization,
the five taint propagation operations required originally
(Figure 3(a)) are reduced to three, inserted in two loca-
tions (Figure 3(d)).

3.1 Definition of a Taint Flow Algebra

TFA offers a machine independent representation of
the data flow tracking logic that exposes optimization
opportunities. It expresses a system with memory and
an infinite number of registers, so it can accommodate a
variety of instruction-set architectures (ISAs). Figure 4
shows its abstract syntax tree (AST) in BNF form.

It supports three different types of variables: con-
stants, registers, and memory. The latter two correspond
to the tags that hold the taint markings for the underly-
ing architecture, while constants are primarily used to
assert or clear tags. For example, when using a single-
bit mark for each byte of data, the constant 0xf (1111
in binary) represents four tainted bytes. Other tag sizes
are also supported by simply modifying the constants
and variable size. Register variables are versioned (i.e.,
a new register version is generated on update) to help
us identify live ranges and redundant operations, while
memory follows a flat model with array-like index ad-
dressing. Also, all variables in a single statement are of
the same size, and we use the constants combined with
the AND (bitwise &) and NOR (unary ∼) operators to
extend or downsize a variable due to casting. We ex-
press data dependencies among variables using the OR
operator (bitwise |), and determine operator precedence
using parentheses (“(”, “)”).

1:#mov#ecx,#esi
2:#movzxb#eax,#al
3:#shl#ecx,#0x5
4:#add#edx,0x1
5:#lea#esi,#ptr#[ecx+esi]
6:#lea#esi,#ptr#[eax+esi]
7:#movzxb#eax,#ptr#[edx+esi]######
8:#testb#al,#al
9:#jnzb#0xb7890200

(a) Original x86 instructions

1:#ecx1#:=#esi0
2:#eax1#:=#0x1#&#eax0
3:#
4:#
5:#esi1#:=#ecx1#|#esi0
6:#esi2#:=#eax1#|#esi1
7:#eax2#:=#0x1#&#[edx0+esi2]
8:#
9:#

(b) TFA representation

1:#
2:
3:#
4:#
5:#
6:#esi2#:=#0x1#&#eax0#|esi0
7:#eax2#:=#0x1#&#[edx0+esi2]
8:#
9:#

(c) TFA optimization

[0,1]:'tmp0':='0x1'&'eax0'|'esi0

'
'

[6,9]:'esi2':='tmp0
[7,9]:'eax2':='0x1&'[edx0+esi2]
'
'

(d) Live range realignment

Figure 3: A block of x86 instructions as it is transformed by our analysis. First, it is abstracted using the TFA to (b). After
performing our optimizations it is reduced to (c), and finally the locations of the instrumentation operations are corrected in (d).
Note that instructions 3, 4, 8, and 9 do not involve data dependencies.

Unlike other general representations like LLVM-IR
or gcc’s GIMPLE, our TFA does not require primitives
to express control transfers made by branch instructions
or function calls. Instead, we employ a separate opti-
mization stage to handle inter-block dependencies. As a
result, branch choices solely depend on the original ex-
ecution of the program. A range operator (rng-map)
also differentiates the TFA from other representations,
allowing us to specify live ranges for its various ele-
ments (i.e., statements, expressions, and variables), so
we can move certain statements in different positions
and still correctly preserve code semantics. Constant
variables are valid for entire blocks, while register vari-
ables are live from their previous till their next defini-
tion. In the case of memory variables, we also need
to consider the registers and constants used to calculate
their address. Hence, we determine their liveness range
by looking for ranges, where both the variables used
in addressing and the memory variable itself are valid
concurrently (we discuss issues emerging from mem-
ory aliasing in Section 3.4.2). The liveness range for
expressions and statements can be obtained by combin-
ing the ranges of their contained elements. Statements
in Figure 3(d) are prefixed with a liveness range gained
by applying the range operator(r(·)) to the statements in
Figure 3(c). For a formal definition of the operational se-
mantics of the range operator, we refer interested readers
to Appendix A.1.

TFA aims to be a general representation that can ac-
commodate common aspects of tracking logic extracted
from different ISAs. Thus, it ignores details specific to
a certain deployment platform. For instance, it does not
represent operations like the x86’s SET and CMOV in-
structions, whose exact behavior can only be determined
at runtime, and refrains from optimizing them. Also,
while there are similarities with previous work [37], our
TFA represents a more applied than theoretical language
that can easily express the logic incorporated by existing
DTA tools [19, 3].

esi2

eax1

eax0 0x1 esi0

esi1

eax2

[edx0+esi2] 0x1

&|

&&

ecx1

Figure 5: The taint-map for Figure 3(b), viewed as a direct
acyclic graph (DAG).

3.2 Data Dependencies Extraction and TFA
Representation

Our analysis begins by parsing a basic block of code
and representing it in our TFA. This stage is specific to
the type of code. For example, the x86 binary code in
Figure 3(a) is represented as shown in Figure 3(b). To
“translate” an instruction to TFA, we first determine the
data dependencies it defines. In other words, we extract
the data tracking logic or taint tracking semantics from
the block’s instructions. For instance, the MOV instruc-
tion propagates taint from source to destination, and the
ALU instruction family (ADD, SUB, XOR, DIV, etc.) tags
the destination operand, if one of source operands is also
tagged. Even though it may seem like a straightfor-
ward process, in practice different taint-tracking tools
may adopt slightly divergent semantics. For instance,
sign extending a tainted 16-bit number to 32 bits may
taint the entire result [19], or just the lower 16 bits [31].
Currently, we have adopted the interpretation used by
libdft [19] (also used for our prototype implementation),
but it can be effortlessly modified to cater to other im-
plementations or problem domains.

While extracting dependencies, we can already dis-
card some instructions, as most DDFT systems also do.

For instance, arithmetic operations with constants (lines
2 and 3 in Figure 3(a)) do not propagate taint. We also
handle language idioms like xor eax,eax and sub
eax,eax, which are used to clear registers, by clear-
ing the corresponding tags (e.g., t(eax)←0). At this
stage, we also cast operands of different sizes to the
same width using masking and unmasking operations
(i.e., using the logical operators and constants). For in-
stance, instruction 7 in Figure 3(a) transfers one byte
from [edx+esi] to eax. We use the constant 0x1
to mask the taint propagation, ensuring that the higher
bytes of the destination are correctly marked as clean.

The results of data dependency analysis (Figure 3(b))
are stored in a hash-table data structure, which we call
the taint-map. The taint-map holds one entry for ev-
ery TFA statement, using the destination operand as key
and the right hand-side (rhs) expression as value. Com-
bining all its entries eventually presents us with a di-
rected acyclic graph (DAG), where inputs are the chil-
dren of outputs as shown in Figure 5. The solid lines
in the figure represent data dependencies within a state-
ment, while dashed lines represent dependencies be-
tween variables. The leaf nodes of the DAG are input
variables, and double-lined nodes are output variables.
Finally, during this phase, we can introduce different de-
pendency interpretations based on tracking policies such
as implicit data flow tracking, and schemes like pointer
tainting [42] or heap pointer tracking [40].

Inner Optimization After obtaining the TFA rep-
resentation of a block, we process it to identify the
operands used as inputs and outputs. The first ver-
sion of every operand on the rhs of an assignment is
marked as input. Similarly, the greatest version of an
operand on the left-hand side (lhs) of an assignment is
marked as output. From Figure 3(b), {esi0, eax0,
[edx0+esi2]} are inputs, whereas {ecx1, eax2,
esi2} are outputs. This process enables us to perform
rudimentary dead code elimination [1], to discard taint
propagation operations that do not affect output vari-
ables from the basic block. From our toy example, the
taint operation in line 5 of Figure 3(b) can be removed as
the taintedness of esi1 solely depends on prior version
of the same register variable (i.e.,esi0.)

3.3 Incorporating Control Flow Information -
Outer Optimization

We make use of the control flow information col-
lected during the code profiling stage to extend the in-
puts/outputs identification to span multiple chained ba-
sic blocks. For example, if the CFG points out that
BB Block0 is directly followed by either Block1 or

Block2, and no other BBs, we can use the inputs/out-
puts lists of those BBs to eliminate some of Block0’s
output variables, if they are overwritten without being
used as inputs in either Block1 or Block2. This
implements a type of data flow analysis (or live vari-
able analysis) common in compiler optimizations, and
allows us to purge more redundant tracking operations,
based on the new, smaller outputs lists. Our analysis
differs from commonly used algorithms in that the avail-
able CFG used may be incomplete, and the BBs we use,
can span across the boundary of functions and even li-
braries.

In a case where we cannot identify all successor
blocks due to indirect calls or jumps, we handle it con-
servatively by considering all output variables of a BB as
live ones. This modification should not have much im-
pact on performance, since a profiling result for SPEC
CPU2000 benchmark suite shows that about 95.7% of
BBs are ended with deterministic control transfers such
as direct and conditional jumps which only allow one
and two successor nodes respectively. Theorem 1 for-
mally addresses the soundness of outer analysis whose
correctness can be proved using a semi-lattice frame-
work [1], modified to cover cases where the CFG is in-
complete. Due to space constraints, we accommodate
the proof in Appendix A.2.1.

Theorem 1. Soundness of outer analysis: Outer anal-
ysis (live variable analysis) with incomplete CFG con-
verges and is safe.

In our toy example (Figure 3(b)), the output variable
ecx1 taints esi1 in line 5, but our analysis determines
that it is not used in any of subsequent blocks. There-
fore, we remove ecx1 and the corresponding propaga-
tion operation. Note that taint propagations in line 5 and
line 6 preserve original taint semantics without ecx1 as
their taintedness solely depends on esi0.

3.4 TFA Optimization

The most powerful optimization enabled by our anal-
ysis is the TFA optimization, which also utilizes results
from previous stages (i.e., the taint-map and the trun-
cated BB outputs lists). This optimization is more ag-
gressive than the previous ones, as it does not only
identify redundant code, but it also generates optimized
tracking code.

3.4.1 Pruning Redundant Expressions and Merg-
ing Statements Using Copy Propagation

Copy propagation is the process of replacing the occur-
rences of targets of direct assignments (e.g., eax1 in
Figure 3(b)) with the expression assigned to them (e.g.,

0x1 & eax0), where they appear in other statements
(e.g., line 6 in Figure 3(b)). We perform this process
by recursively substituting variables in the rhs expres-
sions of assignments, until they solely contain variables
from the inputs and outputs lists. We use the taint-map
to quickly look for targets of assignments. The result
is an updated taint-map that contains entries that use
a variable from BB outputs as key, while its value is
the taint expression assigned to the key. This can also
be seen as a process of directly connecting output and
input nodes from DAG representation of a block (i.e.,
Figure 5) by eliminating intermediate nodes. The num-
ber of tracking operations needed is greatly reduced, as
shown in Figure 3(c). Even though, some of the gener-
ated assignments are more complex, they will not gen-
erate longer expressions than the original (Theorem 2 in
Appendix A.2.2,) while they also reduce the number of
locations where propagation code needs to be inserted.
Due to its recursive nature, the running time of our sub-
stitution algorithm increases exponentially with the size
of BB. We alleviate this problem by memoizing previ-
ously visited variables.

Along the way, we also perform algebraic simpli-
fication on arithmetic operations such as (0xffff &
(0x00ff & eax0)⇒ (0x00ff & eax0). This opti-
mization may be also performed in later stages from the
deployment platform, like the DBI framework. How-
ever, we make no assumptions about the underlying
framework, so we proactively exploit optimization op-
portunities like this, whenever they are feasible.

Resolving Range Violations in Merged Assignments
Substituting variables can raise issues, when variables
in a statement cannot be live (i.e., valid) concurrently.
For example, esi2 and eax0 in instruction six of Fig-
ure 3(c) have ranges of [5,9] and [0,1] respectively,
which we calculate and express using the range operator
(r(·)), and are not valid concurrently. When a state-
ment cannot yield a common range for their contained
elements, we introduce temporary variables to resolve
the conflict. For example, in Figure 3(d) we use tmp0 to
resolve the range conflict. Note that the range correction
should be made in a way that the number of instrumen-
tation locations is kept to the least possible, and should
not result in more tracking operations than the original
representation. Theorem 2 directly states this, its proof
is provided in Appendix A.2.2.

Theorem 2. Efficiency of the TFA optimization: The
TFA optimization always produces less, or an equal
number of, tracking statements than the original repre-
sentation, for any basic block.

One can argue that showing to have less statements
than the original may not be sufficient, since longer
statements containing many variables could, in theory,
be translated into more machine instructions. Even
though precisely estimating the outcome of our opti-
mization in the instruction level is not an easy task, we
can still provide a corollary to the theorem that states
that the optimization’s results will always have less or
the same number of variables than the original represen-
tation as a whole. This can be proven in similar way
to Theorem 2. However, the theorem does not cover
some corner-cases, where the TFA representation has
more statements than the original instrumentation. For
instance, in the presence of ISA specific instructions,
such as x86’s xchg or cmpxchg instructions which re-
quires two or more statements to be expressed in TFA
whereas a baseline system can have a specialized and
rather efficient interpretation. We detect such cases and
retain the original propagation logic.

3.4.2 Minimizing Instrumentation Interference
with Aggregation

By default the TFA optimization produces scattered
statements. This leaves the merged statements near the
location where their target is actually being updated.
As the range operator can yield multiple valid locations
for each statement, we can adopt different policies to
group statements, in order to minimize the instrumen-
tation overhead. Aggregation aims to group statements
into larger instrumentation units, so as to further reduce
the number of locations where code is injected into the
original program. Aggregation can be particularly effec-
tive when used with DDFT frameworks where the fixed
overhead associated with every instrumentation is high.2

In the example shown in Figure 3(d), aggregation will
combine the second and third statements into a single
block with an aggregated liveness range of [7,9].

Range Violations among Statements In sec-
tion 3.4.1, we saw how we address invalid expressions
produced because the elements of an expression are
valid in different code ranges. Less obvious range
violation errors may also occur with aggregation. For
example, consider the BB in Figure 6(a), which after
our analysis produces the statements in Figure 6(b)
(prefixed with their calculated live ranges). Both Fig-
ures 6(c) and 6(d) are valid groupings consistent to each
statement’s liveness range, but the first will incorrectly
propagate taint. That is because in Figure 6(c), the

2For most DBI/VM based frameworks each instrumentation re-
quires additional instructions for context switching. For instance,
Pin [23] introduces three additional instructions per instrumentation
location for analysis routines that can be inlined and 12 otherwise.

1: xor edx, edx
2: div dword ptr [ebx+0x8]
3: mov ecx, edx
4: or [edx], ecx
5: mov edx, [ebx+0x10]
6: sub eax, edx

(a) Input basic block

[0,1] : tmp0 := eax0
[3,4] : [edx2] := ecx1 | [edx2]
[3,6] : ecx1 := tmp0 | [ebx0+0x8]
[5,6] : edx3 := [ebx0+0x10]
[6,6] : eax2 := edx3 | tmp0 | [ebx0+0x8]

(b) TFA representation (range realigned)

0: tmp0 := eax0
3: [edx2] := ecx1 | [edx2]
6: ecx1 := tmp0 | [ebx0+0x8]
 edx3 := [ebx0+0x10]
 eax2 := edx3 | tmp0 | [ebx0+0x8]

(c) Incorrect aggregation

0: tmp0 := eax0
3: ecx1 := tmp0 | [ebx0+0x8]
 [edx2] := ecx1 | [edx2]
6: edx3 := [ebx0+0x10]
 eax2 := edx3 | tmp0 | [ebx0+0x8]

(d) Correct aggregation

Figure 6: Aggregation example with range violations.

second statement uses ecx1 before it is defined in
the third statement. This define/use violation occurs
because the aggregation algorithm greedily attempts
to maximize the size of instrumentation unit. Also,
ordering of the second and third statement causes a
memory alias violation. In the original order shown
in Figure 6(c), the memory variable [ebx0+0x8]
is used before memory variable [edx2] is defined.
Since we cannot determine if these two variables point
to the same location or not, all memory variables are
considered to be dependent on each other.

To address these issues, we impose dependencies
between statements using a variable and the statement
defining it. We implement these dependencies by topo-
logically sorting the taint-map data structure, and relo-
cating instructions based on their order. As it is shown
by the corrected aggregation in Figure 6(d), we increase
neither the number of instrumentation units nor the code
size as a whole, but only redistribute the statements.

3.5 Code Generation

To apply the results of our analysis on a DDFT frame-
work, we need to transform the statements from TFA
to a language that the framework understands. We do
so using both the statements produced pre- and post-
aggregation, namely TFA scatter and TFA aggregation.
The reason for doing so is that the number of instrumen-
tation locations and the size of the routines that need to
be injected affect varying frameworks in different ways
(i.e., some may prefer one instead of the other). Conse-
quently, to implement the code generation back-end, we
need to know certain features of the deployment plat-
form, like (i) architectural properties such as the ISA
type (e.g., x86 or x86_64), the underlying OS, and the
instrumentation framework employed (e.g., PIN, Dy-
namioRIO, QEMU, etc.), and ii) DDFT characteristics
such as tag size, tracking granularity, and any particular
rules used for determining data dependencies. Most of
all, the produced code needs to use the DDFT frame-
work’s primitives for accessing and updating tags for
different variable types. For our prototype implementa-
tion, we utilized the libdft [19] DDFT framework, which
we discuss in the following section.

4 Implementation

To implement the static analysis described in Sec-
tion 3, we developed a set of tools written in Python,
consisting of approximately 7K lines of code. Since pro-
cessing applications with large codebases, such as web-
browsers, can take a considerable amount time, all of our
tools utilize multiple threads to exploit available multi-
ple CPU cores.

The majority of our analysis tools, with the exception
of the ones performing the translation from binary to
TFA and code generation are system agnostic, since they
operate on TFA. Regarding the system dependent tools,
we implemented them along with the profiler shown in
Figure 1 for x86 binaries. To test and evaluate the gen-
erated instrumentation code we used libdft [19], a freely
available framework that transparently applies DDFT
on x86 Linux binaries, developed over Intel’s Pin DBI
framework [23]. Our tools can be easily extended to op-
erate on other operating systems, while moderate effort
may be required to support other ISAs, like the x86_64.
In the remainder of this section, we discuss the profiler
we implemented for Linux, the libdft framework, and
the components that depend on it.

4.1 A Pin-based Dynamic Profiler

The profiler is responsible for extracting basic blocks
and a partial CFG from the application. While already
available code analysis tools like IDA Pro [16] could be
used for this purpose, we chose to implement a dynamic
profiler using the Pin DBI framework. Briefly, Pin com-
prises of a VM library and an injector that attaches the
VM in already running processes, or new processes that
it launches. Using Pin, we created a tool (i.e., a Pintool)
to profile the target applications. This made our testbed
more uniform and enabled us to better interface with
libdft, as it is also based on Pin. Additionally, our dy-
namic profiler can help us identify frequently executed
or “hot” code segments allowing us to better estimate
performance during the static analysis phase. However,
it will only reveal execution paths traversed during the
profiling.

4.2 Integration with the libdft Framework

libdft is a highly optimized DDFT framework that
shows comparable to or faster performance than most
previous work. libdft takes the form of a shared library
enabling developers to create of DDFT-enabled Pintools
for binaries, using its extensive API. For example, libdft
already includes a DTA tool, which can be used to pro-
tect applications from remote buffer overflow exploits.

We applied our optimizations by compiling the code
generated by our analysis as a shared library object
(libtfa.so), accompanied by an instruction file that
specifies where to inject each instrumentation routine,
and lists the arguments for each. We generated a unique
function for each injection point, allowing us to gener-
ate very compact code, using less function arguments.
However, there are limits to the number of functions
that can be defined a within a program. To overcome
this limitation, we implemented a simple code caching
scheme that reuses functions that correspond to the same
expression. This simple mechanism greatly reduced
the number of generated functions (e.g., from 621,601
to 64,271 for the Chrome web-browser). The size of
shared library objects for different evaluated applica-
tions are presented from Table 1. Finally, we also modi-
fied libdft’s initialization routine to load our files, and its
instrumentation routine to use them.

Moreover, we applied the result of our code reduc-
tion analysis (i.e., the inner and outer optimizations) to
evaluate its distinct contribution (see Section 5). Since
these optimizations only remove instructions, we simply
supplied libdft with a list of instructions that should not
be instrumented.

Also note that code that was not profiled does not
get optimized, and is handled by the default taint track-
ing logic of libdft. Specific instructions such as x86’s
xchg and cmpxchg are also not optimized because
they are handled more efficiently by the default logic
(we would require two or more statements to express this
taint operation in the TFA). Another interesting obser-
vation made was that seemingly equivalent assignments
like eax1=eax0|ebx0 and eax1|=ebx0 do no re-
sult in the same instrumentation code in libdft, nor do
they perform the same. Fortunately, modifying our anal-
ysis to prefer the one form instead of the other is trivial.

5 Evaluation

In this section, we measure the impact of our op-
timizations using libdft v3.141 and Pin v2.8 (build
39028). In all cases, we evaluate the optimization
schemes described in Section 3.5, namely TFA-scatter
and TFA-aggregation, as well as our reduction analy-
ses, inner optimization and outer optimization, the base-

line implementation of libdft, and native execution. Our
testbed consisted of two identical hosts, armed with
2×2.66GHz quad core Intel Xeon X5500 CPUs and
24GB of RAM, running Debian Linux v6 (“squeeze”;
kernel version 2.6.32). While running the benchmarks
the hosts were idle, and no other processes were running
except from the corresponding evaluation suite.

5.1 Static Analysis Results

Table 1 contains various statistics regarding TFA
analysis. Note that the percentage of instructions in-
strumented does not refer to the number of taint oper-
ations generated, but the number of locations being in-
strumented. Each instrumentation may actually define
multiple taint propagations, specially in the case of TFA
aggregation. For TFA scatter and TFA aggregation, we
also list the average distance (d) of the propagation rou-
tines from their original locations in number of instruc-
tions. An instrumentation (function) is considered to be
at distance 0 from its target, when the taint propagation
occurs right before the instrumented instruction. As ex-
pected, the value of (d) is small when using TFA scatter,
while it increases when using TFA aggregation.

5.2 Performance

Performance results were obtained by running 10 rep-
etitions of each experiment. In all cases, we draw the
average slowdown observed when running the various
benchmarks using libdft and our optimized versions of
it, compared with native execution. Additionally, we
calculate the average speedup achieved by our optimiza-
tions. We obtain the average slowdown (Sslow) and
speedup (Sspeed) using the following formulas:

Sslow =
Timeavg under libdft w/opt.

T imeavg under native
,

Sspeed =
Timeavg under libdft

T imeavg under libdft w/opt.

We also calculate and draw the relative standard de-
viation (RSD) for each experiment by dividing the stan-
dard deviation with the average.

Figure 7 shows the slowdown obtained for four com-
mon Unix command-line utilities that represents differ-
ent type of workloads. We use tar to archive and
extract a vanilla Linux kernel "tarball" (v2.6.35.6; ∼
400MB) whereas gzip and bzip2 were used for com-
pressing and decompressing it respectively. For scp, we
transferred 1GB of randomly generated data, first over
an 100Mbps link and then over an 1Gbps link. As ex-
pected, we see that all CPU intensive applications run-
ning under DDFT are significantly accelerated by our

Application Number
of blocks

Percentage of instructions instrumented Shared
library size

Time to
completeInner Outer TFA scatter (d) TFA aggr. (d)

gzip 3,484 89.7% 79.4% 59.5% (0.87) 30.4% (2.46) 847 kb 125.55s
bzip2 5,253 86.5% 76.8% 54.8% (1.21) 28.2% (2.83) 1,352 kb 312.45s
tar 7,632 86.8% 76.8% 60.2% (0.75) 30.0% (2.30) 1,721 kb 230.07s
scp 19,617 85.1% 77.9% 57.5% (1.75) 27.9% (3.94) 4,919 kb 2,086.77s
SPEC CPU2000 170,128 84.84% 71.42% 59.14% (0.99) 26.79% (3.10) 11,388 kb 10317.37s
PHP 28,791 86.1% 78.9% 60.0% (1.35) 25.2% (3.76) 3,698 kb 2,417.45s
MySQL 45,262 86.8% 78.0% 58.6% (0.83) 24.5% (3.52) 8,191 kb 3,736.47s
Firefox 676,027 83.5% 72.95% 63.5% (0.72) 25.9% (3.41) 13,909 kb 42,691.54s
Chrome 496,720 83.6% 73.0% 59.56% (0.76) 28.4% (2.73) 17,438 kb 56,485.61s

Table 1: Static analysis results. The table lists various statistics regarding the static analysis of various applications. From left
to right, it lists the number of basic blocks profiled/processed, the percentage of the instructions that are still instrumented after
each optimization, the size of shared library objects (libtfa.so) which contain optimized propagation logics, and the time
to complete the entire analysis (includes all optimizations). Note that each instrumentation may actually define multiple taint
propagations, specially in the case of TFA aggregation. For TFA scatter and TFA aggregation (d) denotes the average distance of
the propagation routines from their original locations in number of instructions.

 0

 1.5

 3

 4.5

 6

 7.5

 9

 10.5

 12

 13.5

 15

 16.5

tar
archive

gzip
compress

bzip2
compress

tar
extract

gzip
decompress

bzip2
decompress

scp
100Mbps

scp
1Gbps

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

libdft
Inner
Outer

TFA scatter
TFA aggr

Figure 7: Slowdown for common Unix command-line utilities.

 0

 1.5

 3

 4.5

 6

 7.5

 9

 10.5

crafty eon gap gcc mcf parser perlbmk twolf vortex vpr average

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

libdft
Inner
Outer

TFA scatter
TFA aggr

Figure 8: Slowdown for SPEC CPU2000 benchmarks.

optimization. For instance, compressing natively with
bzip2 takes 65.5s to complete, whereas libdft takes
506.1s and TFA aggregation only 269.12s. In contrast,
tar, benefited the least from our optimizations as file
I/O dominates. For scp, our optimization showed simi-
lar speedups of ∼ 1.90×.

We also evaluate the effects of our optimizations us-
ing the SPEC CPU2000 benchmark suite. Figure 8 illus-
trates selected benchmarks, while the rightmost bar rep-
resents the average overhead, computed over the whole
benchmark (12 tests). Our optimizations reduced the av-
erage slowdown of libdft from 7.08× to 3.65× repre-
senting a speedup of 1.93×, while the largest speedup
(2.23×) was gained with the twolf test.

Next, we applied our optimizations on larger soft-
ware, such as the the MySQL DB server (v5.0.51) and
the PHP runtime (v5.3.3.7). Figure 9(a) shows the slow-
down imposed by libdft and our optimizations, when
running MySQL’s own benchmark suite (sql-bench).

The suite consists of four different tests, which assess
the completion time of various DB operations, like table
creation and modification, data selection and insertion,
etc. CPU intensive benchmarks such as test-alter
and test-insert benefit the most from our opti-
mizations, achieving speedups of 1.47× and 1.27× re-
spectively. test-create and test-ATIS, on the
other hand, are less intensive and suffer less overhead
when run over libdft, benefiting less from our analysis.

We also tested the runtime of the PHP scripting lan-
guage runtime using the micro-benchmark suite PHP-
Bench (http://www.pureftpd.org/project/
phpbench), and report a representative subset of re-
sults in Figure 9(b) (the casting test experienced the
least overhead, and the md5 and sha1 tests the most).
The rightmost bar draws the average overhead, com-
puted over the whole benchmark (556 tests). libdft in-
curs significantly high overheads when running the PHP
runtime (an average slowdown of 16.58×), and as such

http://www.pureftpd.org/project/phpbench
http://www.pureftpd.org/project/phpbench

 1

 2

 3

 4

 5

 6

 7

create alter insert ATIS

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

Test suite

(a) MySQL

libdft
Inner
Outer

TFA scatter
TFA aggr

 4

 8

 12

 16

 20

 24

 28

casing md5 sha1 average

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

Test suite

(b) PHP

libdft
Inner
Outer

TFA scatter
TFA aggr

Figure 9: Slowdown for common MySQL benchmarks in (a) and
PHPBench in (b).

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Gmail NDSS Youtube Facebook

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

Web site

(a) Web site rendering

libdft
Inner
Outer

TFA scatter
TFA aggr

 6

 9

 12

 15

 18

Firefox Chrome

S
lo

w
d
o
w

n
 (

n
o
rm

a
liz

e
d
)

Browser

(b) JavaScript

libdft
Inner
Outer

TFA scatter
TFA aggr

Figure 10: Web site rendering latencies in (a) and Dromaero JS
benchmark slowdown in (b).

Application Description
ATPhttpd v0.4 (BID 5215) Stack-based buffer over-

flow
wu-ftpd v2.6.0 (BID 1387) Remote format string

stack overwrite
WsMp3 v0.0.2 (BID 6240) Remote heap corruption
Echo server (handcrafted) Heap-based function

pointer overwrite

Table 2: List of detected control flow diversion vulnerabilities.

even after applying our optimizations, gaining a speedup
of 1.78×, the average overhead remains high (9.30×).

We conclude our performance evaluation by mea-
suring the speedups obtained by our analysis with
the Firefox(v3.5.16) and Chrome (v12.0.742.124) web
browsers. First, we used Firefox to access the three
most popular web sites according to Alexa’s Top 500
(http://www.alexa.com/topsites), as well as
the home page of the NDSS conference, and measured
the time needed for the browser to render the accessed
pages. We show individual results in Figure 10(a),
while the average speedup gained by our optimizations
was 1.90×. Additionally, we used the Dromaeo test
suite (http://dromaeo.com/?dromaeo) to eval-
uate the JavaScript (JS) engines of both Firefox and
Chrome (see Figure 10(b)). libdft also incurs large slow-
downs with the Dromaeo benchmark, similar to the PHP
benchmark. In this case, our optimizations managed to
accelerate the data tracking by 1.36× for Firefox and
1.69× for Chrome.

5.3 Effectiveness

We close the evaluation by testing the correctness of
our analysis, in terms of taint tracking. We do so by test-
ing whether libdft’s DTA tool can still correctly track

network data, and prevent exploits, after applying our
optimizations. We used the group of exploits listed in
Table 2, and in all cases the modified DTA tool success-
fully detected and prevented the exploitation of all listed
applications.

6 Discussion

Inconsistencies in shadow memory status The effec-
tiveness of our approach was evaluated in Section 5.3,
however TFA can produce two types of inconsisten-
cies, which could result in different shadow memory sta-
tus compared with unoptimized DDFT. The first occurs
because TFA eliminates redundant tracking operations,
which can lead to certain shadow registers not being up-
dated. As these registers are not used later on by the
program, this inconsistency does not affect the accuracy
of tracking. The second is due to TFA relocating track-
ing operations. This introduces an ephemeral disparity
in the state of shadow memory (i.e., if we compare the
shadow memory states of TFA and unoptimized DDFT
after every instruction, they we will not always be equiv-
alent). As the tracking operations execute by the end
of each basic block and before control-flow is enforced,
this inconsistency is resolved, and does not introduce
any false positives or false negatives.

Effectiveness of aggregation Our evaluation results
made clear that aggregating taint operations improves
performance, but gains were smaller than what we orig-
inally expected. We attribute this behavior to Pin and
libdft. Specifically, Pin achieves good performance by
inlining instrumentation code between the application’s
instructions. However, this is not possible when the in-
strumentation routine grows in size, or when it contains
branch instructions. libdft adheres to these limitations to
achieve good performance. When we employ TFA ag-
gregation, the instrumentation routines grow in size and
are no longer inlined, increasing the cost of instrumen-

http://www.alexa.com/topsites
http://dromaeo.com/?dromaeo

tation. We believe that the benefit of aggregation will be
more apparent in DDFT systems with consistent instru-
mentation overheads.

TFA for multi-threaded applications Aggregation
relocates the taint operations within a basic block, mak-
ing sure that taint propagation semantics are preserved
correctly. This execution model works well for se-
quential programs, however like all software DDFT ap-
proaches, it can have a correctness problem when ap-
plied to multi-threaded applications. Software DDFT
approaches may suffer from races when multiple threads
compete for the same tag location, since the original
instruction and the tracking operation are not executed
atomically. Our optimizations may increase the chance
of such races, as the distance between original instruc-
tion and propagation increases (see Section 5.1). For this
issue, we draw on the correctness of the original pro-
gram protecting unsafe shared memory accesses. If the
program’s accesses to shared memory regions are prop-
erly guarded with synchronization primitives, the coun-
terpart tracking operations will also be correct as both
reside in the same basic block boundary.

TFA for other DDFT approaches Other DDFT sys-
tems build on binary instrumentation could also directly
benefit from our code reduction schemes (i.e., inner and
outer optimizations). This would require some engineer-
ing effort to update TFA scatter and TFA aggregation to
generate code suitable for the DDFT system being used.
For instance, we can easily apply code reductions (in-
ner, outer) to Minemu [3], while even the more compli-
cated TFA scatter and TFA aggregation could be imple-
mented, if we modified its translation mechanism. TFA
can benefit Minemu because our optimizations focus on
reducing the number of instrumented instructions, while
Minemu achieves its high performance due to its low-
cost access to shadow memory and the utilization of the
SSE instruction set.

TFA and compiler-based DDFT Can we apply TFA
to compiler-based DDFT and expect to have similar
performance gains? Through access to high-level se-
mantics, such as type information and loop invariants,
compiler-based DDFT systems are generally already
more optimized. Because tracking logic is inserted di-
rectly in the source code (or the compiler’s intermedi-
ate representation), compiler-based approaches already
benefit from compiler optimizations, which are applied
to program and tracking logic as a whole. Most of
TFA’s optimizations overlap with the ones performed
by compilers, while there are some that require access
to source code (e.g., Code Motion). Nevertheless, such
approaches can still gain from our range-aware aggrega-
tion of tracking operations, albeit much smaller perfor-
mance gains should be expected.

7 Future Work

In addition to the already applied TFA optimizations,
we can also explore the following optimizations which
are not yet applied:

Alias analysis Currently, we have limited rules on the
equality of memory operands. We regard two mem-
ory operands as equal, only when all of the vari-
ables that determine their address are the same. If
the variables are the same but differ by a constant,
we regard them as unequal. In all other cases, the
equality of memory operands cannot be decided.
By leveraging a rather aggressive alias analysis, we
expect to be able to determine memory operand
equality more effectively, allowing us to further op-
timize DDFT.

Global common subexpression This can be imple-
mented by extending the scope of the local
common subexpression optimization beyond the
boundary of basic blocks (note that TFA already
performs the later during copy propagation). This
also requires that we perform an available expres-
sion data flow analysis.

TFA also exposes opportunities for applying more
advanced optimization schemes. For instance, we can
implement compositional analysis [15] using TFA to
produce summaries for code segments larger than a ba-
sic block. This would allow us to use traces, as defined
by the Pin DBI framework [23], or functions as analysis
units. Our approach can be also used to enhance the per-
formance of other analyses based on memory shadowing
and binary instrumentation, such as memory safety life-
guards [4, 26]. Even though, these systems define data
dependencies differently, our methodology is still appli-
cable, and can reduce the number of tracking operations
required.

Another direction that we plan to explore is parel-
lelization. Decoupling execution from DDFT has been
explored in the past, however we believe that our ap-
proach reduces the number of instrumentation instruc-
tions sufficiently enough to make parellelization more
attractive. Implicit data flow tracking can also benefit
from our work, since TFA already extracts the control
dependencies between basic blocks.

8 Conclusion

We presented a novel methodology that combines dy-
namic and static analysis to improve the performance
overhead of DDFT. Our approach separates data track-
ing logic from program logic, and represents it using
a Taint Flow Algebra. Inspired by optimizing compil-
ers, we apply various code optimization techniques, like

dead code elimination and liveness analysis, to eliminate
redundant tracking operations and minimize interfer-
ence with the instrumented program. We incorporated
our optimizations in a freely available DDFT framework
and evaluated its performance with various applications.
Our results show improved performance by 1.72× on
average across the tested applications, while in certain
scenarios we observe speedups up to 2.23×. Although
the overall performance impact of DDFT remains sig-
nificant, our optimizations bring it closer to becoming
practical for certain environments.

Acknowledgments

This work was supported by the US Air Force,
DARPA and the National Science Foundation through
Contracts AFRL-FA8650-10-C-7024, FA8750-10-2-
0253 and Grant CNS-09-14312, respectively, with addi-
tional support by Google and Intel Corp. Any opinions,
findings, conclusions or recommendations expressed
herein are those of the authors, and do not necessar-
ily reflect those of the US Government, the Air Force,
DARPA, the NSF, Google or Intel.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Com-
pilers: Principles, Techniques, & Tools. Addison Wes-
ley, 2006.

[2] M. Attariyan and J. Flinn. Automating configuration
troubleshooting with dynamic information flow analysis.
In Proc. of the 9th OSDI, pages 237–250, 2010.

[3] E. Bosman, A. Slowinska, and H. Bos. Minemu: The
World’s Fastest Taint Tracker. In Proc. of the 14th RAID,
pages 1–20, 2011.

[4] D. Bruening and Q. Zhao. Practical Memory Checking
with Dr. Memory. In Proc. of the 9th CGO, pages 213–
223, 2011.

[5] W. Chang, B. Streiff, and C. Lin. Efficient and Exten-
sible Security Enforcement Using Dynamic Data Flow
Analysis. In Proc. of the 15th CCS, pages 39–50, 2008.

[6] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. Gibbons,
T. Mowry, V. Ramachandran, O. Ruwase, M. Ryan,
and E. Vlachos. Flexible Hardware Acceleration for
Instruction-Grain Program Monitoring. In Proc. of the
35th ICSA, pages 377–388, 2008.

[7] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dy-
namic program analysis from execution in virtual envi-
ronments. In Proc. of the 2008 USENIX ATC, pages 1–
14.

[8] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via Whole
System Simulation. In Proc. of the 13th USENIX Secu-
rity, pages 321–336, 2004.

[9] J. Clause, W. Li, and A. Orso. Dytan: A Generic Dy-
namic Taint Analysis Framework. In Proc. of the 2007
ISSTA, pages 196–206.

[10] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante: End-to-
End Containment of Internet Worms. In Proc. of the
20th SOSP, pages 133–147, 2005.

[11] J. R. Crandall and F. T. Chong. Minos: Control Data At-
tack Prevention Orthogonal to Memory Model. In Proc.
of the 37th MICRO, pages 221–232, 2004.

[12] J. Dai, J. Huang, S. Huang, B. Huang, and Y. Liu. Hi-
Tune: Dataflow-Based Performance Analysis for Big
Data Cloud. In Proc. of the 2011 USENIX ATC, pages
87–100.

[13] M. Dalton, H. Kannan, and C. Kozyrakis. Real-
World Buffer Overflow Protection for Userspace & Ker-
nelspace. In Proc. of the 17th USENIX Security, pages
395–410, 2008.

[14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proc. of the 9th OSDI,
pages 393–407, 2010.

[15] P. Godefroid. Compositional Dynamic Test Generation.
In Proc. of 34th POPL, pages 47–54, 2007.

[16] Hex-Rays. IDA: Interactive DisAssembler. http://
www.hex-rays.com.

[17] A. Ho, M. Fetterman, C. Clark, A. Warfield, and
S. Hand. Practical Taint-based Protection using Demand
Emulation. In Proc. of the 2006 EuroSys, pages 29–41.

[18] M. G. Kang, S. McCamant, P. Poosankam, and D. Song.
DTA++: Dynamic Taint Analysis with Targeted Control-
Flow Propagation. In Proc. of the 18th NDSS, 2011.

[19] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D.
Keromytis. libdft: Practical Dynamic Data Flow Track-
ing for Commodity Systems. Technical Report CUCS-
044-11, Department of Computer Science, Columbia
University, 2011.

[20] H. C. Kim and A. Keromytis. On the Deployment of
Dynamic Taint Analysis for Application Communities.
IEICE Transactions on Information and Systems, E92-
D(3):548–551, 2009.

[21] L. C. Lam and T. Chiueh. A General Dynamic Infor-
mation Flow Tracking Framework for Security Appli-
cations. In Proc. of the 22nd ACSAC, pages 463–472,
2006.

[22] M. T. Louw and V. N. Venkatakrishnan. Blueprint: Ro-
bust Prevention of Cross-site Scripting Attacks for Ex-
isting Browsers. In Proc. of the 30th IEEE S&P, pages
331–346, 2009.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proc. of the 2005 PLDI,
pages 190–200.

[24] A. C. Myers and B. Liskov. Protecting Privacy us-
ing the Decentralized Label Model. ACM Transactions
on Software Engineering and Methodology (TOSEM),
9(4):410–442, 2000.

[25] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood.
Understanding and Visualizing Full Systems with Data
Flow Tomography. In Proc. of the 13th ASPLOS, pages
211–221, 2008.

http://www.hex-rays.com
http://www.hex-rays.com

[26] N. Nethercote and J. Seward. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In
Proc. of the 2007 PLDI, pages 89–100.

[27] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Genera-
tion of Exploits on Commodity Software. In Proc. of the
12th NDSS, 2005.

[28] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn.
Parallelizing Security Checks on Commodity Hardware.
In Proc. of the 13th ASPLOS, pages 308–318, 2008.

[29] G. Portokalidis and H. Bos. Eudaemon: Involuntary and
On-Demand Emulation Against Zero- Day Exploits. In
Proc. of the 2008 EuroSys, pages 287–299.

[30] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: Versatile Protection For
Smartphones. In Proc. of the 26th ACSAC, pages 347–
356, 2010.

[31] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
Emulator for Fingerprinting Zero-Day Attacks. In Proc.
of the 2006 EuroSys, pages 15–27.

[32] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and
Y. Wu. LIFT: A Low-Overhead Practical Information
Flow Tracking System for Detecting Security Attacks.
In Proc. of the 39th MICRO, pages 135–148, 2006.

[33] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and
E. Witchel. Laminar: Practical Fine-Grained Decentral-
ized Information Flow Control. In Proc. of the 2009
PLDI, pages 63–74.

[34] O. Ruwase, S. Chen, P. Gibbons, and T. Mowry. Decou-
pled Lifeguards: Enabling Path Optimizations for Dy-
namic Correctness Checking Tools. In Proc. of the 2010
PLDI, pages 25–35.

[35] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachan-
dran, S. Chen, M. Kozuch, and M. Ryan. Parallelizing
Dynamic Information Flow Tracking. In Proc. of the
20th SPAA, pages 35–45, 2008.

[36] P. Saxena, R. Sekar, and V. Puranik. Efficient Fine-
Grained Binary Instrumentation with Applications to
Taint-Tracking. In Proc. of the 6th CGO, pages 74–83,
2008.

[37] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You
Ever Wanted to Know about Dynamic Taint Analysis
and Forward Symbolic Execution (but Might Have Been
Afraid to Ask). In Proc. of the 31th IEEE S&P, pages
317–331, 2010.

[38] G. E. Suh, J. W. Lee, and S. Devadas. Secure Program
Execution via Dynamic Information Flow Tracking. In
Proc. of the 11th ASPLOS, pages 85–96, 2004.

[39] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani,
and D. I. August. RIFLE: An Architectural Framework
for User-Centric Information-Flow Security. In Proc. of
the 37th MICRO, pages 243–254, 2004.

[40] G. Venkataramani, I. Doudalis, Y. Solihin, and
M. Prvulovic. Flexitaint: A Programmable Accelera-
tor for Dynamic Taint Propagation. In Proc. of the 14th

HPCA, pages 173–184, 2008.
[41] W. Xu, S. Bhatkar, and R. Sekar. Taint-Enhanced Policy

Enforcement: A Practical Approach to Defeat a Wide
Range of Attacks. In Proc. of the 15th USENIX Security,
pages 121–136, 2006.

[42] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-wide Information Flow
for Malware Detection and Analysis. In Proc. of the 14th

CCS, pages 116–127, 2007.
[43] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Maz-

ières. Making Information Flow Explicit in HiStar. In
Proc. of the 7th OSDI, pages 263–278, 2006.

[44] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable,
A. Vahdat, A. C. Snoeren, G. M. Voelker, and S. Savage.
Neon: System Support for Derived Data Management.
In Proc. of the 6th VEE, pages 63–74, 2010.

[45] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wether-
all. TaintEraser: Protecting Sensitive Data Leaks Using
Application-Level Taint Tracking. SIGOPS Oper. Syst.
Rev., 45(1):142–154, 2011.

Appendices
A Formal Definitions and Semantics

A.1 The Range Operator

Figure 11 presents the operational semantics of the
range operator (rng-map) defined from Figure 4. The
operator calculates the valid insert locations of the el-
ement given as its arguments. It shows how the range
operator is interpreted when it is applied to the differ-
ent elements (variables, expression, and statement) of
TFA. We do not present any other operational semantics,
since they are not fundamentally different from previous
work [37].

The rules in Figure 11 are read bottom to top, left
to right. Given a range statement, we pattern-match
its argument to find the applicable rule. e.g., given
the range statement r(eax1 := 0x1 & eax0), we
first match to the Statement rule. We then apply the com-
putation given in the top of the rule, and if successful, a
transition made from the original context (Σ) to the up-
dated context (Σ′.) Σ is the only context we care for the
operator, and it represents the instrumentation locations
in the block being analyzed. For a BB with n instruc-
tions (size(Σ) = n), it allows n + 1 instrumentation
locations ([0, size(Σ)]).

For constant variables, the range operator returns lo-
cations available in the entire block ([0, size(Σ)]). For
register variables, it returns the range from the previous
to the next definition ([def(regn−1), def(regn+1)].) In
the case of memory variables, it looks for ranges where
both the variables used in addressing and the memory
variable itself are valid concurrently. The valid range for
expressions and statements can be obtained by combin-
ing the ranges of their contained elements. Unlike other
rules, the Statement rule updates the context (Σ) by in-
serting its input statement (var ::= expr) to a computed

Figure 11: Operational semantics of the range operator (rng-map)

valid location (l). The algorithm to choose the insertion
location is discussed in Section 3.4.2.

A.2 Theorems and proofs

A.2.1 Soundness Theorem

In this section, we provide the proof for Theorem 1 pre-
sented in Section 3.3. The efficiency and correctness of
a typical live variable analysis is proven using a semi-
lattice framework [1]. We apply the same methodology
to guarantee the correctness of outer analysis. In our
context, correctness means that our optimized code has
the same effect as the original data tracking logic. While
our analysis is almost identical to a typical live vari-
able analysis, we only assume that an incomplete CFG
is available.

Live variable analysis fits in a semi-lattice frame-
work, which is employed to verify the safety and effi-
ciency of an entire family of data flow problems. The
data flow equations for the analysis can be stated directly
in terms of IN [B] andOUT [B], which represent the set
of variables live at the points immediately before and af-
ter block B. Also, we define

1. def B as the set of variables defined (i.e., definitely
assigned values) in B prior to any use of that vari-
able in B

2. useB as the set of variables, whose values may be
used in B prior to any definition of the variable.

The transfer functions relating def and use to the un-
known IN and OUT are defined as:

IN [EXIT] = φ (1)

and for all basic blocks B other than EXIT ,

IN [B] = useB ∪ (OUT [B]− defB) (2)

OUT [B] =
⋃

S successor of B

IN [S] (3)

Equation 1 is a boundary condition, which defines
that no variables are live when the program exits. Equa-
tion 2 specifies that a variable coming into a block is

live, either if it is defined before usage in that block, or
if it is live when coming out of the block. The last equa-
tion states that a variable coming out of a block is live,
only if it is live when coming into any of its successors.
These definitions comprise the most significant element
of the semi-lattice framework. The monotone property
of the above transfer functions is an important factor that
confirms the safety of the analysis.

Since we only assume an incomplete CFG is avail-
able, we show that the same algorithm can be applied to
our analysis. We modified the live variable analysis by
adding a conditional statement to Equation 3 which de-
fines all variables as live, if an unknown successor block
exists (e.g., due to an indirect branch). This in turn re-
places Equation 3 with Equation 4.

OUT [B] =
⋃

S successor of B

IN [S] (4)

(For any unknown S, IN [S] = U)

By having this equation, we claim the following theo-
rem:

Theorem 1. Soundness of outer analysis: Live vari-
able analysis with incomplete CFG converges and is
safe.

Proof. The algorithm for the analysis will terminate, as
we always have a finite number of blocks. Also, the ad-
ditional statement in Equation 4 does not have any effect
on the monotone property of the transfer functions, as
it imposes conditions only on input arguments, and not
on the function itself. Thus, it follows from the defini-
tion that the modified analysis still fits in the semi-lattice
framework.

A.2.2 Efficiency theorem

In this section, we provide the proof for Theorem 2 pre-
sented in Section 3.4.1. The theorem states:

Theorem 2. Efficiency of the TFA optimization:
The TFA optimization always produces less, or an equal
number of, tracking statements than the original repre-
sentation, for any basic block.

Proof. Note that n() returns the number of statements
in taint-map and T , T ′, and T ′′ represent the taint-map

data structures generated from the different stages of the
TFA optimization.

T : the original taint-map directly translated from a given
basic block B

T ′ : the copy propagation (substitution algorithm) applied
to T

T ′′ : the range correction is applied to T ′

then we want to show n(T) ≥ n(T ′′) ≥ n(T ′).

An example taint-map data structure and its DAG
representation is shown in Figures 3(b) and 5 respec-
tively. Showing n(T) ≥ n(T ′) and n(T ′′) ≥ n(T ′)
are trivial, as the substitution algorithm combines two or
more statements into a single statement, and range cor-
rection splits a statement into two or more statements.

What we need to prove is n(T) ≥ n(T ′′). To show
this, we use proof by contradiction. Let’s assume that
T ′′ is an optimal taint-map that does not have any range
violations, and n(T) < n(T ′′). WLOG, we can say
that a taint-map can have statements such that ∃s0, s1 ∈
T merged into s′0 ∈ T ′ by substitution algorithm, and
s′0 again split into s′′0 , s

′′
1 , s
′′
2 ∈ T ′′ by range correction.

Then, we can have a new taint-map T ′′′ such that T ′′′ =
(T ′′ − s′′0 , s′′1 , s′′2) ∪ s0, s1. The newly created T ′′′ does
not have range violation and n(T ′′′) < n(T ′′). This
contradicts our assumption that T ′′ is optimal taint-map
with the minimal number of valid statements.

	Introduction
	Background and Overview
	Dynamic Data Flow Tracking
	Previous Optimization Approaches
	Still not Fast Enough
	Optimization Through a Taint Flow Algebra (TFA)

	Static Analysis
	Definition of a Taint Flow Algebra
	Data Dependencies Extraction and TFA Representation
	Incorporating Control Flow Information - Outer Optimization
	TFA Optimization
	Pruning Redundant Expressions and Merging Statements Using Copy Propagation
	Minimizing Instrumentation Interference with Aggregation

	Code Generation

	Implementation
	A Pin-based Dynamic Profiler
	Integration with the libdft Framework

	Evaluation
	Static Analysis Results
	Performance
	Effectiveness

	Discussion
	Future Work
	Conclusion
	Appendices
	Formal Definitions and Semantics
	The Range Operator
	Theorems and proofs
	Soundness Theorem
	Efficiency theorem

