Kernel Regression

Advanced Methods for Data Analysis (36-402/36-608)

Spring 2014

1 Linear smoothers and kernels

- Recall our basic setup: we are given i.i.d. samples $\left(x_{i}, y_{i}\right), i=1, \ldots n$ from the model

$$
y_{i}=r\left(x_{i}\right)+\epsilon_{i}, \quad i=1, \ldots n,
$$

and our goal is to estimate r with some function \hat{r}. Assume for now that each $x_{i} \in \mathbb{R}$ (i.e., the predictors are 1-dimensional)

- We talked about consider \hat{r} in the class of linear smoothers, so that

$$
\begin{equation*}
\hat{r}(x)=\sum_{i=1}^{n} w\left(x, x_{i}\right) \cdot y_{i} \tag{1}
\end{equation*}
$$

for some choice of weights $w\left(x, x_{i}\right)$. Indeed, both linear regression and k-nearest-neighbors are special cases of this

- Here we will examine another important linear smoother, called kernel smoothing or kernel regression. We start by defining a kernel function $K: \mathbb{R} \rightarrow \mathbb{R}$, satisfying

$$
\int K(x) d x=1, \quad K(x)=K(-x)
$$

- Three common examples are the box kernel:

$$
K(x)= \begin{cases}1 / 2 & \text { if }|x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

the Gaussian kernel:

$$
K(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right),
$$

and the Epanechnikov kernel:

$$
K(x)= \begin{cases}3 / 4\left(1-x^{2}\right) & \text { if }|x| \leq 1 \\ 0 & \text { else }\end{cases}
$$

- Given a choice of kernel K, and a bandwidth h, kernel regression is defined by taking

$$
w\left(x, x_{i}\right)=\frac{K\left(\frac{x_{i}-x}{h}\right)}{\sum_{j=1}^{n} K\left(\frac{x_{j}-x}{h}\right)}
$$

in the linear smoother form (1). In other words, the kernel regression estimator is

$$
\hat{r}(x)=\frac{\sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right) \cdot y_{i}}{\sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right)}
$$

- What is this doing? This is a weighted average of y_{i} values. Think about laying doing a Gaussian kernel around a specific query point x, and evaluating its height at each x_{i} in order to determine the weight associate with y_{i}
- Because these weights are smoothly varying with x, the kernel regression estimator $\hat{r}(x)$ itself is also smoothly varying with x; compare this to k-nearest-neighbors regression
- What's in the choice of kernel? Different kernels can give different results. But many of the common kernels tend to produce similar estimators; e.g., Gaussian vs. Epanechnikov, there's not a huge difference
- A much bigger difference comes from choosing different bandwidth values h. What's the tradeoff present when we vary h ? Hint: as we've mentioned before, you should always keep these two quantities in mind ...

2 Bias and variance of kernels

- At a fixed query point x, recall our fundamental decomposition

$$
\begin{aligned}
\mathbb{E}[\operatorname{TestErr}(\hat{r}(x))] & =\mathbb{E}\left[(Y-\hat{r}(x))^{2} \mid X=x\right] \\
& =\sigma^{2}+\operatorname{Bias}(\hat{r}(x))^{2}+\operatorname{Var}(\hat{r}(x))
\end{aligned}
$$

So what is the bias and variance of the kernel regression estimator?

- Fortunately, these can actually roughly be worked out theoretically, under some smoothness assumptions on r (and other assumptions). We can show that

$$
\operatorname{Bias}(\hat{r}(x))^{2}=(\mathbb{E}[\hat{r}(x)]-r(x))^{2} \leq C_{1} h^{2}
$$

and

$$
\operatorname{Var}(\hat{r}(x)) \leq \frac{C_{2}}{n h}
$$

for some constants C_{1} and C_{2}. Does this make sense? What happens to the bias and variance as h shrinks? As h grows?

- This means that

$$
\mathbb{E}[\operatorname{Test} \operatorname{Err}(\hat{r}(x))]=\sigma^{2}+C_{1} h^{2}+\frac{C_{2}}{n h}
$$

We can find the best bandwidth h, i.e., the one minimizing test error, by differentiating and setting equal to 0 : this yields

$$
h=\frac{C_{2}}{2 C_{1} n^{1 / 3}} .
$$

Is this is a realistic choice for the bandwidth? Problem is that we don't know C_{1} and C_{2} ! (And even if we did, it may not be a good idea to use this ... why?)

3 Practical considerations, multiple dimensions

- In practice, we tend to select h by, you guessed it, cross-validation
- Kernels can actually suffer bad bias at the boundaries ... why? Think of the asymmetry of the weights
- In multiple dimensions, say, each $x_{i} \in \mathbb{R}^{p}$, we can easily use kernels, we just replace $x_{i}-x$ in the kernel argument by $\left\|x_{i}-x\right\|_{2}$, so that the multivariate kernel regression estimator is

$$
\hat{r}(x)=\frac{\sum_{i=1}^{n} K\left(\frac{\left\|x_{i}-x\right\|_{2}}{h}\right) \cdot y_{i}}{\sum_{i=1}^{n} K\left(\frac{\left\|x_{i}-x\right\|_{2}}{h}\right)}
$$

- The same calculations as those that went into producing the bias and variance bounds above can be done in this multivariate case, showing that

$$
\operatorname{Bias}(\hat{r}(x))^{2} \leq \tilde{C}_{1} h^{2}
$$

and

$$
\operatorname{Var}(\hat{r}(x)) \leq \frac{\tilde{C}_{2}}{n h^{p}}
$$

Why is the variance so strongly affected now by the dimension p ? What is the optimal h, now?

- A little later we'll see an alternative extension to higher dimensions that doesn't nearly suffer the same variance; this is called an additive model

