Proof that the Bayes Decision Rule is Optimal

Theorem For any decision function $g: \mathbb{R}^{d} \xrightarrow{g}\{0,1\}$,

$$
\operatorname{Pr}\{g(\mathbf{X})!=Y\} \geq \operatorname{Pr}\left\{g^{*}(\mathbf{X})!=Y\right\}
$$

We'll prove it in the 2-class problem.

Proof

First we concentrate the attention on the error rate (probability of classification error) of the generic decision function $g(\cdot)$. Look at a SPECIFIC feature vector (namely, condition on $\mathbf{X}=\mathbf{x}$), and recall that uppercase letters denote a random variable, while a lowercase letter denotes a value.
$\operatorname{Pr}\{g(\mathbf{X}) \neq Y \mid \mathbf{X}=\mathbf{x}\}=1-\operatorname{Pr}\{g(\mathbf{X})=Y \mid \mathbf{X}=\mathbf{x}\}$
so, when $\mathbf{X}=\mathbf{x}$ the probability of error is 1 minus the probability of correct decision. We make a correct decision if $g(\mathbf{X})=1$ and $Y=1$ OR if $g(\mathbf{X})=0$ and $Y=0$. Note that the events are disjoint, so the probability of the union (OR) is the sum of the probabilities
$1-\operatorname{Pr}\{g(\mathbf{X})=Y \mid \mathbf{X}\}=1-\operatorname{Pr}\{g(\mathbf{X})=1, Y=1 \mid \mathbf{X}=\mathbf{x}\}-\operatorname{Pr}\{g(\mathbf{X})=0, Y=0 \mid \mathbf{X}=\mathbf{x}\}$.
We now show that conditional on $\mathbf{X}=\mathbf{x}$, the events $\{g(\mathbf{X})=k\}$ and $\{Y=k\}$ are independent (surprising, isn't it?).

First, note that conditional on $\mathbf{X}=\mathbf{x}, g(\mathbf{X})=g(\mathbf{x})$, and that, therefore, $g(\mathbf{x})$ is just the value of g evaluated at \mathbf{x}. This is either 0 or 1 .

Assume WLOG that $g(\mathbf{x})=1$. Then $\operatorname{Pr}\{g(\mathbf{x})=0, Y=0 \mid \mathbf{X}=\mathbf{x})\}$ is equal to zero, because $g(\mathbf{x})$ is equal to 1 . Note, therefore, that the event $\{g(\mathbf{X})=1\}$ has probability 0 , and is conditionally independent of the event $Y=0$ given $\mathbf{X}=\mathbf{x}$. therefore:
$\operatorname{Pr}\{g(\mathbf{X})=0, Y=0 \mid \mathbf{X}=\mathbf{x})\}=\operatorname{Pr}\{g(\mathbf{X})=0 \mid \mathbf{X}=\mathbf{x}\} \operatorname{Pr}\{Y=0 \mid \mathbf{X}=\mathbf{x})\}$.
Similarly, $\operatorname{Pr}\{g(\mathbf{x})=1, Y=1 \mid \mathbf{X}=\mathbf{x})\}=\operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}$ because, by assumption, $\operatorname{Pr}\{g(\mathbf{X}=1) \mid \mathbf{X}=\mathbf{x}\}=1$:
BUT an event having probability 1 is independent of any other event (can you prove it ?), then

$$
\operatorname{Pr}\{g(\mathbf{X})=1, Y=1 \mid \mathbf{X}=\mathbf{x}\}=\operatorname{Pr}\{g(\mathbf{X})=1 \mid \mathbf{X}=\mathbf{x}\} \operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}
$$

by definition of independence.
Thus, for each \mathbf{x} where $g(\mathbf{x})=1$,

$$
\operatorname{Pr}\{g(\mathbf{X})=k, Y=k \mid \mathbf{X}=\mathbf{x})\}=\operatorname{Pr}\{g(\mathbf{X})=k \mid \mathbf{X}=\mathbf{x}\} \operatorname{Pr}\{Y=k \mid \mathbf{X}=\mathbf{x})\}
$$

for $k=0,1$, and independence for this case is proved.

The same argument applies for each \mathbf{x} where $g(\mathbf{x})=0$: thus we can always write

$$
\operatorname{Pr}\{g(\mathbf{X})=k, Y=k \mid \mathbf{X}=\mathbf{x})\}=\operatorname{Pr}\{g(\mathbf{X})=k \mid \mathbf{X}=\mathbf{x}\} \operatorname{Pr}\{Y=k \mid \mathbf{X}=\mathbf{x})\}
$$

for $k=0,1$, which concludes the independence proof.

Now note that $\operatorname{Pr}\{g(\mathbf{X})=k \mid \mathbf{X}=\mathbf{x}\}=1$ if $g(\mathbf{x})=k$, and $=0$ if $g(\mathbf{x}) \neq k$. By using the notation 1_{A} to denote the the indicator of the set A, we can write:
$1-\operatorname{Pr}\{g(\mathbf{X})=Y \mid \mathbf{X}\}=1-\left(1_{g(\mathbf{x})=1} \operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}+1_{g(\mathbf{x})=0} \operatorname{Pr}\{Y=0 \mid \mathbf{X}=\mathbf{x}\}\right)$,

Let's now subtract $\operatorname{Pr}\{g(\mathbf{X})=Y \mid \mathbf{X}=\mathbf{x}\}$ from $\operatorname{Pr}\left\{g^{*}(\mathbf{X})=Y \mid \mathbf{X}=\mathbf{x}\right\}$:

$$
\begin{aligned}
\operatorname{Pr}\left\{g^{*}(\mathbf{X})=\right. & Y \mid \mathbf{X}=\mathbf{x}\}-\operatorname{Pr}\{g(\mathbf{X})=Y \mid \mathbf{X}=\mathbf{x}\} \\
= & \operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}\left(1_{g^{*}(\mathbf{x})=1}-1_{g(\mathbf{x})=1}\right) \\
& +\operatorname{Pr}\{Y=0 \mid \mathbf{X}=\mathbf{x}\}\left(1_{g^{*}(\mathbf{x})=0}-1_{g(\mathbf{x})=0}\right)
\end{aligned}
$$

(simple algebra). Noting that $\operatorname{Pr}\{Y=0 \mid \mathbf{X}=\mathbf{x}\}=1-\operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}$, we can then write

$$
\begin{align*}
\operatorname{Pr}\left\{g^{*}(\mathbf{X})=\right. & Y \mid \mathbf{X}=\mathbf{x}\}-\operatorname{Pr}\{g(\mathbf{X})=Y \mid \mathbf{X}=\mathbf{x}\} \\
= & \operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}\left(1_{g^{*}}(\mathbf{X})=1-1_{g(\mathbf{X})=1}\right) \\
& +(1-\operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\})\left(1_{g^{*}(\mathbf{x})=0}-1_{g(\mathbf{x})=0}\right) \tag{1}
\end{align*}
$$

Now, note that $1_{g^{*}(\mathbf{X})=0}=1-1_{g^{*}(\mathbf{X})=1}$, etc. Hence,

$$
\begin{align*}
\operatorname{Pr}\left\{g^{*}(\mathbf{X})=\right. & Y \mid \mathbf{X}=\mathbf{x}\}-\operatorname{Pr}\{g(\mathbf{X})=Y \mid \mathbf{X}=\mathbf{x}\} \\
= & \operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}\left(1_{g^{*}(\mathbf{x})=1}-1_{g(\mathbf{x})=1}\right) \\
& +(1-\operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\})\left(1-1_{g^{*}(\mathbf{x})=1}-1+1_{g(\mathbf{x})=1}\right) \\
=\quad & (2 \operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}-1)\left(1_{g^{*}(\mathbf{x})=1}-1_{g(\mathbf{x})=1}\right) \tag{2}
\end{align*}
$$

Now, note that, for each \mathbf{x},

- if $\operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}>1 / 2$, then by definition of the Bayes Decision Rule, $1_{g^{*}(\mathbf{x})=1}=1$, and, in general $1_{g(\mathbf{x})=1} \leq 1$; thus, Eq $2 \geq 0$.
- if $\operatorname{Pr}\{Y=1 \mid \mathbf{X}=\mathbf{x}\}<1 / 2$, then again by definition the Bayes Decision Rule, $1_{g^{*}(\mathbf{x})=1}=0$, and, in general $1_{g(\mathbf{x})=1} \geq 0$; thus, Eq $2 \geq 0$.

This is true for $\mathbf{X}=\mathbf{x}$; Now, take the expectation with respect to $f(\mathbf{X})$.

