COMS 4771 Machine Learning (**add semester here ${ }^{* *}$) Problem Set \#1

Name Surname - uni@columbia.edu
add date here

Problem 1

Examples of blackboard and calligraphic letters: $\mathbb{R}^{d} \supset \mathbb{S}^{d-1}, \mathcal{C} \subset \mathcal{B}$. Examples of bold-faced letters (perhaps suitable for matrix and vectors):

$$
\begin{equation*}
L(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})-\langle\boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\rangle \tag{1}
\end{equation*}
$$

Example of a custom-defined math operator:

$$
\operatorname{var}(X)=\mathbb{E} X^{2}-(\mathbb{E} X)^{2} .
$$

Example of references: the Lagrangian is given in Eq. (1), and Theorem 1 is interesting. Example of adaptively-sized parentheses:

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}+\left(\prod_{i=1}^{n} y_{i}\right)^{1 / n} \leq\left(\prod_{i=1}^{n}\left(x_{i}+y_{i}\right)\right)^{1 / n}
$$

Example of aligned equations:

$$
\begin{align*}
\operatorname{Pr}(X=1 \mid Y=1) & =\frac{\operatorname{Pr}(X=1 \wedge Y=1)}{\operatorname{Pr}(Y=1)} \\
& =\underbrace{\frac{\operatorname{Pr}(Y=1 \mid X=1) \cdot \operatorname{Pr}(X=1)}{\operatorname{Pr}(Y=1)}}_{\text {Usual expression for Bayes' rule }} . \tag{2}
\end{align*}
$$

Example of a theorem:
Theorem 1 (Euclid). There are infinitely many primes.
Euclid's proof. There is at least one prime, namely 2. Now pick any finite list of primes $p_{1}, p_{2}, \ldots, p_{n}$. It suffices to show that there is another prime not on the list. Let $p:=$ $\prod_{i=1}^{n} p_{i}+1$, which is not any of the primes on the list. If p is prime, then we're done. So suppose instead that p is not prime. Then there is prime q which divides p. If q is one of the primes on the list, then it would divide $p-\prod_{i=1}^{n} p_{i}=1$, which is impossible. Therefore q is not one of the n primes in the list, so we're done.

Here is a centered table.

	A	B	C	D
1	entries	in	a	table
2	more	entries	more	entries

Problem 2

Problem 3

Problem 4

Problem 5

