
1

Oblivious Pseudorandom Functions

and Some (Magical) Applications

Hugo Krawczyk

This presentation is based on the following research papers:

https://eprint.iacr.org/2019/1275

https://eprint.iacr.org/2018/163

https://eprint.iacr.org/2017/363

https://eprint.iacr.org/2017/363

Oblivious PRF (OPRF)

2

fk(x) is a Pseudo-Random
Function (PRF) if

x

Fk(x)or $
Fk or $ Adv

?
S(k) C(x)

Fk(x)Nothing

OPRF protocol

FK

❑ OPRF: An interactive PRF “service” that returns PRF results

without learning the input or output of the function

❑ A POWERFUL primitive

DH-OPRF

3

◼ Cyclic group G of prime order q with generator g

 G = {1, g, g2, …, gq-1}

 Crucial property: for all x, y in {0…q-1}: gxy = (gx)y = (gy)x = gyx

◼ “Diffie-Hellman problem”: Given gx and gy, it’s hard to compute gxy

◼ “One-More DH Assumption”:

 Given (g, gk, g1, g2, …, gm) and Q calls to a k-exponentiation oracle (∙)k

 Cannot output gi
k for more than Q elements in {g1, g2, …, gm }

◼ We will also need: Hash function H that maps arbitrary strings to

random elements in G (“random oracle model”)

The Diffie-Hellman Problem

4

◼ PRF: FK(x) = H(x)k ; input x, key k from 0…q-1

◼ Oblivious computation via Blind DH Computation (S has k, C has x)

◼ b1/r = (ak)1/r = (((H(x)r)k)1/r = (((H(x)k)r)1/r = (H(x))k

◼ The blinding factor r works as a one-time encryption key:

hides H(x), x and FK(x) perfectly from S (and from any observer)

DH-OPRF

5

a = (H(x))r

b = ak

S: key k C: input x

random r

Computes H(x)k
 b1/r

◼ PRF: FK(x) = H(x)k ; input x, key k from 0…q-1

◼ Oblivious computation via Blind DH Computation (S has k, C has x)

◼ Computational cost: one round, 2 exponentiations for C, one for S

 Commodity laptop: > 10,000 exponentiations/second

 Variant: fixed base exponentiation for C (even faster)

DH-OPRF

6

a = (H(x))r

b = ak

S: key k C: input x

random r

Computes H(x)k
 b1/r

H’(x, H(x)k)

DH-OPRF

◼ Long history (blinded DH): […, CP'93, SY'96, HFH'99, FK'00, AES'03, JL’10,…],

◼ H’(H(x)k) treated as PRF in [NPR’99] and as OPRF in [JL’10]

◼ Variants (H(x))k , H’(H(x)k) , H’(x, H(x)k), …

◼ Security [JL’10, JKK’14]: Secure as OPRF in the Random Oracle Mode

assuming Gap-One-More-DH [BNPS’03]

◼ DH-OPRF: Most efficient OPRF implementation (elliptic curves)

◼ Defining OPRF: Tricky notion →many definitions (balancing

security, utility, performance)

7

Many applications

◼ Private set intersection: HFH’99,FIPR’05,JL’10,CT’10,…, PSZ’14’15,KRRT’16,..

◼ Private Keyword Search (Keyword OT/PIR) [FIPR’05]

◼ Pattern matching [HL08, FHV13]

◼ De-duplication (files, medical records, etc.) [BKR’13,BCAPR’17]

◼ Chameleon pseudonyms, oblivious tokenization [CL’17]

◼ Search on Encrypted Data [CJJKRS’13, CJKRS’13]: Uses DH-OPRF

“non-interactively” by storing blinded copies of the OPRF key

8

New Applications

◼ Key management services (esp. cloud storage systems)

◼ Revamping the world of password protection…

9

What is a “Cloud KMS”?

10

Client

(C)

Storage Server

(StS)

Key

Management

Server (KmS)

Wrap-Unwrap Method: Wrapping

11

Client (C) Key

Management

Server (KmS)

(C, dek)
dek

:

wrap =

ENC(CRK, dek)
wrap

Storage Server (StS)

(ObjId, wrap, Enc(dek, Obj))

data encryption key

CRK

Client Root Key

Wrap-Unwrap Method: Unwrapping

12

Client (C) Key

Management

Server (KmS)

(C, wrap)
dek =

DEC(CRK, wrap)dek

(ObjId, wrap, e = Enc(dek, Obj))

Obj = Dec(dek, e)

CRK

Cloud KMS — Weaknesses and Vulnerabilities

14

Client

(C)

Key

Management

Server (KmS)

(C, dek)

wrap

(C, wrap)

dek

wrap =

ENC(CRK, dek)

dek =

DEC(CRK, wrap)

Vulnerable to Interception
(e.g. TLS, CAs)

Vulnerable to KMS compromise
(insiders, CDNs, middleboxes)

OPRF-based KMS

◼ OPRF replaces traditional wrap/unwrap approach

◼ DEK = OPRF(key=CRK, input=DEK-id) , i.e., DEK = (H(DEK-id))CRK

 CRK is the client’s OPRF key, replaces the traditional wrapping key

15

◼ Keys (DEK) transmitted with perfect secrecy from network and

insiders - no reliance on TLS or CA’s (even “PQ Secure”)

◼ KMS can’t determine which keys the user is accessing

Further Features of OPRF Approach

◼ Verifiability: If client has 𝑔𝑘 (𝑔 ∈ 𝐺, 𝑘 the client’s OPRF key),

it can verify that 𝐻(DEK-ID)𝑘 is correct, hence DEK is correct

 Note that if KMS returns wrong key/wrap data lost forever

◼ Reduced storage: No need to store wraps in addition to key id’s;

KMS can derive OPRF keys from a single key (reduces off-HSM storage)

◼ Implicit authentication: Bearer tokens, passwords, etc., input to

OPRF provide authentication w/o KMS having to verify anything

◼ Threshold security: Can distribute the OPRF into n servers (HSMs)

with OPRF key secure as long as no more than t are compromised

16

Threshold DH-OPRF (n-out-of-n)

◼ Single server solution: 𝐹𝑘(𝑥) = (𝐻(𝑥))𝑘 (H’ omitted for simplicity)

◼ Multi-server solution: Server 𝑆𝑖 has share 𝑘𝑖, 𝑘 = 𝑘1 + 𝑘2 +⋯+ 𝑘𝑛

 𝐹𝑘(𝑥) = 𝐻 𝑥
𝑘1 ∙ 𝐻 𝑥

𝑘2 ∙ ⋯ ∙ 𝐻 𝑥
𝑘𝑛 = 𝐻 𝑥

σ 𝑘𝑖

◼ U sends same 𝑎 = (𝐻(𝑥))𝑟 to each server; 𝑆i returns 𝑏𝑖 = a𝑘𝑖;

U deblinds all 𝑏𝑖 and multiplies

◼ Efficiency: 2 exp’s for client (indep of n), 1 per server, 1 round

◼ Key 𝑘 is never reconstructed: “function sharing” vs “secret sharing”

17

Threshold DH-OPRF (t-out-of-n)

◼ t-out-of-n threshold DH-OPRF: Each server 𝑆𝑖 has share 𝑘𝑖

◼ 𝐹𝑘(𝑥) computed from any set of t servers 𝑆𝑖1,…, 𝑆𝑖𝑡

 𝐹𝑘(𝑥) = (𝐻 𝑥)𝜆𝑖1𝑘𝑖1 ∙ (𝐻 𝑥)𝜆𝑖2𝑘𝑖2 ∙ ⋯ ∙ (𝐻 𝑥)𝜆𝑖𝑡𝑘𝑖𝑡

 𝜆𝑖𝑗 is a Lagrange interpolation coefficient (“Shamir in the exponent”)

◼ As before: key 𝑘 is never reconstructed

 Not even during generation/sharing: Distributed key generation

18

Threshold DH-OPRF (more goodies)

◼ Single client message → proxy-based threshold operation

◼ Verifiability: via ZK or interactive (latter good for proxy-based)

 Still a single message from C, double the # of exp’s, still indep of n, t

◼ Distributed OPRF key generation (key never exists in one physical place)

◼ Share rebuilding

◼ Proactive security

19

Updatable Oblivious KMS

◼ KMS stores client's CRK k ; Client stores g and y = gk

◼ To encrypt: Client sets h=gs (random s), sets DEK = ys, stores h

 DEK = ys = (gk)s = (gs)k = hk ; Client can compute hk by itself w/o knowing k !!

◼ To decrypt with h: Client sends hr (random r) to KMS, gets back (hr)k,

deblinds r to obtain hk, sets DEK = hk

 Only decryption is interactive (at the cost of storing h), KMS learns nothing

◼ Non-interactive key update: KMS rotates k to k’, sends Δ= k'/k to C,

C sets every DEK h to hΔ
→ can decrypt with k’ but not with k

 In regular KMS rotation, server is involved with each DEK update!

20

BIG MISSING PIECE:

DEFINITIONS and PROOFS

21

PPSS: Password Protected Secret Sharing

(password-protected distributed storage)

22

How to store a secret

◼ We want to protect secrecy and availability of information while

remembering a single password

 Single server = Single point of compromise for secrecy (offline dict attacks)

 Single server = Single point of failure for availability (server gone, secret gone)

➔Multi-server solution a must.

◼ Crypto solution: keep the secret encrypted in multiple locations;

secret share the encryption key in multiple servers

 Share among n servers, retrieve from t+1 servers (e.g. n=5, t=2)

◼ Protects availability and secrecy: available as long as t+1 available,

secret as long as no more than t corrupted
23

Wait, but how do you authenticate to each
server for share retrieval?

◼ Server needs to authenticate the user before delivering a share

◼ All we have is a user and a password

 A strong independent password with each server? Not realistic

 Same (or slight-variant) password for each server? Not good

➔ Each server as a single point of compromise!

 From one point of compromise to n. We didn’t achieve much, did we?

24

Password Protected Secret Sharing (PPSS)

◼ Init: User secret shares a secret among n servers; forgets secret and

keeps a single password.

◼ Retrieval: User contacts t + 1 servers, authenticates using the single

password and reconstructs the secret.

◼ Security: Breaking into t servers leaks nothing about secret or password

◼ Break = All server’s secret information leaks (shares, long-term keys, password file)

 Only adversary option: Guess the password, try it in an online attack.

 Offline attacks with ≤ t corrupted servers are useless.

+ Soundness: User reconstructs the correct secret or else rejects (CRUCIAL)

Note: No PKI except for Init, secure even if user forgets initialized servers

26

PPSS Solution = Threshold OPRF

◼ n servers share a Threshold OPRF Fk(x)

◼ U’s secret defined as s=Fk(pwd)

 If U’s secret is not random (e.g., bitcoin), s can be used as an encryption key

◼ To retrieve s, U runs T-OPRF with any t+1 servers

◼ In more detail (adding crucial soundness):

 U’s secret defined as H(s,1)

 In addition to ki , servers store H(s,2), which they send to U together with

OPRF response; if not all servers send H(s,2), U aborts (soundness)

◼ Security bonus: Even if t+1 servers compromised, a full exhaustive

offline attack needed to find password!
27

PPSS Efficiency (same as Threshold OPRF)

◼ Computation:

 Single exponentiation for each server

 Only two exponentiations in total for the client (independent of t and n)

 t multiplications for client and for each server

◼ Communication: Single parallel message from user to t+1 servers,

one msg back from each server. No inter-server communication.

◼ No assumed PKI or secure channels (other than for initialization)

◼ Any t, n (t ≤ n)

◼ Robustness: NIZK, interactive [2x expon], ACNP’16
29

Password-Authenticated Key Exchange
(PAKE)

30

OPAQUE: Oblivious PAKE

◼ Asymmetric PAKE: User-Server password authentication (+ KE)

 User has pwd, server stores pwd-related state (but not pwd!)

 Except that in password-over-TLS, server learns password at decryption

(as well as anyone that sees, legitimately or not, unencrypted traffic)

◼ Can we do password authentication so that server (or anyone

other than the client) sees the password?

◼ Goal: Only feasible attacks are (unavoidable) online guesses

◼ Solution: OPAQUE = 1-out-of-1 PPSS !

Use retrieved secret as private key for a key exchange protocol

31

You may use

it one day…

