Handout 9b: Solutions to Exercises (Reductions, Undecidability, Unrecognizability)

Ananya Gandhi and Nicolas Hortiguera

Credit to Eli Goldin and Alan Du (Fall 2020 TAs)

COMS 3261 Fall 2022

1 Countability

(No exercises)

2 Turing Reductions and Undecidability

1. Prove that $H A L T_{T M} \leq_{T} A_{T M}$.

Answer:

Suppose that there were a decider \mathcal{O} for $A_{T M}$. We will construct a decider R for $H A L T_{T M}$ using \mathcal{O} as follows:

```
R:-On input }\langleM,w
-Run \mathcal{O on }\langleM,w\rangle. If \mathcal{O accepts, accept.}
-Create an encoding of a new TM \langleM'}\rangle\mathrm{ as follows:
M': "-On input }
    -Run }M\mathrm{ on }
    -If M accepts, reject. If M rejects, accept.
"
-Run \mathcal{O}\mathrm{ on }\langle\mp@subsup{M}{}{\prime},w\rangle. If \mathcal{O}\mathrm{ accepts, accept.}
-Reject.
```

If $\langle M, w\rangle \in H A L T_{T M}$, then either M accepts w or M rejects w. In the former case, $\mathcal{O} \operatorname{accepts}\langle M, w\rangle$. In the latter case, M^{\prime} accepts w and so \mathcal{O} accepts $\left\langle M^{\prime}, w\right\rangle$. Either way, R accepts $\langle M, w\rangle$.
If $\langle M, w\rangle \notin H A L T_{T M}$, then M runs forever on w. Thus, M^{\prime} also runs forever on w. Therefore, $\langle M, w\rangle \notin A_{T M}$ and $\left\langle M^{\prime}, w\right\rangle \notin A_{T M}$ and so \mathcal{O} rejects both cases. Thus, R rejects $\langle M, w\rangle$.
2. Prove that $L=\{\langle M, D\rangle \mid M$ is a TM, D is a DFA, and $L(M)=L(D)\}$ is undecidable.

Answer:

We will prove this by showing that $A_{T M} \leq_{T} L$. Suppose that there were a decider \mathcal{O} for L. We will
use \mathcal{O} to construct a decider R for $A_{T M}$ as follows:

```
R:-On input \langleM,w\rangle
-Create an encoding of a new TM }\langle\mp@subsup{M}{}{\prime}\rangle\mathrm{ (or we could say }\langle\mp@subsup{M}{w}{\prime}\rangle\mathrm{ ) as follows:
M': "-On input }
    -If }x\not=w\mathrm{ reject.
    -If }x=w\mathrm{ , run M on w. If M accepts, accept. Otherwise, reject.
"
```

-Create an encoding of a new DFA $\langle D\rangle$ such that $L(D)=L(w)=\{w\}$ (this is ok as we know an algorithm to construct DFAs from regular expressions).
-Run \mathcal{O} on $\left\langle M^{\prime}, D\right\rangle$ and output same.

If $\langle M, w\rangle \in A_{T M}$, then M accepts w. Thus, M^{\prime} accepts w and rejects everything else, so $L\left(M^{\prime}\right)=\{w\}$. Therefore, $L\left(M^{\prime}\right)=L(D)$, and so \mathcal{O} accepts $\left\langle M^{\prime}, D\right\rangle$. Thus, R accepts $\langle M, w\rangle$.
If $\langle M, w\rangle \notin A_{T M}$, then M does not accept w. Thus, $L\left(M^{\prime}\right)=\emptyset$. Therefore, $L\left(M^{\prime}\right) \neq L(D)$ since $L(D)=\{w\}$. Therefore, \mathcal{O} rejects $\left\langle M^{\prime}, D\right\rangle$ and so R rejects x.
3. Prove that the following are equivalent

1) $A \leq_{T} B$
2) $\bar{A} \leq_{T} B$
3) $\bar{A} \leq_{T} \bar{B}$
4) $A \leq_{T} \bar{B}$

Answer:

1) $\Rightarrow 2$): Let $A \leq_{T} B$. Thus, if there exists a decider \mathcal{O} for B, we can create a decider R for A. Let R^{\prime} run R and return the opposite. R^{\prime} is a decider for \bar{A} using \mathcal{O}. Thus, $\bar{A} \leq_{T} B$.
$2) \Rightarrow 3$): Let $\bar{A} \leq_{T} B$. If there were a decider \mathcal{O} for \bar{B}, then we could create a decider \mathcal{O}^{\prime} for B by running \mathcal{O} and returning the opposite. But since $\bar{A} \leq_{T} B$, we could use \mathcal{O}^{\prime} to create a decider for \bar{A}. Thus, $\bar{A} \leq_{T} \bar{B}$.
$3) \Rightarrow 4$): Let $\bar{A} \leq_{T} \bar{B}$. Thus, if there exists a decider \mathcal{O} for \bar{B}, we can create a decider R for \bar{A}. Let R^{\prime} run R and return the opposite. R^{\prime} is a decider for $A=\overline{\bar{A}}$ using \mathcal{O}. Thus, $\bar{A} \leq_{T} B$.
$4) \Rightarrow 1$): Let $A \leq_{T} \bar{B}$. If there were a decider \mathcal{O} for B, then we could create a decider \mathcal{O}^{\prime} for \bar{B} by running \mathcal{O} and returning the opposite. But since $A \leq_{T} \bar{B}$, we could use \mathcal{O}^{\prime} to create a decider for A. Thus, $A \leq_{T} B$.

3 Using Rice's Theorem to prove undecidability

1. Does Rice's theorem apply to $L=\{\langle M\rangle \mid M$ is a TM and M accepts 0$\}$?

Answer: Yes.
Clearly $L \subseteq\{\langle M\rangle \mid M$ is a TM $\}$. If M_{1}, M_{2} are TMs and $L\left(M_{1}\right)=L\left(M_{2}\right)$, then M_{1} accepts $0 \Longleftrightarrow M_{2}$ accepts 0 . Thus, $\left\langle M_{1}\right\rangle \in L \Longleftrightarrow\left\langle M_{2}\right\rangle \in L$.
Now, take M accepting all strings, M^{\prime} rejecting all strings. $M \in L, M^{\prime} \notin L$. Thus, $L \neq \emptyset$ and $L \neq\{\langle M\rangle \mid M$ is a TM $\}$.
Therefore, L is undecidable.
2. Does Rice's theorem apply to $L=\{\langle M\rangle \mid M$ is a TM and M has exactly two states $\}$?

Answer: No.

L is not a property of recognizable languages. Consider any TM M with two states. We can always add useless states which can not be reached to create M^{\prime} with the same language. Thus, $L(M)=L\left(M^{\prime}\right)$ and $\langle M\rangle \in L$ while $\left\langle M^{\prime}\right\rangle \notin L$.
In fact, L is decidable. We could create a Turing machine which simply counts the number of states and accepts if there are two, and rejects otherwise.
3. Does Rice's theorem apply to $L=\{\langle M\rangle \mid M$ is a TM and M rejects 0$\}$?

Answer: No.
L is not a property of recognizable languages. Consider M_{1} a TM which rejects all strings, M_{2} a TM which runs forever on all strings. $L\left(M_{1}\right)=L\left(M_{2}\right)=\emptyset$. M_{1} rejects 0 , so $\left\langle M_{1}\right\rangle \in L$. However, M_{2} runs forever on 0 , and specifically does not reject 0 . Thus, $\left\langle M_{2}\right\rangle \notin L$.
Despite the fact that Rice's theorem does not apply, L is undecidable. We can prove this e.g. by a reduction from the language in 3.1.
4. Does Rice's theorem apply to $E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)=\emptyset\}$?

Answer: Yes.
Clearly $E_{T M} \subseteq\{\langle M\rangle \mid M$ is a TM $\}$. If M_{1}, M_{2} are TMs and $L\left(M_{1}\right)=L\left(M_{2}\right)$, then $L\left(M_{1}\right)=\emptyset \Longleftrightarrow$ $L\left(M_{2}\right)=\emptyset$. Thus, $\left\langle M_{1}\right\rangle \in E_{T M} \Longleftrightarrow\left\langle M_{2}\right\rangle \in E_{T M}$.
Now, take M accepting all strings, M^{\prime} rejecting all strings. We have $L(M)=\emptyset, L\left(M^{\prime}\right)=\Sigma^{*}$. $M \in E_{T M}, M^{\prime} \notin E_{T M}$. Thus, $E_{T M} \neq \emptyset$ and $E_{T M} \neq\{\langle M\rangle \mid M$ is a TM $\}$.
Therefore, $E_{T M}$ is undecidable.
5. Does Rice's theorem apply to $L=\left\{\langle M\rangle \mid M\right.$ is a TM and $\left.L(M)=\overline{A_{T M}}\right\}$?

Answer: No.
Here, we have that L is indeed a property of recognizable languages. However, L is trivial. We know that $\overline{A_{T M}}$ is unrecognizable, and so there exists no TM M such that $L(M)=\overline{A_{T M}}$. Therefore, $L=\emptyset$. Note that as \emptyset is a decidable language, so is L. (For a decider, consider the TM: "on input x, reject.").
6. Does Rice's theorem apply to $L=\{\langle M\rangle \mid M$ is a TM and $L(M)$ is recognizable $\}$?

Answer: No.
Note that for every TM M, by definition $L(M)$ is recognizable. Thus, $L=\{\langle M\rangle \mid M$ is a TM $\}$ and so L is trivial.
Note that $\{\langle M\rangle \mid M$ is a TM $\}$ is a decidable language, and so L is as well. (For a decider, consider the TM: "on input $\langle M\rangle$ where M is a TM, accept.")
7. Does Rice's theorem apply to $L=\{\langle M\rangle \mid M$ is a TM and $L(M)$ is decidable $\}$?

Answer: Yes.
Clearly $L \subseteq\{\langle M\rangle \mid M$ is a TM $\}$. If M_{1}, M_{2} are TMs and $L\left(M_{1}\right)=L\left(M_{2}\right)$, then $L\left(M_{1}\right)$ is decidable $\Longleftrightarrow L\left(M_{2}\right)$ is decidable. Thus, $\left\langle M_{1}\right\rangle \in L \Longleftrightarrow\left\langle M_{2}\right\rangle \in L$.
Let M reject all strings, and let U be a recognizer for $A_{T M}$. We know that M is a decider (and $L(\langle M\rangle)=\emptyset)$ is a decidable language), and so $\langle M\rangle \in L$. However, $L(U)=A_{T M}$ is not decidable, and so $\langle U\rangle \notin L$. Thus, L is non-trivial.

Using Rice's theorem to prove undecidability: (Problem 5.18 in Sipser, p. 240)
Use Rice's theorem to prove the undecidability of the following language:
INFINITE $E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)$ is an infinite language $\}$

Solution: INFINITE $T_{T M}$ is a language of TM descriptions. It satisfies the conditions of Rice's theorem. First, it depends only on the language: if two $\mathrm{TMs} M_{1}, M_{2}$ recognize the same language, either both have descriptions in INFINITE $E_{T M}$ or neither do. Second, it is nontrivial because some TMs have infinite languages and others do not. For a specific example, take M a TM that accepts all inputs, and M^{\prime} a TM that rejects all inputs, then $\langle M\rangle \in I N V I N I T E_{T M}$ while $\left\langle M^{\prime}\right\rangle \notin I N V I N I T E_{T M}$. Thus, INFINITE $T M$ is a non-trivial property of recognizable languages, and so Rice's theorem implies that it is undecidable.

4 Proving L is unrecognizable - Overview

(No exercises)

5 Using complements and undecidability to prove unrecognizability

(No exercises)

6 Mapping Reductions for unrecognizability

1. Prove that $L=\{\langle M, D\rangle \mid M$ is a TM, D is a DFA, and $L(M)=L(D)\}$ is not co-recognizable. That is, prove that \bar{L} is not recognizable.

Answer:

Note that the Turing-reduction given in the solution for 2.2 is actually a mapping reduction! Thus, $A_{T M} \leq_{m} L$, and so $\overline{A_{T M}} \leq \bar{L}$. Therefore, \bar{L} is not recognizable. To see this more formally, consider the computable function f as follows:
$f:-$ On input $\langle M, w\rangle$
-Create an encoding of a new $\mathrm{TM}\left\langle M^{\prime}\right\rangle$ (or we could say $\left\langle M_{w}^{\prime}\right\rangle$) as follows:
M': "-On input x
-If $x \neq w$ reject.
-If $x=w$, run M on w. If M accepts, accept. Otherwise, reject.
"
-Create an encoding of a new DFA $\langle D\rangle$ such that $L(D)=L(w)=\{w\}$ (this is ok as we know an algorithm to construct DFAs from regular expressions).
-Return $\left\langle M^{\prime}, D\right\rangle$.
This f is computable, since every step is implementable.
If $\langle M, w\rangle \in A_{T M}$, then $L\left(M^{\prime}\right)=L(D)$ and so $\left\langle M^{\prime}, D\right\rangle \in L$.
If $\langle M, w\rangle \notin A_{T M}$, then $L\left(M^{\prime}\right)=\emptyset \neq L(D)$ and so $\left\langle M^{\prime}, D\right\rangle \notin L$.
Thus, $\langle M, w\rangle \in A_{T M} \Longleftrightarrow f(\langle M, w\rangle) \in L$, and so $A_{T M} \leq_{m} L$.
2. Prove that $L=\{\langle M\rangle \mid M$ does not accept strings of length $\geq 50\}$ is not recognizable.

Answer:

We will show that $E_{T M} \leq_{m} L$. Consider the computable function f defined as follows:

```
f:-On input }\langleM\rangle
-Create an encoding of a new TM }\langle\mp@subsup{M}{}{\prime}\rangle\mathrm{ as follows:
M': "-On input w"
    -If }|w|<50, reject.
    -If }|w|\geq50\mathrm{ , let }\mp@subsup{w}{}{\prime}\mathrm{ be w without the first 50 characters. Run M on w
-Return }\langle\mp@subsup{M}{}{\prime}\rangle\mathrm{ .
```

This f is computable, since every step is implementable.
If $\langle M\rangle \in E_{T M}, M$ will never accept any string as $L(M)=\emptyset$. But the only time M^{\prime} accepts a string
is if M accepts a (different) string. Thus, M^{\prime} will never accept any string, and so will not accept any string of length ≥ 50. Thus, $f(M)=\left\langle M^{\prime}\right\rangle \in L$.
If $\langle M\rangle \notin E_{T M}$, then $\exists w$ such that M accepts w. Let $a \in \Sigma$. Note that M^{\prime} will accept $a^{50} w$. Thus, since $\left|a^{50} w\right| \geq 50, f(M)=\left\langle M^{\prime}\right\rangle \notin L$.
Therefore, $w \in E_{T M} \Longleftrightarrow f(w) \in L$, and so $E_{T M} \leq_{m} L$. Therefore, since $E_{T M}$ is not recognizable, neither is L.
3. Let A be a language. Prove that $A \leq_{m} A$.

Answer: Let f be the identity. This is clearly computable. We have $w \in A \Longleftrightarrow w=f(w) \in A$. Thus, $A \leq_{m} A$ by definition.
4. Is it necessarily true that $A \leq_{m} \bar{A}$?

Answer: No. Consider $A_{T M}$. We know that $A_{T M}$ is recognizable, while $\overline{A_{T M}}$ is not. Thus, we cannot possibly have $\overline{A_{T M}} \leq_{m} A_{T M}=\overline{\overline{A_{T M}}}$.
Note that for Turing-reductions, it IS true that for every A we have $A \leq_{T}$ ol A, as follows from exercise 2.3.

