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1 Countability

(No exercises)

2 Turing Reductions and Undecidability

1. Prove that HALTTM ≤T ATM .

Answer:
Suppose that there were a decider O for ATM . We will construct a decider R for HALTTM using O
as follows:

R: -On input ⟨M,w⟩
-Run O on ⟨M,w⟩. If O accepts, accept.
-Create an encoding of a new TM ⟨M ′⟩ as follows:
M’: ”-On input x

-Run M on x
-If M accepts, reject. If M rejects, accept.

”
-Run O on ⟨M ′, w⟩. If O accepts, accept.
-Reject.

If ⟨M,w⟩ ∈ HALTTM , then either M accepts w or M rejects w. In the former case, O accepts ⟨M,w⟩.
In the latter case, M ′ accepts w and so O accepts ⟨M ′, w⟩. Either way, R accepts ⟨M,w⟩.
If ⟨M,w⟩ /∈ HALTTM , then M runs forever on w. Thus, M ′ also runs forever on w. Therefore,
⟨M,w⟩ /∈ ATM and ⟨M ′, w⟩ /∈ ATM and so O rejects both cases. Thus, R rejects ⟨M,w⟩.

2. Prove that L = {⟨M,D⟩ |M is a TM, D is a DFA, and L(M) = L(D)} is undecidable.

Answer:
We will prove this by showing that ATM ≤T L. Suppose that there were a decider O for L. We will

1



use O to construct a decider R for ATM as follows:

R: -On input ⟨M,w⟩
-Create an encoding of a new TM ⟨M ′⟩ (or we could say ⟨M ′

w⟩) as follows:
M’: ”-On input x

-If x ̸= w reject.
-If x = w, run M on w. If M accepts, accept. Otherwise, reject.

”
-Create an encoding of a new DFA ⟨D⟩ such that L(D) = L(w) = {w} (this is ok as we know an

algorithm to construct DFAs from regular expressions).
-Run O on ⟨M ′, D⟩ and output same.

If ⟨M,w⟩ ∈ ATM , then M accepts w. Thus, M ′ accepts w and rejects everything else, so L(M ′) = {w}.
Therefore, L(M ′) = L(D), and so O accepts ⟨M ′, D⟩. Thus, R accepts ⟨M,w⟩.
If ⟨M,w⟩ /∈ ATM , then M does not accept w. Thus, L(M ′) = ∅. Therefore, L(M ′) ̸= L(D) since
L(D) = {w}. Therefore, O rejects ⟨M ′, D⟩ and so R rejects x.

3. Prove that the following are equivalent
1) A ≤T B
2) A ≤T B
3) A ≤T B
4) A ≤T B

Answer:
1)⇒ 2): Let A ≤T B. Thus, if there exists a decider O for B, we can create a decider R for A. Let R′

run R and return the opposite. R′ is a decider for A using O. Thus, A ≤T B.
2)⇒ 3): Let A ≤T B. If there were a decider O for B, then we could create a decider O′ for B by
running O and returning the opposite. But since A ≤T B, we could use O′ to create a decider for A.
Thus, A ≤T B.
3)⇒ 4): Let A ≤T B. Thus, if there exists a decider O for B, we can create a decider R for A. Let R′

run R and return the opposite. R′ is a decider for A = A using O. Thus, A ≤T B.
4)⇒ 1): Let A ≤T B. If there were a decider O for B, then we could create a decider O′ for B by
running O and returning the opposite. But since A ≤T B, we could use O′ to create a decider for A.
Thus, A ≤T B.

3 Using Rice’s Theorem to prove undecidability

1. Does Rice’s theorem apply to L = {⟨M⟩ |M is a TM and M accepts 0}?

Answer: Yes.
Clearly L ⊆ {⟨M⟩ |M is a TM}. If M1,M2 are TMs and L(M1) = L(M2), then M1 accepts 0 ⇐⇒ M2

accepts 0. Thus, ⟨M1⟩ ∈ L ⇐⇒ ⟨M2⟩ ∈ L.
Now, take M accepting all strings, M ′ rejecting all strings. M ∈ L, M ′ /∈ L. Thus, L ̸= ∅ and
L ̸= {⟨M⟩ |M is a TM}.
Therefore, L is undecidable.

2. Does Rice’s theorem apply to L = {⟨M⟩ |M is a TM and M has exactly two states}?

Answer: No.
L is not a property of recognizable languages. Consider any TM M with two states. We can always add
useless states which can not be reached to create M ′ with the same language. Thus, L(M) = L(M ′)
and ⟨M⟩ ∈ L while ⟨M ′⟩ /∈ L.
In fact, L is decidable. We could create a Turing machine which simply counts the number of states
and accepts if there are two, and rejects otherwise.
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3. Does Rice’s theorem apply to L = {⟨M⟩ |M is a TM and M rejects 0}?

Answer: No.
L is not a property of recognizable languages. Consider M1 a TM which rejects all strings, M2 a TM
which runs forever on all strings. L(M1) = L(M2) = ∅. M1 rejects 0, so ⟨M1⟩ ∈ L. However, M2 runs
forever on 0, and specifically does not reject 0. Thus, ⟨M2⟩ /∈ L.

Despite the fact that Rice’s theorem does not apply, L is undecidable. We can prove this e.g. by a
reduction from the language in 3.1.

4. Does Rice’s theorem apply to ETM = {⟨M⟩ |M is a TM and L(M) = ∅}?

Answer: Yes.
Clearly ETM ⊆ {⟨M⟩ |M is a TM}. If M1,M2 are TMs and L(M1) = L(M2), then L(M1) = ∅ ⇐⇒
L(M2) = ∅. Thus, ⟨M1⟩ ∈ ETM ⇐⇒ ⟨M2⟩ ∈ ETM .
Now, take M accepting all strings, M ′ rejecting all strings. We have L(M) = ∅, L(M ′) = Σ∗.
M ∈ ETM , M ′ /∈ ETM . Thus, ETM ̸= ∅ and ETM ̸= {⟨M⟩ |M is a TM}.
Therefore, ETM is undecidable.

5. Does Rice’s theorem apply to L = {⟨M⟩ |M is a TM and L(M) = ATM}?

Answer: No.
Here, we have that L is indeed a property of recognizable languages. However, L is trivial. We know
that ATM is unrecognizable, and so there exists no TM M such that L(M) = ATM . Therefore, L = ∅.
Note that as ∅ is a decidable language, so is L. (For a decider, consider the TM: ”on input x, reject.”).

6. Does Rice’s theorem apply to L = {⟨M⟩ |M is a TM and L(M) is recognizable}?

Answer: No.
Note that for every TM M , by definition L(M) is recognizable. Thus, L = {⟨M⟩ |M is a TM} and so
L is trivial.
Note that {⟨M⟩ |M is a TM} is a decidable language, and so L is as well. (For a decider, consider the
TM: ”on input ⟨M⟩ where M is a TM, accept.”)

7. Does Rice’s theorem apply to L = {⟨M⟩ |M is a TM and L(M) is decidable}?

Answer: Yes.
Clearly L ⊆ {⟨M⟩ |M is a TM}. If M1,M2 are TMs and L(M1) = L(M2), then L(M1) is decidable
⇐⇒ L(M2) is decidable. Thus, ⟨M1⟩ ∈ L ⇐⇒ ⟨M2⟩ ∈ L.
Let M reject all strings, and let U be a recognizer for ATM . We know that M is a decider (and
L(⟨M⟩) = ∅) is a decidable language) , and so ⟨M⟩ ∈ L. However, L(U) = ATM is not decidable, and
so ⟨U⟩ /∈ L. Thus, L is non-trivial.

Using Rice’s theorem to prove undecidability: (Problem 5.18 in Sipser, p. 240)
Use Rice’s theorem to prove the undecidability of the following language:
INFINITETM = {⟨M⟩ |M is a TM and L(M) is an infinite language}

Solution: INFINITETM is a language of TM descriptions. It satisfies the conditions of Rice’s theorem.
First, it depends only on the language: if two TMs M1,M2 recognize the same language, either both have
descriptions in INFINITETM or neither do. Second, it is nontrivial because some TMs have infinite
languages and others do not. For a specific example, take M a TM that accepts all inputs, and M ′ a TM
that rejects all inputs, then ⟨M⟩ ∈ INV INITETM while ⟨M ′⟩ /∈ INV INITETM . Thus, INFINITETM

is a non-trivial property of recognizable languages, and so Rice’s theorem implies that it is undecidable.
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4 Proving L is unrecognizable - Overview

(No exercises)

5 Using complements and undecidability to prove unrecognizabil-
ity

(No exercises)

6 Mapping Reductions for unrecognizability

1. Prove that L = {⟨M,D⟩ |M is a TM, D is a DFA, and L(M) = L(D)} is not co-recognizable. That is,
prove that L is not recognizable.

Answer:
Note that the Turing-reduction given in the solution for 2.2 is actually a mapping reduction! Thus,
ATM ≤m L, and so ATM ≤ L. Therefore, L is not recognizable. To see this more formally, consider
the computable function f as follows:

f : -On input ⟨M,w⟩
-Create an encoding of a new TM ⟨M ′⟩ (or we could say ⟨M ′

w⟩) as follows:
M’: ”-On input x

-If x ̸= w reject.
-If x = w, run M on w. If M accepts, accept. Otherwise, reject.

”
-Create an encoding of a new DFA ⟨D⟩ such that L(D) = L(w) = {w} (this is ok as we know an

algorithm to construct DFAs from regular expressions).
-Return ⟨M ′, D⟩.

This f is computable, since every step is implementable.
If ⟨M,w⟩ ∈ ATM , then L(M ′) = L(D) and so ⟨M ′, D⟩ ∈ L.
If ⟨M,w⟩ /∈ ATM , then L(M ′) = ∅ ≠ L(D) and so ⟨M ′, D⟩ /∈ L.
Thus, ⟨M,w⟩ ∈ ATM ⇐⇒ f(⟨M,w⟩) ∈ L, and so ATM ≤m L.

2. Prove that L = {⟨M⟩ |M does not accept strings of length ≥ 50} is not recognizable.

Answer:
We will show that ETM ≤m L. Consider the computable function f defined as follows:

f : -On input ⟨M⟩.
-Create an encoding of a new TM ⟨M ′⟩ as follows:
M’: ”-On input w”

-If |w| < 50, reject.
-If |w| ≥ 50, let w′ be w without the first 50 characters. Run M on w′ and output the same.

-Return ⟨M ′⟩.

This f is computable, since every step is implementable.
If ⟨M⟩ ∈ ETM , M will never accept any string as L(M) = ∅. But the only time M ′ accepts a string
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is if M accepts a (different) string. Thus, M ′ will never accept any string, and so will not accept any
string of length ≥ 50. Thus, f(M) = ⟨M ′⟩ ∈ L.
If ⟨M⟩ /∈ ETM , then ∃ w such that M accepts w. Let a ∈ Σ. Note that M ′ will accept a50w. Thus,
since |a50w| ≥ 50, f(M) = ⟨M ′⟩ /∈ L.
Therefore, w ∈ ETM ⇐⇒ f(w) ∈ L, and so ETM ≤m L. Therefore, since ETM is not recognizable,
neither is L.

3. Let A be a language. Prove that A ≤m A.

Answer: Let f be the identity. This is clearly computable. We have w ∈ A ⇐⇒ w = f(w) ∈ A.
Thus, A ≤m A by definition.

4. Is it necessarily true that A ≤m A?

Answer: No. Consider ATM . We know that ATM is recognizable, while ATM is not. Thus, we cannot

possibly have ATM ≤m ATM = ATM .

Note that for Turing-reductions, it IS true that for every A we have A ≤T olA, as follows from exercise
2.3.
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