Handout 9b: Solutions to Exercises (Reductions, Undecidability, Unrecognizability)

Ananya Gandhi and Nicolas Hortiguera Credit to Eli Goldin and Alan Du (Fall 2020 TAs)

 $\rm COMS~3261~Fall~2022$

1 Countability

(No exercises)

2 Turing Reductions and Undecidability

1. Prove that $HALT_{TM} \leq_T A_{TM}$.

Answer:

Suppose that there were a decider \mathcal{O} for A_{TM} . We will construct a decider R for $HALT_{TM}$ using \mathcal{O} as follows:

 $\begin{array}{l} R: \ \text{-On input } \langle M, w \rangle \\ \text{-Run } \mathcal{O} \ \text{on } \langle M, w \rangle. \ \text{If } \mathcal{O} \ \text{accepts, accept.} \\ \text{-Create an encoding of a new TM } \langle M' \rangle \ \text{as follows:} \\ \text{M': "-On input } x \\ \quad \text{-Run } M \ \text{on } x \\ \quad \text{-If } M \ \text{accepts, reject. If } M \ \text{rejects, accept.} \\ \text{"} \\ \text{-Run } \mathcal{O} \ \text{on } \langle M', w \rangle. \ \text{If } \mathcal{O} \ \text{accepts, accept.} \\ \text{-Reject.} \end{array}$

If $\langle M, w \rangle \in HALT_{TM}$, then either M accepts w or M rejects w. In the former case, \mathcal{O} accepts $\langle M, w \rangle$. In the latter case, M' accepts w and so \mathcal{O} accepts $\langle M', w \rangle$. Either way, R accepts $\langle M, w \rangle$. If $\langle M, w \rangle \notin HALT_{TM}$, then M runs forever on w. Thus, M' also runs forever on w. Therefore, $\langle M, w \rangle \notin A_{TM}$ and $\langle M', w \rangle \notin A_{TM}$ and so \mathcal{O} rejects both cases. Thus, R rejects $\langle M, w \rangle$.

2. Prove that $L = \{ \langle M, D \rangle | M \text{ is a TM}, D \text{ is a DFA}, \text{ and } L(M) = L(D) \}$ is undecidable.

Answer:

We will prove this by showing that $A_{TM} \leq_T L$. Suppose that there were a decider \mathcal{O} for L. We will

use \mathcal{O} to construct a decider R for A_{TM} as follows:

 $\begin{array}{l} R: \ \text{-On input} \ \langle M,w\rangle\\ \text{-Create an encoding of a new TM} \ \langle M'\rangle \ (\text{or we could say} \ \langle M'_w\rangle) \ \text{as follows:}\\ M': "\text{-On input} \ x\\ \text{-If} \ x\neq w \ \text{reject.}\\ \text{-If} \ x=w, \ \text{run} \ M \ \text{on} \ w. \ \text{If} \ M \ \text{accepts, accept.} \ \text{Otherwise, reject.}\\ \end{array}$

-Create an encoding of a new DFA $\langle D \rangle$ such that $L(D) = L(w) = \{w\}$ (this is ok as we know an algorithm to construct DFAs from regular expressions).

-Run \mathcal{O} on $\langle M', D \rangle$ and output same.

If $\langle M, w \rangle \in A_{TM}$, then M accepts w. Thus, M' accepts w and rejects everything else, so $L(M') = \{w\}$. Therefore, L(M') = L(D), and so \mathcal{O} accepts $\langle M', D \rangle$. Thus, R accepts $\langle M, w \rangle$. If $\langle M, w \rangle \notin A_{TM}$, then M does not accept w. Thus, $L(M') = \emptyset$. Therefore, $L(M') \neq L(D)$ since $L(D) = \{w\}$. Therefore, \mathcal{O} rejects $\langle M', D \rangle$ and so R rejects x.

3. Prove that the following are equivalent

1) $A \leq_T B$ 2) $\overline{A} \leq_T B$

- 3) $\overline{A} \leq_T \overline{B}$
- $4) A \leq_T \overline{B}$

Answer:

1) \Rightarrow 2): Let $A \leq_T B$. Thus, if there exists a decider \mathcal{O} for B, we can create a decider R for A. Let R' run R and return the opposite. R' is a decider for \overline{A} using \mathcal{O} . Thus, $\overline{A} \leq_T B$.

2) \Rightarrow 3): Let $\overline{A} \leq_T B$. If there were a decider \mathcal{O} for \overline{B} , then we could create a decider \mathcal{O}' for B by running \mathcal{O} and returning the opposite. But since $\overline{A} \leq_T B$, we could use \mathcal{O}' to create a decider for \overline{A} . Thus, $\overline{A} \leq_T \overline{B}$.

 $3 \Rightarrow 4$: Let $\overline{A} \leq_T \overline{B}$. Thus, if there exists a decider \mathcal{O} for \overline{B} , we can create a decider R for \overline{A} . Let R' run R and return the opposite. R' is a decider for $A = \overline{\overline{A}}$ using \mathcal{O} . Thus, $\overline{A} \leq_T B$.

 $(4) \Rightarrow 1$): Let $A \leq_T \overline{B}$. If there were a decider \mathcal{O} for B, then we could create a decider \mathcal{O}' for \overline{B} by running \mathcal{O} and returning the opposite. But since $A \leq_T \overline{B}$, we could use \mathcal{O}' to create a decider for A. Thus, $A \leq_T B$.

3 Using Rice's Theorem to prove undecidability

1. Does Rice's theorem apply to $L = \{ \langle M \rangle | M \text{ is a TM and } M \text{ accepts } 0 \}$?

Answer: Yes.

Clearly $L \subseteq \{\langle M \rangle | M \text{ is a TM}\}$. If M_1, M_2 are TMs and $L(M_1) = L(M_2)$, then M_1 accepts $0 \iff M_2$ accepts 0. Thus, $\langle M_1 \rangle \in L \iff \langle M_2 \rangle \in L$. Now, take M accepting all strings, M' rejecting all strings. $M \in L, M' \notin L$. Thus, $L \neq \emptyset$ and $L \neq \{\langle M \rangle | M \text{ is a TM}\}$. Therefore, L is undecidable.

2. Does Rice's theorem apply to $L = \{ \langle M \rangle | M \text{ is a TM and } M \text{ has exactly two states} \}$?

Answer: No.

L is not a property of recognizable languages. Consider any TM M with two states. We can always add useless states which can not be reached to create M' with the same language. Thus, L(M) = L(M') and $\langle M \rangle \in L$ while $\langle M' \rangle \notin L$.

In fact, L is decidable. We could create a Turing machine which simply counts the number of states and accepts if there are two, and rejects otherwise.

3. Does Rice's theorem apply to $L = \{ \langle M \rangle | M \text{ is a TM and } M \text{ rejects } 0 \}$?

Answer: No.

L is not a property of recognizable languages. Consider M_1 a TM which rejects all strings, M_2 a TM which runs forever on all strings. $L(M_1) = L(M_2) = \emptyset$. M_1 rejects 0, so $\langle M_1 \rangle \in L$. However, M_2 runs forever on 0, and specifically does not reject 0. Thus, $\langle M_2 \rangle \notin L$.

Despite the fact that Rice's theorem does not apply, L is undecidable. We can prove this e.g. by a reduction from the language in 3.1.

4. Does Rice's theorem apply to $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$?

Answer: Yes.

Clearly $E_{TM} \subseteq \{\langle M \rangle | M \text{ is a TM}\}$. If M_1, M_2 are TMs and $L(M_1) = L(M_2)$, then $L(M_1) = \emptyset \iff L(M_2) = \emptyset$. Thus, $\langle M_1 \rangle \in E_{TM} \iff \langle M_2 \rangle \in E_{TM}$. Now, take M accepting all strings, M' rejecting all strings. We have $L(M) = \emptyset$, $L(M') = \Sigma^*$. $M \in E_{TM}, M' \notin E_{TM}$. Thus, $E_{TM} \neq \emptyset$ and $E_{TM} \neq \{\langle M \rangle | M \text{ is a TM}\}$. Therefore, E_{TM} is undecidable.

5. Does Rice's theorem apply to $L = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \overline{A_{TM}} \}$?

Answer: No.

Here, we have that L is indeed a property of recognizable languages. However, L is trivial. We know that $\overline{A_{TM}}$ is unrecognizable, and so there exists no TM M such that $L(M) = \overline{A_{TM}}$. Therefore, $L = \emptyset$. Note that as \emptyset is a decidable language, so is L. (For a decider, consider the TM: "on input x, reject.").

6. Does Rice's theorem apply to $L = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is recognizable} \}$?

Answer: No.

Note that for every TM M, by definition L(M) is recognizable. Thus, $L = \{\langle M \rangle | M \text{ is a TM} \}$ and so L is trivial.

Note that $\{\langle M \rangle | M \text{ is a TM}\}$ is a decidable language, and so L is as well. (For a decider, consider the TM: "on input $\langle M \rangle$ where M is a TM, accept.")

7. Does Rice's theorem apply to $L = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is decidable} \}$?

Answer: Yes.

Clearly $L \subseteq \{\langle M \rangle | M \text{ is a TM}\}$. If M_1, M_2 are TMs and $L(M_1) = L(M_2)$, then $L(M_1)$ is decidable $\iff L(M_2)$ is decidable. Thus, $\langle M_1 \rangle \in L \iff \langle M_2 \rangle \in L$.

Let M reject all strings, and let U be a recognizer for A_{TM} . We know that M is a decider (and $L(\langle M \rangle) = \emptyset$) is a decidable language), and so $\langle M \rangle \in L$. However, $L(U) = A_{TM}$ is not decidable, and so $\langle U \rangle \notin L$. Thus, L is non-trivial.

Using Rice's theorem to prove undecidability: (Problem 5.18 in Sipser, p. 240) Use Rice's theorem to prove the undecidability of the following language: $INFINITE_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is an infinite language}\}$

Solution: $INFINITE_{TM}$ is a language of TM descriptions. It satisfies the conditions of Rice's theorem. First, it depends only on the language: if two TMs M_1, M_2 recognize the same language, either both have descriptions in $INFINITE_{TM}$ or neither do. Second, it is nontrivial because some TMs have infinite languages and others do not. For a specific example, take M a TM that accepts all inputs, and M' a TM that rejects all inputs, then $\langle M \rangle \in INVINITE_{TM}$ while $\langle M' \rangle \notin INVINITE_{TM}$. Thus, $INFINITE_{TM}$ is a non-trivial property of recognizable languages, and so Rice's theorem implies that it is undecidable.

4 Proving L is unrecognizable - Overview

(No exercises)

5 Using complements and undecidability to prove unrecognizability

(No exercises)

6 Mapping Reductions for unrecognizability

1. Prove that $L = \{ \langle M, D \rangle | M \text{ is a TM}, D \text{ is a DFA}, \text{ and } L(M) = L(D) \}$ is not co-recognizable. That is, prove that \overline{L} is not recognizable.

Answer:

Note that the Turing-reduction given in the solution for 2.2 is actually a mapping reduction! Thus, $A_{TM} \leq_m L$, and so $\overline{A_{TM}} \leq \overline{L}$. Therefore, \overline{L} is not recognizable. To see this more formally, consider the computable function f as follows:

f: -On input $\langle M, w \rangle$ -Create an encoding of a new TM $\langle M' \rangle$ (or we could say $\langle M'_w \rangle$) as follows: M': "-On input x-If $x \neq w$ reject. -If x = w, run M on w. If M accepts, accept. Otherwise, reject. "

-Create an encoding of a new DFA $\langle D \rangle$ such that $L(D) = L(w) = \{w\}$ (this is ok as we know an algorithm to construct DFAs from regular expressions).

-Return $\langle M', D \rangle$.

This f is computable, since every step is implementable. If $\langle M, w \rangle \in A_{TM}$, then L(M') = L(D) and so $\langle M', D \rangle \in L$. If $\langle M, w \rangle \notin A_{TM}$, then $L(M') = \emptyset \neq L(D)$ and so $\langle M', D \rangle \notin L$. Thus, $\langle M, w \rangle \in A_{TM} \iff f(\langle M, w \rangle) \in L$, and so $A_{TM} \leq_m L$.

2. Prove that $L = \{\langle M \rangle | M \text{ does not accept strings of length } \geq 50\}$ is not recognizable.

Answer:

We will show that $E_{TM} \leq_m L$. Consider the computable function f defined as follows:

 $\begin{array}{l} f: \mbox{-} {\rm On \ input} \ \langle M \rangle. \\ -{\rm Create \ an \ encoding \ of \ a \ new \ TM} \ \langle M' \rangle \ {\rm as \ follows:} \\ {\rm M': "-} {\rm On \ input} \ w" \\ -{\rm If} \ |w| < 50, \ {\rm reject.} \\ -{\rm If} \ |w| \ge 50, \ {\rm let} \ w' \ {\rm be} \ w \ {\rm without \ the \ first \ 50 \ characters.} \ {\rm Run \ } M \ {\rm on \ } w' \ {\rm and \ output \ the \ same.} \\ -{\rm Return} \ \langle M' \rangle. \end{array}$

This f is computable, since every step is implementable. If $\langle M \rangle \in E_{TM}$, M will never accept any string as $L(M) = \emptyset$. But the only time M' accepts a string is if M accepts a (different) string. Thus, M' will never accept any string, and so will not accept any string of length ≥ 50 . Thus, $f(M) = \langle M' \rangle \in L$.

If $\langle M \rangle \notin E_{TM}$, then $\exists w$ such that M accepts w. Let $a \in \Sigma$. Note that M' will accept $a^{50}w$. Thus, since $|a^{50}w| \ge 50$, $f(M) = \langle M' \rangle \notin L$. Therefore, $w \in E_{TM} \iff f(w) \in L$, and so $E_{TM} \le_m L$. Therefore, since E_{TM} is not recognizable, neither is L.

3. Let A be a language. Prove that $A \leq_m A$.

Answer: Let f be the identity. This is clearly computable. We have $w \in A \iff w = f(w) \in A$. Thus, $A \leq_m A$ by definition.

4. Is it necessarily true that $A \leq_m \overline{A}$?

Answer: No. Consider A_{TM} . We know that A_{TM} is recognizable, while $\overline{A_{TM}}$ is not. Thus, we cannot possibly have $\overline{A_{TM}} \leq_m A_{TM} = \overline{\overline{A_{TM}}}$.

Note that for Turing-reductions, it IS true that for every A we have $A \leq_T olA$, as follows from exercise 2.3.