
Handout 8b: Turing Machines Review:

Solutions to Practice Problems

Andrew Jin and Anastasija Tortevska

COMS 3261 Fall 2022

1. Consider the input-output TM M = (Q,Σ,Γ, δ, q0, qhalt) where Q =
{q0, q1, qhalt}, Σ = {0, 1}, Γ = {0, 1, }, and δ is given by:
δ(q0, 0) = (q0, 0, R), δ(q0, 1) = (q0, 1, R), δ(q0, ) = (q1, , L)
δ(q1, 0) = (qhalt, 1, R), δ(q1, 1) = (q1, 0, L), δ(q1, ) = (qhalt, , L)

(a) Provide the complete sequence of configurations of M when ran on
input 100.
What is the output of M on this input?

Solution:
q0100⇒ 1q000⇒ 10q00⇒ 100q0 ⇒ 10q10⇒ 101qhalt
The output of M on 100 is 101.

(b) What is the output of M on 10011? on input 11?

Solution:
The output of M on 10011 is 10100.
The output of M on 11 is 10.

(c) What function is computed by M?

Solution:
The function computed by M is the following:
On input 1n: output 10n−1

On input ε: output ε
On input x ̸= 1n, x ̸= ε: treat x as a binary number and output x+1.

1



2. Let Σ = {#, 0, 1}. Provide an implementation level description of a input-
output TM that computes the function

f(#⟨x⟩) =
{

#⟨x/2⟩ if x is even
#⟨3x+ 1⟩ otherwise

where ⟨x⟩ stands for the binary representation of the number x.

(For example, if the TM starts with #100 on the tape it should halt with
#10 on the tape; if it starts with #11, it should halt with #1010.)

You may use a TM with more than one tape – in this case the output
should be written on the first tape.

Solution:

We will use a 3-tape TM. The intuition is to first check whether the input
x is even (the last digit is 0) or odd (the last digit is 1). If the former,
we replace the terminating 0 with a blank (dividing by 2 in binary) and
halt. If the latter, we duplicate the input on a second tape and add a
terminating 0 to the original (multiplying by 2 in binary). We now have
2x on the first tape and x on the second tape. We then add a leading zero
to the first tape and two leading zeroes to the second so that we can sum
the newly aligned tapes to get 3x, to which we finally add 1. The third
tape is used to keep track of carry bits in the addition step.

More specifically, construct machine M as follows: On input #⟨x⟩, where
⟨x⟩ is a binary string:

(a) Make sure the first character is a #, then scan the remaining binary
number on the input tape from left to right until the last digit is
reached. If it is a 0 (i.e., the number is even), replace the 0 with a
blank and halt. (If it is a 1, go on.)

(b) Write “#00” to the second tape, then copy the contents of the first
tape onto the second tape after the ‘#00”.

(c) Shift the contents of the first tape after the # over to the right by 1.
Make the new first symbol after the # on the first tape a “0”.

(d) Replace the first blank on the first tape with a 0.

(e) Write a # to the third tape for each symbol on the first tape, then
replace the rightmost # with a 0.

(f) Add the contents of the second tape to the first tape by repeating the
following two steps until all the digits of the second tape are crossed
off:

i. Starting with the rightmost digit on the second tape that has not
been crossed off, add it and the digits from the other two tapes
in the corresponding place (i.e. the same number of spaces to
the left of the first blank on their tape), write the result to that
place on the first tape, and write any carry to the third tape:

2



A. If all of the three digits are 0, write 0 to that place on the
first tape and replace the rightmost # on the third tape with
a 0.

B. If only one of them is 1, write 1 to that place on the first
tape and replace the rightmost # on the third tape with a 0.

C. If only two of them are 1, write 0 to that place on the first
tape and replace the rightmost # on the third tape with a 1.

D. If all three of them are 1, write 1 to that place on the first
tape and replace the rightmost # on the third tape with a 1.

ii. Cross off the rightmost digit on the second tape that has not
been crossed off.

(g) Add 1 to the number on the first tape by starting with the rightmost
digit and checking if it is 0. If it is 0, change it to 1 and go to the
final step. If it is 1, change it to 0, proceed to the next rightmost
digit and repeat this step.

(h) If the first symbol after the # on the first tape is a 0, delete it and
shift the remainder of the tape one to the left. Halt.

3



3. Show that ECFG = {⟨G⟩|G is a CFG and L(G) = ϕ} is decidable.
Solution:

Observe that L(G) is the empty set (generates no strings) if it’s impossible
to generate a terminal from the start state S, no matter how you follow
the rules. For example, the set of rules

• S → A

• A→ A

• B → b

generated no strings because you will be stuck following

S → A→ A→ A→ ...

Even though there’s a rule B → b that can get you a terminal, you can
never reach B from S.

To show that this problem is decidable, we note that there must be a
finite number of rules. Thus we can look through each of these rules and
see if we can reach a string of terminals by following them. We start by
marking variables that can generate a string of terminals. We then repeat
this process again and again, checking all the variables that are within
i steps of being able to generate a string of terminals. When no new
variable is added, we check if the start variable has been marked. If so,
the language has at least one string in it, so we reject. In more detail,
consider the following algorithm.

M on input < G > where G = (V,Σ, R, S) is a CFG:

(a) Set V1 = set of all variables A in V for which there is a rule A→ w
where w ∈ Σ∗. Mark all variables in V1

(b) Set i = 1

(c) Repeat until no new variable is marked:

• Set Vi+1 = set of all variables A in V which are not already in
Vi, and for which there’s a rule A→ w where w ∈ (Σ ∪ Vi)

∗.

• Mark all variables in Vi+1

• i← i+ 1

(d) If S is marked, reject. Else, accept.

The above is a decider, since for any valid ⟨G⟩ the set of variables in the
CFG G is finite, and so the loop can be exeuted only finitely many times.
Each iteration of the loop requires going through a finite set of the rules
of G. If the input was not a valid encoding of a CFG, it can be tested
and rejected immediately. In any case, every step of the above algorithm
terminates in finite time, so this is a decider.

4



Observe that a variable is in the set Vi is i steps away from being able to
generate a string of terminals.

x ̸∈ ECFG =⇒ either (a) x ̸= ⟨G⟩ (not a valid encoding), or (b) x = ⟨G⟩
for a CFG G = (V,Σ, R, S) and there exists some derivation S →∗ w
where w ∈ Σ∗. In case (a), x is rejected immediately. In case (b), since
the derivation is of finite numbre of steps m, it means that if S was not
marked before, it will be marked when the loop is executed for the nth
time. Hence, the algorithm rejects in step (d). In any case, x is rejected.

x ∈ ECFG =⇒ x = ⟨G⟩ for a CFG G = (V,Σ, R, S), but there is no
derivation starting from S that yields a string of terminals. Hence, when
the loops finishes executing, S will not be marked, and the algorithm
accepts in step (d).

5



4. Let L = {⟨M,k⟩|M is a TM, k is a positive integer, and there exists an
input to M that makes M run for at least k steps}
Prove that that L is decidable.

First attempt
We can construct a TM that decides L. It will do the following:

(a) On input ⟨M,k⟩ where M is a TM:

(b) For all strings wi, i ∈ N
- run M on wi for k steps. If M doesn’t terminate on wi within k
steps, accept.

(c) If we’re finished enumerating and M terminated within k steps every
time, reject

Problem: When do we reject? We need to enumerate through an infinite
number of strings! Therefore, we will never arrive at step (c). This only
recognizes the language, not decides it
Observation: Each ”step” of a TM’s computation means it executes a
single transition function. Each time a transition function is executed, the
head of the TM can only move at most a single space in either direction.
Even if the TM head moves right on every single transition, then in k
steps, the head could only ever look at the first k + 1 characters on the
tape. Therefore, to determine whether the machine ever runs for more
than k steps or whether it halts within k steps on every input, anything
on the tape after the first k + 1 symbols is not relevant. Thus, we don’t
need to enumerate over any strings that are longer than k + 1 characters
long.

Second attempt
We can construct a TM that decides L. It will do the following:

(a) On input ⟨M,k⟩ where M is a TM:

(b) For all strings wi where len(wi) ≤ k + 1:
- run M on wi for k steps. If M doesn’t terminate on wi within k
steps, accept.

(c) If we’re finished enumerating and M terminated within k steps every
time, reject

Proof that this is a decider:
x ∈ L ⇒ M runs for at least k steps on some string, therefore there is a
string wi such that len(wi) ≤ k + 1 where the computation of M on wi

will not have terminated after k steps. Therefore, the program will accept
on some iteration.
x /∈ L ⇒ M terminates within k steps on every input string. Since we
are testing a finite number of strings and M terminates on all of them, we
will reach step (c) and then reject.

6


