
Handout 8a: Turing Machines Review

Andrew Jin and Anastasija Tortevska

COMS 3261 Fall 2022

1 Turing Machines

1.1 High-level overview

Intuition: Recall that a PDA is essentially a DFA/NFA with a stack. Adding
this stack increases your power. For example,

L = {w ∈ Σ∗ : w = 0n1n, n ∈ N}

is context-free because you can use the stack to keep track of the number of 0’s
and 1’s.

A Turing machine takes this idea further. You can think of a Turing machine
as a DFA/NFA with a tape that contains your string. There are three main
differences:

• You can now move along the tape in any direction, which allows you to
read any character from the string, however many times you want (you’re
no longer limited to reading through the string one character at a time
until you consume the string)

• You can write onto the tape, which allows you to record and use informa-
tion that you otherwise wouldn’t be able to.

• When using DFAs we generally have a fixed number of possible states and
configurations that limits the possible actions we would like to do, on the
other hand Turing Machines do not have the same limitation – allowing
us to have access to as much space and memory needed (infinite tape)
and various actions that can be performed by reading and writing from
the tape.

For example,

L = {w ∈ Σ∗ : w = 0n1n2n, n ∈ N}

is not context-free, but is Turing-recognizable because you can write onto the
tape to keep track of the number of 0’s, 1’s, and 2’s you see (implementation
left as an exercise).

1



Remark. Note that when we will use high-level description, we have to make
sure that each step we write is algorithmically implementable.

The Church-Turing thesis says that Turing Machines capture what computa-
tion, or an algorithm, is: any reasonable model of computation can be translated
into an equivalent computation with a Turing machine. We will thus identify
”algorithm” with a TM.

1.2 TM definition

A Turing Machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept, qreject):

1. Q is a finite set of states

2. Σ is the (finite) input alphabet not containing the blank symbol

3. Γ is the (finite) tape alphabet, where ∈ Γ and Σ ⊂ Γ

4. δ : Q × Γ → Q × Γ × {L, R} is the transition function

5. q0 ∈ Q is the start state

6. qaccept ∈ Q is the accept state

7. qreject ∈ Q is the reject state, where qreject ̸= qaccept

For a Turing Machine M :

• M receives it’s input w = w1w2...wn ∈ Σ∗ on the left most n squares of
the tape, leaving the rest of the tape blank. The start configuration on
input w is q0, where the reading head is pointing to the first (leftmost)
square of the tape, and the state is q0. Then at each step, the transition
δ is applied.

• First blank symbol marks the end of input (initially, afterwards M could
write blank symbols anywhere)

• If M ever tries to move its head to the left of the leftmost square of the
tape, it stays in place.

• It may sometimes be helpful to have an indicator symbol like # to indicate
the leftmost position of the tape, but this is not automatically there (so
if this is not defined as a requirement for a valid input, the TM could be
designed to start by inserting it).

• If at any point δ takes M to qaccept or qreject, then M halts, and we
say it accepted/ rejected the string. Otherwise, if δ keeps being applied
(algorithm keeps running) without ever accepting or rejecting, then we say
this machine runs forever (or is in an infinite loop). A TM that always
halts on every input is called a decider.

• On any input, there are three possible behaviors of a TM M : M will
accept, reject, or run forever on this input. The language recognized by a
TM is the set of strings that are accepted by the TM.

2



1.3 Examples of Turing-Decidable Languages

• The set of all palindromes: L = {w ∈ Σ∗ : w = wR}.
Idea: You can move along the tape to read from both ends. Compare
the first and last letter while also marking them, then the second and
second-to-last letter, and so on.

• The set of strings which are composed to two identical halves: L = {ww :
w ∈ Σ∗}.
Idea: You can first identify the middle point by moving back and forth
from one end to another and marking a symbol on each end. Then, you
can move along the tape to read both halves. Compare the first letter of
each half, then compare the second letter of each half, and so on (marking
where you are).

• The set of all integer square matrices with determinant zero: L = {A ∈
Zn×n : det(A) = 0}}.
Idea: By the Church-Turing thesis, a Turing machine can execute virtu-
ally any algorithm you want it to. Since computing a determinant is just
an algorithm, you can use a Turing machine to check whether a matrix
has determinant zero.

• The set of all (encodings of) DFAs that accept a particular string x:
ADFA = {⟨D,x⟩ : D is a DFA that accepts x}.
Idea: can check whether ⟨D,x⟩ should be accepted or not by running the
DFA D with x as an input, and seeing if D accepts x or not (and let your
Turing machine M accept ⟨D,x⟩ if D accepts x, and let M reject ⟨D,x⟩
if D rejects x).

Remark. In the final example, the input to the Turing machine isn’t just the
DFA D or the string x, but rather the combination of both of them. Since the
Turing machine has access to bothD and x as inputs, it can use that information
to simulate running D on input x.

2 Recognizable and Decidable

A language is Turing-recognizable ⇐⇒ there exists a TM that accepts
strings in that language and doesn’t accept strings that aren’t in that language.

w ∈ L =⇒ M accepts w

w /∈ L =⇒ M rejects or runs forever on w

A language is Turing-decidable ⇐⇒ there exists a TM that accepts strings
in that language and rejects strings that aren’t in that language. A decider
halts on every input.

w ∈ L =⇒ M accepts w

w /∈ L =⇒ M rejects w

3



Remark. If M is a decider it will always halt, but if M is a recognizer it may
not halt.

How to prove that a TM recognizes or decides some language ?

• To prove that a TM M recognizes a language L you need to show that M
accepts x if and only if x ∈ L.

First way: directly show it in a single statement: x ∈ L ⇐⇒ . . . ⇐⇒ M
accepts x.

Second way: break it into two. First prove x ∈ L =⇒ M accepts x, and
then prove x ̸∈ L =⇒ M either rejects x or runs forever on x.

• To prove that a TM M decides a language L, you need to show the same
as above, and additionally that M halts on all input. There are a few
equivalent ways to show this, for example:

First way: Argue that M is a decider (halts on all inputs – every step is
finite), and then prove x ∈ L ⇐⇒ M accepts x. Or equivalently:

Second way: prove that x ∈ L =⇒ M accepts x, and x ̸∈ L =⇒ M
rejects x.

How to prove that a langauge is decidable or recognizable? The most
straightforward way, is to construct a TM (make sure every step is indeed imple-
mentable!) and then prove that it recognizes or decides the language, as above.
If you are constructing a recognizer, it’s ok to have infinite loops, as long as the
execution can run forever only when the input is not in the language. If you are
constructing a decider then it must always halt, so if it has a loop that looks
like it could run forever, you should make sure that on every input, the loop
will eventually complete (within finitely many steps).

When the language consists of strings that are themselves encodings of some
model of computation (eg DFA or TM), some common techniques for construct-
ing a TM recognizing/deciding the language are the following: (a) have a loop
that checks all strings, or all strings of a certain format (e.g, we used that to
construct a recongizer for NETM ) (b) inspect and/or manipulate the given in-
put: its states, transitions, etc – check some properties of it (e.g, we used that
to construct a decider for EDFA) (c) use algorithms we have given in class in the
past, and rely on things we already proved (e.g, we did that when constructing
a decider for ANFA). You will see more examples in this handout, and later in
the class.

Another way to prove that a language L is decidable, is to separately prove
that both L and L are recognizable (since we proved that a language is decidable
if and only if both the language and its complement are recognizable).

2.1 Closure Properties

Theorem 1 (Closure Properties of Decideable Languages). Decidable lan-
guages are closed under the following:

4



• union

• intersection

• concatenation

• complement

• Kleene star

Proof. For union: Suppose M1 and M2 are deciders. We will create M to decide
their union as follows:

M on inpt x:

1. Run M1 on x. If M1 accepts, accept

2. Run M2 on x. If M2 accepts, accept.

3. Reject.

Observe that M will always halt (either reach an accept state or reject state,
not run forever). This is because step 1 will always halt (since M1 is a decider)
and step 2 will always halt (since M2 is a decider). Hence, M is also a decider.
Moreover, M accepts x ⇐⇒ M1 accepts x or M2 accepts x ⇐⇒ x ∈ L1 ∪L2

(since M1 is a decider for L1 and M2 is a decider for L2).

For concatenation: Suppose M1 and M2 are deciders. Let L1 and L2 be
their respective languages. We will create M to decide their concatenation as
follows:

M on inpt x:

1. For every way to split x into x = yz:

(a) Run M1 on input y

(b) Run M2 on input z

(c) If both M1 and M2 accept, let M accept.

2. Reject

(Proof that this is a decider for concatenation left as an exercise).
Note: a different way to prove closure under concatenation is to construct a

non-deterministic TM, which starts by non-deterministically spliting x into yz.
Complement was covered in class and intersection is left as exercise for the

reader.

Theorem 2 (Closure Properties of Recognizable Languages). Recognizable lan-
guages are closed under the following

• union

5



• intersection

• concatenation

• Kleene star

In particular, we note that recognizable languages are NOT closed the following

• complement (will be shown later in the class)

Proof. For union: Suppose M1 and M2 are TMs, but not necessarily deciders.
What happens we attempt to repeat the proof above?

on inpt x:

1. Run M1 on x.

2. Run M2 on x.

3. If either M1 or M2 accepts, let M accept, else reject.

A problem occurs if M1 runs forever on x. Then, even if M2 accepts x (and
hence, M should accept x), we never get to that point because we’re running
forever with M1. One solution to this is using an NTM (non-deterministic
Turing machine) N , which allows us to run both M1 and M2 simultaneously on
two different branches.

N on inpt x:

1. Non-deterministically choose either M1 or M2

2. Run the chosen TM Mi on x. If it accepts, accept.

Recall that with an NTM, an input x is in the language if any branch of the
computation tree accepts (just like an NFA). Thus, the machineN defined above
will accept if and only if either M1 or M2 accepts, which happens if and only if
x ∈ L1 or x ∈ L2, which is if and only if x ∈ L1 ∪ L2, as we wanted.

An alternative solution using a deterministic TM M can also be designed.
We can’t run M1 first then M2 (or vice versa) because there’s a chance one
machine runs forever on an input x, which prevents us from attempting to run
the other machine. However, to circumvent this, we can run the two machines
in parallel using a two-tape machine (simulate M1 using one tape, and simulate
M2 using the other tape).

M on inpt x:

1. Write input x onto both tapes.

2. Repeat

(a) Run M1 for one step (unless it had already rejected). If M1 reaches
an accept state, accept.

6



(b) Run M2 for one step (unless it had already rejected). If M2 reaches
an accept state, accept.

(c) If both M1 and M2 have already reached a reject state, reject.

We note that for high level description, step 2 is written as ”In parallel, run
M1 on x and M2 on x. If either of them accepts, accept. If both of them reject,
reject”.

Let’s just consider some cases to see how this algorithm works.

1. Case 1: M1 and M2 both halt (either accept or reject). Then, M also
halts.

2. Case 2: M1 runs forever but M2 accepts. Since we run both machines
one step at a time, we will eventually reach the point where M2 accepts
(because this must occur in a finite number of steps). Therefore, M will
accept, which is what we want.

3. Case 3: M1 runs forever but M2 rejects. Like with case 2, we will eventu-
ally reach the point where M2 rejects. However, we will continue running
M1 infinitely inside the loop, so M will run forever (we only have M reject
if both M1 and M2 reject, but this doesn’t happen). This is fine though,
because all we need is for M to not accept, and running forever is fine
with a recognizer.

4. Case 4: M1 and M2 both run forever. Then, we will be stuck inside an
infinite loop and M will run forever. This is fine because we just need M
to not accept.

Hence, we can see that M will accept if and only if either M1 or M2 accepts,
and M will either reject or run forever if both M1 and M2 either reject or run
forever. Thus M recognizes the union of M1 and M2.

For intersection, concatenation: Left as exercise. Hint: For concatenation,
you can use something similar to the proof we did for union.

2.2 More Examples of Turing-Decidable Languages

• ADFA = {⟨D,w⟩|D is a DFA and D accepts w}

• ANFA = {⟨N,w⟩|N is a NFA and N accepts w}

• EDFA = {⟨D⟩|D is a DFA and L(D) = ϕ}

All three languages have been shown in class.

• EQDFA = {⟨D1, D2⟩|D1 and D2 are DFAs and L(D1) = L(D2)}

We prove that EQDFA is TM-decidable.

7



Proof. Let R be a decider for EDFA (which we have shown in class exists).
Construct the following TM:

TM M = ”On input ⟨D1, D2⟩,
1. Check whether ⟨D1, D2⟩ is a valid input, otherwise reject

2. Construct DFA ⟨D3⟩ such that L(D3) = (L(D1) \L(D2))∪(L(D2) \L(D1))

3. Run R on ⟨D3⟩

4. If R accepts, accept ; otherwise reject”

Note that We can implement step 2 in our algorithm since we’ve seen in
class algorithms for computing DFAs for complement, intersection, and union
of the languages of given DFAs, and these algorithms can be combined to get
step 2 above.

We can see that M is a decider because R is a decider, and the other steps
always halt.
x ∈ EQDFA ⇐⇒ x = ⟨D1, D2⟩ where D1, D2 are DFAs and L(D1) = L(D2)
⇐⇒ (L(D1) \ L(D2)) ∪ (L(D2) \ L(D1)) = ∅ ⇐⇒ ⟨D3⟩ constructed in step
2 encodes a DFA D3 that satisfies L(D3) = ∅ ⇐⇒ R(⟨D3⟩) accepts ⇐⇒ M
accepts.

3 Variants

The following Variations of a Turing machine are equivalent in power to a stan-
dard Turing machine. Hence, if it’s easier to use these definitions for a particular
problem, it’s implied that there exists an equivalent standard TM.

Note that this is true also for many other models, including for example your
favorite programming language, which can be simulated by a TM. However, the
variants below can be proven to be equivalent to a TM much more directly (we
did not see full proofs in class for this equivalence since there was not enough
time, but it would be doable – you can try to prove it yourself or check the
textbook if you’d like to see a full proof of equivalence).

• Two-sided Tape Turing Machines (Tape is infinite in both directions)

• Multi-Tape Machines (For a FINITE fixed number k, the Turing machine
has k tapes and k heads reading each tape).

• Left/Right/Stay Turing Machines (Turing machine, in addition to moving
left and right, can choose to stay put in the same position).

• Non-Deterministic Turing Machine (multiple possible transitions and con-
figurations yielded at configurations) - akin to the relation of NFAs to
DFAs

• 2-Dimensional Turing Machine (Instead of a 1D-tape, the TM has a 2D-
grid)

8



3.1 Enumerators

An enumerator is a Turing Machine with an attached printer that it can use
as an output device to print strings. Every time the Turing machines wants
to add a string to the list, it sends the string to the printer. Another term for
”recognizable” is ”recursively enumerable” - the set of languages recognized by
enumerators (and another term for ”decidable” is ”recursive”).

• An enumerator starts with a blank input tape

• If the enumerator does not halt it may print an infinite list of strings

• The language recognized by the enumerator is the collection of strings that
it eventually prints out.

• Note: an enumerator may generate the strings of the language it recognizes
in any order, possibly with repetitions.

• If L is recognizable and accepts string w, then it will eventually appear
on the list printed by L’s enumerator, E.

Theorem: A language is Turing-recognizable if and only if some enumerator
enumerates it. (Sipser, theorem 3.21).

(Try to prove it yourself! you can also prove that L is Turing-decidable if
and only if some enumerator enumerates it in length-increasing order)

4 Practice Problems

1. Consider the input-output TM M = (Q,Σ,Γ, δ, q0, qhalt) where Q =
{q0, q1, qhalt}, Σ = {0, 1}, Γ = {0, 1, }, and δ is given by:
δ(q0, 0) = (q0, 0, R), δ(q0, 1) = (q0, 1, R), δ(q0, ) = (q1, , L)
δ(q1, 0) = (qhalt, 1, R), δ(q1, 1) = (q1, 0, L), δ(q1, ) = (qhalt, , L)

(a) Provide the complete sequence of configurations of M when ran on
input 100. What is the output of M on this input?

(b) What is the output of M on 10011? on input 11?

(c) What function is computed by M?

2. Let Σ = {#, 0, 1}. Provide an implementation level description of a input-
output TM that computes the function

f(#⟨x⟩) =
{

#⟨x/2⟩ if x is even
#⟨3x+ 1⟩ otherwise

where ⟨x⟩ stands for the binary representation of the number x.

(For example, if the TM starts with #100 on the tape it should halt with
#10 on the tape; if it starts with #11, it should halt with #1010.)

You may use a TM with more than one tape – in this case the output
should be written on the first tape.

9



3. Show that ECFG = {⟨G⟩|G is a CFG and L(G) = ϕ} is decidable.

4. Let L = {⟨M,k⟩|M is a TM, k is a positive integer, and there exists an
input to M that makes M run for at least k steps}
Prove that that L is decidable.

10


