
COMS W3261: Computer Science Theory.
Instructor: Tal Malkin
Date: October 7, 2022

Handout 4: The Myhill-Nerode Theorem and Implications

1 Overview

The Myhill-Nerode theorem is a fundamental result in the theory of regular languages. It
provides a characterization of regular languages, and hence can be used to prove whether or
not a language L is regular. It can also be used to find the minimal number of states in a
DFA which recognizes L if L is regular. In fact, this theorem is at the heart of efficient DFA
minimization algorithms.

Here we present the Myhill-Nerode theorem, and give some examples applying it to
both regular and non-regular languages. We also use this theorem to prove that there are
languages for which the minimal DFA for a language has exponentially more states than
the minimal NFA (thus showing that the exponential blowup in the subset construction is
inherent – there is no general transformation of NFAs to DFAs which is more efficient).

This handout was written by Tal Malkin, based in part on a handout made by a 2017
TA for the class, Michael Tong. The Sipser textbook has the Myhill-Nerode theorem as
part of its solved exercise 1.52 (with the equivalence relation defined in problem 1.51). The
textbook by Hopcroft, Motwani, Ullman has a more extensive treatment in section 4.4.

This handout is recommended reading for interested students, and you may use the
Myhill-Nerode theorem to solve problems on homeworks and exams, if you want to. However,
it is not part of the required material for class this semester, and you will not be assumed
to know this theorem.

2 Statement of the Myhill-Nerode Theorem

The key concept to the Myhill-Nerode theorem is the distinguishing extension.

Definition 2.1. Let L ⊆ Σ∗ be any language over the alphabet Σ. For x, y ∈ Σ∗ we call
z ∈ Σ∗ a distinguishing extension of x and y if exactly one of xz and yz are in L (where xz
is the concatenation of x and z). If such a z exists, we say that x and y are distinguishable
by L; otherwise we say x and y are indistinguishable by L.

The intuition behind this definition is the following: suppose L is regular and is recognized
by a DFA D. For any string s, Let QD(s) be the state D is in after reading s. Then if
QD(x) = QD(y), then for any string z we will have QD(xz) = QD(yz), so that D accepts
either both xz and yz or none of them. Thus x and y are indistinguishable by L.

On the other hand, if QD(x) 6= QD(y), then it’s still possible that x and y are indistin-
guishable by L. In this case, we say that the states QD(x) and QD(y) are equivalent, and
the two states can be combined into one state without changing the behavior of the DFA.
Similarly, if x and y are in fact distinguishable by L, then QD(x) and QD(y) will not be
equivalent to each other.

COMS W3261, Computer Science Theory, Handout 4: The Myhill-Nerode Theorem and Implications, p. 1



Proposition 2.2. Let L ⊆ Σ∗ be a language. Define ∼L to be the relation on Σ∗ where
x ∼L y iff x and y are indistinguishable by L. Then ∼L is reflexive, symmetric, and transitive
so that ∼L is an equivalence relation on Σ∗.

Now recall that an equivalence relation ∼ on a set S induces equivalence classes which
partition S into subsets of elements related to each other by ∼. For example, let ∼ be a
relation on the set of integers (denoted Z) defined by a ∼ b iff a ≡ b (mod 3). Then ∼ is an
equivalence relation and it partitions Z into three equivalence classes [0], [1], [2] defined by
[i] = {n ∈ Z | n ≡ i (mod 3)}.
Remark 2.3. If x ∈ L and y 6∈ L, then x and y are distinguishable by L: we can take the
distinguishing extension to be the empty string ε. Thus, the equivalence classes will contain
strings which are either all in L or all not in L.

Remark 2.4. If L is regular and recognized by a DFA D, then x and y are in the same
equivalence class of ∼L iff the states QD(x) and QD(y) are equivalent. Thus, if a DFA D
has no states which are equivalent to each other, then x and y are in the same equivalence
class iff QD(x) = QD(y) and it can be shown that D has the least amount of states possible.
So let L be regular and let D be its minimal DFA with states {q0, q1, . . . , qn}. We can then
systematically define the equivalence classes of ∼L to be the sets 〈i〉 = {w ∈ Σ∗ | QD(w) =
qi}. Notice that this realization actually gives the above remark as a corollary.

We are now ready to state the theorem.

Theorem 2.5. Let L ⊆ Σ∗ be a language. Then L is regular if and only if the number of
equivalence classes of ∼L is finite. Furthermore, if L is regular then the number of equivalence
classes of ∼L is also the number of states in the minimal DFA.

Thus, when talking about a regular language L, we can break it into its most essential
pieces, namely the equivalence classes of ∼L, which correspond to the minimal DFA for L.

On the other hand, to show that a language L is not regular, we need to show that the
number of equivalence classes is infinite. This can be done by coming up with infinitely many
strings such that no two of them are equivalent (i.e., every pair of them is distinguishable
by L).

3 Examples

Example 3.1. Let L = L(01∗). What are the equivalence classes? First notice that ε is
distinguishable from all other strings in {0, 1}∗, so it’s in its own equivalence class. Indeed,
if w is a non-empty binary string then w0 is not in L but ε0 = 0 is. Another equivalence
class consists of strings which are not in the right ”format”, since then no matter what
extension z is added the string would still not be in the language. This would include strings
which start with 1 and strings which contain more than one 0. A third equivalence class
consists of the strings in L (do you see why for this language all strings in L are in the same
equivalence class?). These are the only 3 equivalence classes, since from the definition of L,
every string is either in L, or is empty, or starts with 1 or has more than one 0. Since there
are 3 equivalence classes we know that L is regular, and has a minimal DFA with 3 states

On the other hand, consider the following minimal DFA:

COMS W3261, Computer Science Theory, Handout 4: The Myhill-Nerode Theorem and Implications, p. 2



q0start q1

qbad

0

1

0

1

0, 1

It is now clearer exactly how the equivalence classes relate to states: each equivalence
class simply consists of the strings which cause the DFA to be in the same state. Indeed, the
initial state has no arrows going to it, and thus only corresponds to the string ε. The state
qbad refers to the strings with ”improper format,” which the DFA agrees are those strings
which start with 1 or have more than one 0. And finally the state q1 refers to the strings in
the language. Indeed, the fact that L itself is contained entirely in one equivalence classes
corresponds to the fact that the minimal DFA has only one accepting state.

Example 3.2. Let L = {w ∈ {0, 1}∗ | the number of 0s in w is the same as the number of 1s
in w}. We will show that L has infinitely many equivalence classes, and thus is not regular.
Consider all strings of the form 0k, for any k ≥ 0. These are infinitely many strings, and we
claim that no two of them are equivalent. Indeed, for any k 6= j, consider the strings x = 0k

and y = 0j. Choosing the extension z = 1k gives xz = 0k1k which is in L, and yz = 0j1k

which is not in L. Thus, each equivalence class of L can contain at most one string of the
form 0k, so there must be infinitely many equivalence classes. So L is not regular.

Example 3.3. Let L = {w ∈ {a, b}n | w is a palindrome}. We will prove that this language
is not regular, by showing that it has infinitely many equivalence classes. Again, we can do
this by coming up with an example of infinitely many strings so that no two are equivalent.
We consider all strings of the form ak for k ≥ 0, and show that no two of them are equivalent.
Take x = ak, y = aj for any k 6= j. Choosing the extension z = bak gives xz = akbak ∈ L, and
yz = ajbak 6∈ L. Therefore, all such pairs ak, aj are distinguishable, and we have infinitely
many equivalence classes, so L is not regular.

Note: there are many other possible infinite sets of strings we could use where every
pair is distinguishable. In fact, in this example one could prove that every string is in its
own equivalence class, namely no two strings are equivalent. But the proof we gave above is
simpler, and suffices to show L is not regular.

Example 3.4. Returning to an example we saw in class and in handout 2, consider the
following language over alphabet Σ = {0, 1}:

L = {xy | x has even number of 0′s, y has an even number of 1′s}

In this example, finding the equivalence classes of L directly is harder than coming up with a
DFA as we did in handout 2. However, we will use the Myhill-Nerode theorem to show that
the DFA we obtained is minimal. Recall (see handout 2) that we constructed an NFA for
the language, then used the subset construction to get a DFA with 5 states. We then noticed
that S2 and S4 can be collapsed – this was because these states were equivalent under ∼L.
We thus obtained the following DFA:

COMS W3261, Computer Science Theory, Handout 4: The Myhill-Nerode Theorem and Implications, p. 3



S0start S2

S1

S3

1

0

0
0,1

1 1

0

Since this is a DFA for the language, we know that all strings whose computation ends
in the same state in the DFA are in the same equivalence class. To show that this DFA
is minimal, we need to show that no two states in the DFA are equivalent. We do this by
showing a distinguishing extension for every pair, namely a string that leads from one of
them to an accepting state, and from the other one to a non-accepting state.

• For S0, S2 take 01

• For S0, S1 take 1.

• For S1, S2 take 1.

• For S3 and any other state, take ε.

This means that this 4-state DFA is the minimal DFA for the language.

As an aside, if we wanted to fully specify what the equivalence classes for the language
are, we can prove that they are the following:

• Strings that have a prefix with odd 1s and even 0s (state S2)

• Strings without the above prefix with even 0s and even 1s (state S0).

• Strings without the above prefix with odd 0s and even 1s (state S1).

• Strings without the above prefix with odd 0s and odd 1s (state S3).

4 DFAs can be exponentially larger than NFA

We now prove a claim we mentioned without proof in class, namely that there are languages
for which the number of states in the minimal DFA is exponentially larger than the number
of states in an NFA for the same language.

Definition 4.1. For an arbitrary n ∈ N, define the language

Ln = {w ∈ {0, 1}∗ | the n-th to last symbol in w is 1}

Proposition 4.2. For all n, there is an NFA with n+ 1 states recognizing Ln.

COMS W3261, Computer Science Theory, Handout 4: The Myhill-Nerode Theorem and Implications, p. 4



Theorem 4.3. For any n ∈ N, any DFA recognizing the language Ln must have at least 2n

states.

Proof. There are 2n strings of length n. We will prove that every pair of them has a dis-
tinguishing extension, thus each one is in a different equivalence class with respect to ∼Ln .
Consider any two strings w = w1 . . . wn ∈ {0, 1}n and w′ = w′1 . . . w

′
n ∈ {0, 1}n where w 6= w′.

Since w 6= w′, they must differ in at least one location. Take some i ∈ {1, . . . , n} such that
wi 6= w′i, which means one of wi, w

′
i is 0 and the other one is 1. Choose an extension z of

length i − 1, e.g., take z = 0i−1. The n-th to last bit in wz is wi, and the n-th to last bit
in w′z is w′i, one of which is 0 and one of which is 1. Thus, one of wz,w′z is in Ln and the
other one is not, so w,w′ are distinguishable. Since every n-bit string must be in a different
equivalence class, and there are 2n such strings, Ln has at least 2n equivalence classes, so
any DFA for Ln must have at least 2n states.

Remark 4.4. We note that Ln has exactly 2n equivalence classes, namely 2n states are also
sufficient. This is because we can show that every string w of length |w| > n is equivalent to
its n-bit suffix, and every string w of length |w| < n is equivalent to the n-bit string 0n−|w|w.
Thus, the minimal DFA for Ln has 2n states.

Remark 4.5. The above proves that exponential blowup is inherent in any general transfor-
mation of NFA to equivalent DFA. However, it does not mean that for every language the
smallest DFA must be larger than the smallest NFA (we saw several examples where this
was not the case; one simple example is the one-state DFA for the language Σ∗, which clearly
cannot be improved even if we allow an NFA).

COMS W3261, Computer Science Theory, Handout 4: The Myhill-Nerode Theorem and Implications, p. 5


