# OMS 3261 Review Handout 3B <br> Practice Questions: Finite Automat 

Angel (Levi) Tui and Jeannie Ren

Fall 2022

## 1 DFA Exercises

1. Determine which of $\varepsilon, 11,010,10,0101$ is accepted by this DFA.


$$
\begin{aligned}
& \varepsilon-N_{0 t} \text { accepted } \\
& 11 \text { - Accepted } \\
& 010 \text { - Not accepted } \\
& 10 \text { - Not accepted } \\
& 0101 \text { - Accepted }
\end{aligned}
$$

2. The DFA state diagram below is defined on the alphabet $\Sigma=\{a, b, c\}$. Write out its formal definition (as a 5 -tuple). When specifying the transidion function $\delta$, draw a table.


$$
D=\left(Q, \Sigma, 8, q_{0}, F\right)
$$

$Q=\left\{q_{0}, q_{1}, q_{2}, q_{2}\right\}$

$$
\Sigma=\{a, b, c\}
$$

DFAs we have a convention that when there are missing transitions, it means that they all go to the dead/reject/ bad state.

$$
F=\left\{q_{1}\right\}
$$

3. Draw a DFA that recognizes:
(a) All strings with the prefix 01.

(b) $L=\{11,101,010,0110\}$.


The dead/reject / bad
state can be omitted.
In this graph, we just
omitted it to avoid
making the graph messy.
(c) $L=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of 1 's in $w$ is not an integer multiple of 5$\}$.

* 0 is an integer multiple of 5 !


2 NFA Exercises

1. Draw an NFA that recognizes:

Bonus solution:
(a) All strings that contain 101.


Computation tree on 1101

(b) $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has exactly two 0's or an even number of 1 's $\}$.


3 Miscellaneous Exercises $\rightarrow$ Draw either a DFA or an NFFA.

1. Prove the following languages are regular:
(a) $L=\left\{0^{m} 1^{n} \mid m, n \geq 0\right.$, and $m+n$ is odd $\}$ Be careful about the order! ex. $\quad 0^{4} 1^{3}=0^{4} \cdot 1^{3}=0000111$

(b) $L=\left\{x \in\{0,1\}^{*} \mid x\right.$ contains a substring of two 1's separated by an odd number of characters $\}$

Note that IIII is also accepted by L!

2. Convert this NFA to a DFA using subset construction:


You could also draw the transition tables to help you understand:

NFA 8: |  | 0 | 1 | $\varepsilon$ |
| :--- | :--- | :--- | :--- |
| $q_{0}$ | $\sum_{q_{0}}, q_{1}$ | $q_{0}$ |  |
|  | $q_{1}$ |  | $q_{2}$ |
| $q_{2}$ |  |  |  |

6

3. (a) What is the language recognized by this NFA?

(b) What is the language recognized by this NFA?
 of each other.

$q_{1}$ is accepting: $\{\varepsilon\}$
The complement of $\{\varepsilon\}$ is $\left\{w \in \Sigma^{*}| | w \mid \geqslant 1\right\}$.

