COMS 3261 Review Handout 3B Practice Questions: Finite Automata

Angel (Leyi) Cui and Jeannie Ren Fall 2022

1 DFA Exercises

1. Determine which of ε , 11, 010, 10, 0101 is accepted by this DFA.

E - Not accepted

11 - Accepted

010 - Not accepted

10 - Not accepted

0101 - Accepted

2. The DFA state diagram below is defined on the alphabet $\Sigma = \{a, b, c\}$. Write out its formal definition (as a 5-tuple). When specifying the transition function δ , draw a table.

$$D = (Q, \Sigma, 8, q_0, F)$$

$$\sum = \{a,b,c\}$$

\S :

	I I	I	1
	a	b	C
90	9,	93	93
9,	9,1	92	93
92	9,	92	93 /
93	93	93	93

dead/reject/bad state:

We could also not draw this because for DFAs we have a convention that when there are missing transitions, it means that they all go to the dead/reject/bad state.

3. Draw a DFA that recognizes:

(a) All strings with the prefix 01.

The dead/reject/bad state can be omitted.

In this graph, we just omitted it to avoid making the graph messy.

(c) $L = \{w \in \{0,1\}^* | \text{ the number of 1's in } w \text{ is not an integer multiple of 5} \}.$

2 NFA Exercises

1. Draw an NFA that recognizes:

Bonus Solution:

(a) All strings that contain 101.

Computation tree on |lo| q_0 q_1 q_2 q_2 q_3 q_4 q_4 q_4 q_4 q_4 q_5 q_6 q_1 q_2 q_4 q_5 q_6 q_1 q_2 q_3 q_4 q_5 q_5 q_6 q_1 q_2 q_4 q_5 q_5

(b) $L = \{w \in \{0,1\}^* | w \text{ has exactly two 0's or an even number of 1's}\}.$

Miscellaneous Exercises 3

Draw either a DFA or an NFA.

- 1. Prove the following languages are regular:
 - (a) $L = \{0^m 1^n \mid m, n \ge 0, \text{ and } m + n \text{ is odd}\}$ Be careful about the order! ex. $0^4 1^3 = 0^4 \cdot 1^3 = 0000111$

The grey part is the dead / reject / bad state.

In this case, we might want to just smit it. (b) $L=\{x\in\{0,1\}^*|\ x \text{ contains a substring of two 1's separated by an}$

odd number of characters}

Note that III is also accepted by L!

2. Convert this NFA to a DFA using subset construction:

You could also draw the transition tables to help you understand:

3. (a) What is the language recognized by this NFA?

90 is not accepting: \$\display \\ \lambda\delta\frac{1}{2}\delta\frac{1}{2

The complement of ϕ is Ξ^* .

(b) What is the language recognized by this NFA?

Note: They are not complement of each other.

9, is accepting: {E]

The complement of [E] is $\{w \in \Sigma^* \mid |w| > 1\}$.