
Handout 10a (Complexity Review)

Kelly Jones

December 2022

1 Key Definitions and Ideas

Time Complexity
For a given TM M t(n) is the maximum number of steps taken by M on an
input of length n (worst case number of steps)
TIME(t(n)) is the set of all languages L such that ∀L ∈ TIME(t(n))∃M which
is a TM that decides L in O(t(n)) In this class, we use Big O which removes
constants from t(n))
a ∗ nb = O(nk) (all constant coefficients go to 1 and all constant exponents go
to k
a1n

x1 + a2n
x2 + ...ajn

xj = O(nk) (all polynomial terms are represented as one
polynomial term)
logan = O(log2n) (all logs can be assumed to be equivalent to log base 2)
If t(n) = O(t′(n)) then TIME(t(n)) ⊆ TIME(t′(n)) because Big O has re-
moved constants and small polynomial terms.
When we discuss complexity in this class, we ignore time complexity differences
if the Big O for two functions is the same
Polytime is when a function has O(nk) for some constant k.

Church-Turing Thesis
For any realistic model of computation, there exists a TM which can perform
that computation.

Strong Church-Turing Thesis
Any realistic model of computation is polytime reducible to a computation that
can be performed on a TM.
Much more contraversial than Church-Turing Thesis

P
The class of all languages that can be decided in polynomial time with respect
to input length by a deterministic TM (or your favorite programming language)

NP
The class of all languages that can be decided in polynomial time by a nonde-

1

terministic TM or (equivalently) for which there exists a verifier (consisting of
a deterministic TM) that runs in polynomial time.

P ⊆ NP
We don’t know if P = NP or if P is a strict subset of NP
It is widely believed that P ̸= NP , otherwise, any problem with a solution that
can be verified in polynomial time could be solved in polynomial time

Verifier
Verifier: a TM V that for some language L, takes as input X, c where X ∈ Σ∗
of L and c is a certificate.
X ∈ L ⇐⇒ ∃c such that V accepts
V always halts
If V (X, c) accepts for some c then X ∈ L
If V (X, c) rejects then either X is not in L or c is awrong certificate for X

Intuition: A language L is all the encodings X of a problem that have a solution
c. A verifier can tell you if the solution is correct if you put in the problem X
and the solution c.

Polytime Reducible
Language A is polytime reducible to language B (A ≤p B) if and only if there
exists a function F which is one-to-one such that ∀x ∈ A, x ∈ A ⇐⇒ F (x) ∈ B
and the transformation from x to F (x) runs in polynomial time with respect to
the length of x.

Intuition: To reduce one problem to another in polytime, you need a func-
tion that can transform the input to the first problem into an input for the
second problem.
A polytime reduction proof can be used to show that two languages are both
in NP Hard if we know one language is in NP Hard and can reduce the new
language from it. This will show that the new language is as hard as the known
language and therefore the new language is in NP Hard. In such a proof, it is
also necessary to show that F (x) runs in polytime and is one-to-one.

NP Hard and NP Complete
We define a problem to be NP Hard if all problems in NP are polytime re-
ducible to it. This is the case if and only if the problem is reducible from another
NP Hard problem. NP Complete problems are the class of problems which are
in both NP and NP Hard. Therefore, to prove a problem is NP Complete you
need to show that it is in NP by providing a nondeterministic TM or a verifier
for it that runs in polytime and show that it is polytime reducible from another
NP Hard problem. For example, SAT is the problem where, given a boolean
algebra expression with many variables, you need to determine if there is some
set of true or false values for the variables such that the expression evaluates
to true. All other NP Complete problems reduce from this problem and from

2

each other.

2 Practice Problems

True or False
1. All polytime verifiers are deciders.
2. If A ≤p B, then it is possible for A to be in P and for B not to be.
3. The language SAT is NP complete.
4. All NP Complete problems are polytime reducible to each other.
5. A nondeterministic TM always runs in constant time.
6. Algorithms with runtimes of O(n log n),O(n3.2), and O(n!) all count as hav-
ing polynomial time complexity.
7. In this class, when we state an algorithm’s time complexity, we are referring
to the average time it takes to run with respect to input length.

Proofs
1. For an undirected graph G with a set of nodes V and edges E, a set S ⊂ V is
an independent set if and only if ̸ ∃e ∈ E|e connects nodes u and v and u, v ∈ S.
L is the language such that ∀G, k ∈ L|∃S ⊂ V where S is independent and
|S| ≥ k
Prove that L ∈ NP

2. Let I be a set of positive integers, let k be a positive integer, and let L
be the language such that ∀I, k ∈ L ∃S ⊂ I such that ΣS = k.
Prove that L ∈ NP

Note: you will not need to be able to produce a proof like the one below on the
exam. However, it is important that you understand them as you may need to
do part of a proof like this or answers questions about about the concepts in
proofs like this (polytime reducibility, NP hardness, NP completeness)

3. 3SAT is a subset of the SAT language and is in NP Hard. It consists
of a boolean algebra expression of the form (x1 ∨ x2 ∨ x3) ∧ (xn−1 ∨ xn−1 ∨ xn)
in other words, it has n boolean variables which appear in k clauses where each
clause is the disjunction of three of the variables or their negations and, for the
expression to be true, all clauses must be true. Note that the same variables
can appear multiple times in the same clause or in different clauses
4SAT is a language which is similar to 3SAT except that clauses consist of
the disjunction of 4 variables instead. Expressions in 4SAT take the form
(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (xn−3 ∨ xn−2 ∨ xn−1 ∨ xn) where the same variable may
appear multiple times in the same clause or different clauses.
Prove that 4SAT is NP Complete. (Hint: I will reduce 3SAT to 4SAT in this
proof)

3

