Shifting the Odds

Shifting the Odds
Writing (More) Secure Software

Steve Bellovin

908-582-5886

smb@research.att.com

AT & T Research
Murray Hill, NJ 07974

ATaT Steven M. Bellovin — April 29, 1996 1

Shifting the Odds

If our software is buggy, what
does that say about its security?

—Robert H. Morris

ATaT Steven M. Bellovin — April 29, 1996 __ 2

Shifting the Odds

What'’s the Problem?

Software is buggy.

Bugs in security-sensitive software are
often security holes.

On the whole, the profession does not
know how to write correct code.

But we can—and should—write software
that is more correct, and more secure.

ATaT Steven M. Bellovin — April 29, 1996 3

Shifting the Odds

Principles of Software
Engineering

e Simplicity is a virtue.

e If code is complex, you don’'t know if it’s
right (but it probably isn’t).

e In a complex system, isolate security-
critical modules. Make them (at least)
simple and correct.

ATaT Steven M. Bellovin — April 29, 1996 __ 4

Shifting the Odds

Interface Design

e Modules should have a clean, clear,
precisely-defined interface.

e Reliance on global state is bad; it's too
hard to know what’'s going on at any
given time.

e Use of explicit parameters make input
assumptions explicit. (It also makes
multiple contexts possible, but that’s not
always good.)

ATaT Steven M. Bellovin — April 29, 1996 5

Shifting the Odds

Transitive Trust

e Programs have to trust any programs
they invoke.

[l Trusted programs should not invoke any
untrustworthy programs.

e Similarly, they must ensure that untrusted
programs are not invoked indirectly.

ATaT Steven M. Bellovin — April 29, 1996 __ 6

Shifting the Odds

Race Conditions

Permission-checking cannot be separated
from access.

Otherwise, the attacker can substitute a
new object for the one that was checked.

Never use the access() system call for
security.

It usually fails—but with race conditions,
you only have to win once.

ATaT Steven M. Bellovin — April 29, 1996 __ 7

Shifting the Odds

C++ Lite

Using class definitions forces interface
definition.

Internal module structure hidden from the
outside.

Constructors and destructors (can)
simplify storage management.

Judicious use of operator definitions can
simplify code structure.

But full C++ is arguably too complex to
use.

ATaT Steven M. Bellovin — April 29, 1996 __ 8

Shifting the Odds

Case Study: Firewalls

Firewalls are needed because most
network applications on most computers
are not trustable. That is, they may be

buggy.

Firewalls work because they minimize the
amount of code that needs to be trusted.

If you don’t run the code, it doesn't
matter if it's buggy and insecure.
Firewalls shed code to exploit this
principle.

In short, firewalls are a network response
to a software engineering problem.

ATaT Steven M. Bellovin — April 29, 1996 __ 9

Shifting the Odds

Design Choices

e Eliminate fingerd, NFS, NIS, rlogind, etc.
e Restrict things like FTP.

e Deploy secure authentication.

ATaT Steven M. Bellovin — April 29, 1996 __ 10

Shifting the Odds

Case Study: gopherd

Information retrieval protocol.

System sends back responses including
file type and ‘selector string”.

T he selector string—often a file name—is
sent back to the server to request that
document.

Control files are used to force special
actions, such as off-site links.

But what if the user creates a bogus
selector or control file?

ATaT Steven M. Bellovin — April 29, 1996 11

Shifting the Odds

Implementation Choices

Option 1: Let the daemon decide what files
should be accessible from the outside.

e Parsing a file name is hard (though
simpler on Unix than on many other
systems).

e gopherd invokes other programs via the
shell; what about shell metacharacters?

e \What about file read permissions?
Option 2: Let the system do it.

e Use chroot(); let the system control the
file system name space. (The basic
chroot () code is 15 years old, quite small,
and quite reliable.)

e No worries (from this perspective) about
metacharacters; other files (in effect)
aren’t there.

e Rely on either chroot() or system file
modes for read permissions.

ATaT Steven M. Bellovin — April 29, 1996 __ 12

Shifting the Odds

Advantages of Option 2

e NO complex, error-prone permission-
checking code in the application.

e Easily accomodates different system-
level permissions (i.e., military-style
mandatory access controls).

e Simpler structure, more likely to be
correct.

ATaT Steven M. Bellovin — April 29, 1996 __ 13

Shifting the Odds

Improving the Solution

Problem: chroot() is a privileged operation;
dare we give gopherd that much power?

Solution: Extremely early chroot() or
outboard module that sets up the
unprivileged environment before invoking
gopherd.

Problem: Shell metacharacters can still be
used to execute inappropriate commands.

Solution: Don't use the shell; it’s too
powerful. Execute commands explicitly.

Problem: Shared ftp/gopher area can let
users change the gopherd structure and/or
cause execution of inappropriate
commands.

Solution: Use the system permission
mechanism so that gopherd can’t access
files written by ftpd.

ATaT Steven M. Bellovin — April 29, 1996 ___ 14

Shifting the Odds

Case Study: ftpd

e Current implementation has overly-
general control structure. There is a lot
of reliance on global state variables.

e [here are too many privileged operations
in the current code, which implies a need
for a lot of bookkeeping.

ATaT Steven M. Bellovin — April 29, 1996 __ 15

Shifting the Odds

ftpecmd Main Loop

)

Y
Read
command
line

Parse command and
check login state

Execute command
via parser

Y

ATaT Steven M. Bellovin — April 29, 1996 __ 16

Shifting the Odds

Login Sequence
USER command:

Clear login state
Get user profile
Check for anonymous; set flag

PASS command:

If not anonymous, check password; on
failure, clear state and exit.

Set directory, uid, from retrieved user
profile.

If anonymous, use chroot() for access
control.

Set logged-in flag.

ATaT Steven M. Bellovin — April 29, 1996 __ 17

Shifting the Odds

Analysis

e [00 much retained state: user profile,
anonymous flag, logged-in flag.

e [wisty control structure: too much other
code can be executed during login
sequence.

e chroot() — the primary security
mechanism for anonymous F TP — done
quite late, and depends on all that saved
state.

[] There have been at least three separate
bugs reported in the login process.

ATaT Steven M. Bellovin — April 29, 1996 __ 18

Shifting the Odds

Solution

do {
read command
if (command == USER)
print error message
read next line

} while (TRUE)

if USER==ANONYMOUS

chroot ()

set ANONYMOUS permissions

read and ignore PASS command
else

read PASS

get user profile

if !valid exit

set user permissions
while (!'EOF) {

command processing

}

exit

Exercise: What would you change for a
firewall-only ftpd?

ATaT Steven M. Bellovin — April 29, 1996 __ 19

Shifting the Odds

Fixed Solution

do {
read command
if (command == USER) break
print error message
read next line

} while (TRUE)

if USER==ANONYMOUS

chroot ()

set ANONYMOUS permissions

read and ignore PASS command
else

read PASS

get user profile

if !valid exit

set user permissions
while (!EOF) {

command processing

}

exit

With so little code, the bugs are (more)
obvious.

ATaT Steven M. Bellovin — April 29, 1996 __ 20

Shifting the Odds

Case Study: Remote
Execution in uucp

e Currently executes only a few commands,
under the uucp login.

e But spooled remote execution and file
transfer are useful in general.

e Can we add such a capability to uucp?

ATaT Steven M. Bellovin — April 29, 1996 __ 21

Shifting the Odds

Choice 1 — Let uucp do it

e Only root can switch to an arbitrary user
account. Should uucp run as root?

e Command execution is only loosely
coupled to remote machine identity; is the
coupling secure enough that it can be
trusted?

ATaT Steven M. Bellovin — April 29, 1996 __ 22

Shifting the Odds

Choice 2 — Use an
outboard privileged module

e Limit what has to be trusted. (N.B. uucp
IS a large, complex program with a long
history of security bugs.)

e Use cryptographic authentication instead
of a password.

e Example: Koenig’'s asd package, layered
on top of uucp, has exactly 200 lines of
privileged code, plus 274 lines to calculate
a cryptographic checksum.

e Bonus: you can now use other transport
mechanisms.

ATaT Steven M. Bellovin — April 29, 1996 __ 23

Shifting the Odds

How asd Words

unseal -K /etc/keys/user | \
instpkg | \
mail user

ATaT Steven M. Bellovin — April 29, 1996 ___ 24

Shifting the Odds

Case Study: rcp and rdist

rcp and rdist use the rsh protocol.

The rsh protocol, apart from its reliance
on names, requires that the client
program be on a ‘“privileged” port
(whatever that is).

Thus, rcp and rdist run as root.

Both have a long history of security
holes. ..

ATaT Steven M. Bellovin — April 29, 1996 __ 25

Shifting the Odds

Solutions

1. Don’t use the protocol directly; invoke
the rsh command itself.

2. Invoke a small, trusted program that will
set up the socket and pass back an open
file descriptor (but watch out for race

conditions).

3. Use a real authentication mechanism.

ATaT Steven M. Bellovin — April 29, 1996 __ 26

Shifting the Odds

Case Study: Web Security

e [he servers are huge, complex programs
that do permission checking, parse file
names, pass state around, switch uids,
run user-written CGI scripts—and try to
manage cryptographic keys, accept
sensitive input, and manage access to
restricted content.

e Clients are told what to do by the server,
with choices ranging from the
benign—-display this picture or simple
text—to redirections to other URLS,
Postscript pictures, and, ultimately, Java.
All the while, they must guard client keys,
user identities, and the whole machine
and network they're running on.

e [he solution is left as an exercise for the
profession.

ATaT Steven M. Bellovin — April 29, 1996 __ 27

Shifting the Odds

what Have We Done?

e Rely on simple primitives (chroot(),
operating system permission-checking,
etc.).

e EXxplicit separation of access control from
general complexity.

e Elimination of unnecessary code.

ATaT Steven M. Bellovin — April 29, 1996 ___ 28

Shifting the Odds

Authentication

e Many security problems are due to
authentication failures.

e Such failures are often very difficult to
detect, because the intruder appears to
be a valid user.

e Most authentication failures come from
bad assumptions about the environment.

ATaT Steven M. Bellovin — April 29, 1996 __ 29

Shifting the Odds

Types of Authentication

Passwords An obsolete technology.
Passwords can be guessed, given away, or
collected by Trojan horses or
eavesdroppers.

Name-based Relies on the trustworthiness of
the network and on the integrity of the
address-to-name mapping system.

Biometric Requires special-purpose
hardware; gives probabilistic result;
subject to biological disruptions (does a
voiceprint work if the employee has a

cold?).

Cryptographic Generally the best
mechanism, but a great deal of care is

required.

ATaT Steven M. Bellovin — April 29, 1996 _ 30

Shifting the Odds

Cryptography

Cryptography can be used for privacy and
for authentication.

The basic tools—conventional and
public-key cryptography, secure hash
functions, digital signatures, etc.—are
generally used as the building blocks for
cryptographic protocols such as Kerberos.

But the design of these protocols is a
tricky matter; errors abound. There are
many published examples that simply
aren’t secure.

Among the dangers: cut-and-paste
attacks, replays, attacks on one party’s
clock, multiple concurrent sessions.

ATaT Steven M. Bellovin — April 29, 1996 __ 31

Shifting the Odds

Sample Protocol Failure (by
Needham and Abadi)

Message 1 A—~S: A B
Message 2 S - A:CA,CB
Message 3 A —+ B CA7 CBv {{Kavaa}K—l}Kb

But B can resend parts of that message to C,
pretending to be A:

Message 3' B — C : CA,CC{{Ky, Tu} -1} K.

The quantity {Kp, Ta 1 is treated as a

black box.

Yo

ATaT Steven M. Bellovin — April 29, 1996 __ 32

Shifting the Odds

General Rules for
Cryptography

e Know your enemy—how strong must the
cryptography be?

e Protocol failures are more dangerous,
since once found they require less
expertise to exploit.

e Dedicated cryptographic hardware is a
Good Thing; general-purpose computers
should not, in general, be entrusted with
secret keys.

[] But good cryptography is not a
replacement for correct software.

ATaT Steven M. Bellovin — April 29, 1996 __ 33

Shifting the Odds

Assurance—How Do We
Know Our Code is Correct?

L[] We never really know.

e Formal certification of secure systems
does address assurance; this is often
overlooked by Feature Creatures.

e Example: “B2-compliant” means a few
features were added; a B2 evaluation
requires well-structured code,
configuration management, etc.

e Newer security standards (i.e., the
Canadian document) make assurance
orthogonal to features.

ATaT Steven M. Bellovin — April 29, 1996 __ 34

Shifting the Odds

What Should You Do?

Use good software engineering practices.
Analyze your assumptions.

Build a connectivity matrix. Who is able
to talk to whom? Who is allowed to?
How do you enforce this?

Rely on small, simple programs for
security checking.

But remember that computer security
isn't everything.

ATaT Steven M. Bellovin — April 29, 1996 __ 35

Shifting the Odds

ATaT Steven M. Bellovin — April 29, 1996 __ 36

