Java Security Model

Java Security Model

Steven M. Bellovin
smb@research.att.com
908-582-5886
AT&T Research
Murray Hill, NJ 07974

AT&T Steven M. Bellovin — November 18, 1996 1

Java Security Model

I drank half a cup, burned my mouth, and
spat out grounds. Coffee comes in five
descending stages: Coffee, Java, Jamoke,
Joe, and Carbon Remover. This stuff was no
better than grade four.

Glory Road,
Robert A. Heinlein

AT&T Steven M. Bellovin — November 18, 1996 __ 2

Java Security Model

The Language Model of
Security

Security features are based on the Java
language model.

The ability of a program to execute a
particular native method depends on its
ability to utter the method’s name.

But the features of the Java source
language—type safety, lack of pointers,
etc.—are all but irrelevant, except as they
allow for a simpler virtual machine.

AT&T Steven M. Bellovin — November 18, 1996 3

Java Security Model

Protection Model for Real
Hardware

e R/W/X bits per page.

e Virtual memory makes some areas
invisible.

e Supervisor state allows for privileged
operations.

e Transition to supervisor state only via
special operation

AT&T Steven M. Bellovin — November 18, 1996 __ 4

Java Security Model

Virtual Machine Operations

e [heorem-prover used for type safety and
the like.

e AcCcess is via ordinary invoke instruction.

e Restriction is based on Java language
semantics.

e Contrast this with Ghostscript’'s SAFER
mode, where the dangerous operations
are deleted from the language.

AT&T Steven M. Bellovin — November 18, 1996 ___ b

Java Security Model

Poorly-Defined Semantics

e \What is “the originating host” ?

e DNS interactions, including signalling via
the DNS channel.

e Conflict between desired abilities, such as
file and network I/O. The safety of any of
these operations depends on the
program’s history and context, and is not
easily checked statically.

AT&T Steven M. Bellovin — November 18, 1996 __ 6

Java Security Model

Structural Security

Security has to be based on small, simple,
easy-to-understand primitives.

The security kernel should irrevocably
shed permissions and abilities. Suppose,
for example, that every applet listed, up
front, the name of each file it wanted to
read or write. Internal methods never do
real open calls; they just use file
descriptors.

Minimize the amout of security-sensitive
code.

The AppletSecurity system is about 500
lines of code; the byte-code verifier is
seven times larger.

AT&T Steven M. Bellovin — November 18, 1996 ___

Java Security Model

Orange Book — C1/C2
Definition

The TCB shall maintain a domain for
its own execution that protects it from
external interference or tampering
(e.g., by modification of its code or
data structures). Resources controlled
by the TCB may be a defined subset
of the subjects and objects in the
ADP system. The TCB shall isolate
the resources to be protected so
that they are subject to the access
control and auditing requirements.

The text in boldface was added for C2.

AT&T Steven M. Bellovin — November 18, 1996 __ 8

Java Security Model

Adminstrative Issues

e Difficult to set up a site-wide security
policy. This is partly inherent in the
nature of the technology—anyone can
install any Java-capable browser they
wish—and partly in the nature of the
configuration files and/or firewall abilities.
That is, why should it read
~/.hotjava/properties rather than
/usr/lib/hotjava/properties for security
stuff?

e CLASSPATH should not have the current
directory always first.

AT&T Steven M. Bellovin — November 18, 1996 __ 9

Java Security Model

In an Ideal World. ..

e \WWe'd have an operating system with the
right primitives for secure execution of
any untrusted application.

e Failing that, we should tighten up the
Java execution environment.
+ Add local administrative controls on
Java’s permissions.

+ Eliminate reliance on the byte-code
verifier.

+ Put the security checking into the
native methods.

AT&T Steven M. Bellovin — November 18, 1996 _ 10

Java Security Model

Rationale

The intended state is a security model that is
a reasonable approximation to what a
conventional operating system and machine
would provide to a user process. To the
extent that Java has unique needs, either
more or less restrictive, these should be
modeled as different user permission sets or
capabilities. I say this not because I think
that “conventional” systems are perfect,;
rather, I'm looking for strong assurance of
security. (How many security holes are the
fault of the kernel?)

ATaT Steven M. Bellovin — November 18, 1996 11

