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Abstract

Attacks on the routing system, with the goal of di-
verting traffic past an enemy-controlled point for
purposes of eavesdropping or connection-hijacking,
have long been known. In principle, at least, these
attacks can be countered by use of appropriate au-
thentication techniques. We demonstrate a new at-
tack, based on link-cutting, that cannot be countered
in this fashion. Armed with a topology map and a
list of already-compromised links and routers, an at-
tacker can calculate which links to disable, in order
to force selected traffic to pass the compromised ele-
ments. The calculations necessary to launch this at-
tack are quite efficient; in our implementation, most
runs took less than half a second, on databases of
several hundred nodes. We also suggest a number of
work-arounds, including one based on using intru-
sion detection systems to modify routing metrics.

1 Introduction

Attacks on the routing system, with the goal of di-
verting traffic past an enemy-controlled point for pur-
poses of eavesdropping or connection-hijacking [1],
have long been known [2, 3]. In such attacks, an
enemy advertises a false route. That is, some node
claims to have a better (lower-cost) route to a given
destination. That will induce other nodes to send
traffic for that destination to (or towards) the sub-
verted node, where it can be captured by the enemy.

The false advertisement can be done in several
ways. The simplest mechanism is for the enemy to
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gain control of a router and configure it to emit the
false advertisements. Note that by “gain control”,
we do not necessarily mean “subvert”; gaining con-
trol might be as simple as buying a certain grade of
service from an ISP. Alternatively, an attacker with
suitable access to a network link can simply inject
false packets onto the wire.

At least in principle, packet injection is relatively
easy to defend against. OSPF [4] can use Keyed
MD5 [5] to guard against this. Similarly, many ISPs
use Keyed MD5 to protect BGP transmissions [6].

Defending against false advertisements by legiti-
mate speakers is harder. [7] describes how to use
digitally signed statements in OSPF; the routers’ cer-
tificates include the authorized address ranges. [8, 9]
extends that concept to BGP [10, 11].

We present a new attack, based on cutting
links and forcing the new path to traverse enemy-
controlled links or nodes. Briefly, given knowledge
of the network topology, an enemy can easily calcu-
late a set of links to cut. The usual routing mecha-
nisms will detect the failures and route around them,
in such a way that selected traffic will flow through
the compromised elements.

Section 2 explains how routing works on the In-
ternet. Section 3 shows how to implement the attack,
given the nature of Internet routing.

The graph-theoretic algorithm is presented in Sec-
tion 4. We implemented the algorithm and applied it
to some experimental topologies; this is discussed in
Section 5. We discuss countermeasures in Section 6
before outlining future work.

1.1 Practical Link-Cutting

There are a number of ways to cut links. The most
obvious is physical: sever the wire or fiber optic ca-

1



ble. While not a common hacking technique, it might
be employed by more serious enemies. Besides, no
network operator will be surprised to hear that a ram-
paging backhoe has severed a fiber.

Other problems have existed in the past that could
crash links. The original specification for PPP over
SONET rings [12] did not specify a “scrambler”; this
would have allowed an attacker to crash a link by
sending packets with certain bit patterns. It took five
years for the standard to be updated [13].

Finally, it may be possible to make a link appear
dead to routing protocols by flooding it via a dis-
tributed denial of service attack [14]. This technique
is trickier, since once the link appears to be down, all
traffic—including the attack traffic—will be routed
around it, thus causing it to appear to resurrect itself.

A variant of this attack involves disabling routers
instead of links. This, too, is feasible. Over the years,
there have been a number of bugs that can crash vari-
ous routers (i.e., CERT Advisory CA-2002-03). Cer-
tain sorts of packets directed to the router itself can
drive up its CPU load and effectively disable it; this
form of attack has already been seen on the Internet.

1.2 Terminology

This paper speaks of both Internet routing and graph
theory. In each section, we try to use the appropri-
ate language. Thus, when we are discussing rout-
ing, we speak of routers (also called nodes) and links
(also called wires). When we are discussing graph-
theoretic concepts, the same entities are called ver-
tices and edges.

2 Routing on the Internet

Most of this paper deals with routing as a simple
graph-theoretic problem. This does not match the
reality of the Internet. In this section, we (briefly)
sketch Internet routing and explain how to map it to
the simple graphs we are considering.

The Internet is too big for a single routing algo-
rithm. Consequently, a hierarchical approach is used.
Routing tables within an autonomous system (AS)—
roughly speaking, an ISP or major customer—are
determined by an interior gateway protocol (IGP);
routing between ASs is determined by an exterior

gateway protocol (EGP). This hierarchical routing
has two effects on our attack. First, by constraining
the size of the ordinary routing calculation, it limits
limits the work needed to perform the attack. Sec-
ond, the different routing protocols that are in fact
used have different implications for the practicality
of the attack.

2.1 Exterior Routing: BGP

Exterior routing—that is, routing between au-
tonomous systems—is calculated via the Border
Gateway Protocol (BGP) [10]. BGP is a path vector
protocol. Each node applies local policy to the paths
received from its peers in order to calculate the best
path to destinations; additionally, it appends its AS
number to the path and passes that path to its peers.

There are two major implications of this. First,
individual nodes (or eavesdroppers on the links lead-
ing to these nodes) do not have a complete picture
of the inter-AS topology. Maps can be drawn, but
as is pointed out in [15] and [16], the task is diffi-
cult. Still, sufficient public data exists that it may be
possible to construct a good-enough approximation.
The best publicly-available data is described in [17].
Second, routing policy is very important. We sketch
how to deal with it in Section 2.4, but in general it is
a hard problem.

After applying policy constraints, BGP uses hop
count as its metric. In order to help achieve routing
policy goals—individual ASs can and do filter BGP
data in order to achieve certain goals—it is common
to pad the AS path with repetitions of the local AS,
thus lengthening the apparent cost as seen from the
outside. See the discussion of routing policy below.

2.2 Interior Routing: OSPF and IS-IS

Interior routing within an AS is commonly calcu-
lated by OSPF (Open Shortest Path First) [4] or IS-
IS (Intermediate System-Intermediate System) [18].
(Some small sites use RIP (Routing Information Pro-
tocol) [19]. RIP is a distance vector protocol; for our
purposes, it has similar characteristics to BGP, in that
sites do not receive a complete topology map. We
will not be discuss it further here. Other small sites
use E-IGRP, a proprietary distance vector protocol.)
OSPF and IS-IS are link-state protocols. That is,
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Figure 1: Design of a typical Point of Presence
(POP).

each node advertises the existence and status of each
of its links. Furthermore, each node readvertises the
link information it has learned from its neighbors.
Because of this readvertisement, all nodes learn the
entire topology of the AS. They then calculate the
path to each destination using Dijkstra’s shortest path
algorithm.

Even a single AS can grow too large for this pro-
cess to be feasible. Accordingly, OSPF and IS-IS
permit a two-level hierarchy. Routers within a area
know only the topology within their area; only the in-
terarea routers know the topology of more than one
area. One distinguished area, known as Area 0, is the
core; the other areas must connect to it. Intra-area
paths never traverse other areas; this is sometimes
used to constrain routing within POPs (see below).

Metrics for the routing calculation are arbitrary;
however, they must be consistent within an AS.

2.3 POP Design

As described in [17], ISPs are typically organized as
POPs (Points of Presence) connected by a backbone.
A typical POP layout is shown in Figure 1. The
routers labeled Rb0 and Rb1 are backbone routers;
they are connected to other POPs. Backbone routers
within a POP are connected in a dense mesh by very
high speed links.

Ra0, Ra1, etc., are access routers. A typical POP
will have many of these; they’re used to connect
to customer sites. Links to other ISPs are often
through specialized access routers; these are some-
times known as gateway routers. Access routers
are generally connected to two or more backbone

routers, usually by links that are slower than those
used for interconnections between the backbone
routers.

In a large POP (Figure 2), there are likely to be
too many access routers to permit direct connection
to the backbone routers. In such cases, an interme-
diate layer of router is used. Access routers are con-
nected to two or more intermediate routers; interme-
diate routers are connected to two or more backbone
routers.

Because of the link speeds used, it is undesirable
to have traffic between two backbone routers within
a POP traverse intermediate or access routers. This is
prevented artificially, either by setting the cost met-
rics very high on the links to the access routers, or by
putting the access routers within a POP in a separate
OSPF area.

In some POPs, a LAN—a single, multi-access net-
work fabric—is used for interconnection. We model
LANs with a hidden pseudo-node with links to all of
the routers on the LAN.

2.4 Routing Policy

For a variety of reasons, ISPs do not use simple cost
metrics, especially for inter-AS routes. Rather, vari-
ous policies constrain routing decisions. Sometimes,
these policies are driven by business relationships,
such as agreemnts in which one ISP has paid another
to carry some types of traffic, but not others. Other
policies are driven by load balancing, varying link
speeds, bandwidth pricing, and more.

There have been a few attempts to discover routing
polices; see, for example, [20, 21, 22, 23]. Policies
are often considered confidential, and are not easy to
determine from the outside. [22] shows that deter-
mining AS policies is NP-complete; however, they
also show that there are efficient approximation al-
gorithms that handle most of the actual Internet. We
note, though, that in the security arena, enemies may
not restrict themselves to technical means of gath-
ering information. Non-technical mechanisms—i.e.,
spying—is far from unknown.

One simple case is the so-called “stub AS”: one
that never carries any transit traffic. A multi-homed
customer site falls into this category. We assign in-
finitely high weights to all links entering such an AS,
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Figure 2: Design of a large POP. The routers labeled Rxi avoid having too much fanout from the backbone
routers.

so that no route will ever be computed that traverses
such an AS.

Moving beyond that is complex. If the attacker
has perfect knowledge of the relevant policies, there
is a simple heuristic that will suffice: delete all edges
from the graph that are not available for traffic be-
tween the targeted pair of nodes. That is, if the traffic
of interest is between hosts A and D, any links over
which that traffic cannot flow effectively do not exist.
Deleting them will also simplify the graph.

An example can make this clearer. In Figure 3a,
X, Y, and Z are major (i.e., “Tier 1”) ISPs that peer
with each other. By policy, however, the links X–Y,
Y–Z, and Z–X are only usable when the source or
destination is a customer of the receiving ISP. Thus,
traffic from B to A will only flow via B–Y–X–A; it
will never follow the path B–Y–Z–X–A, even if link
Y–X is down. If we are trying to monitor traffic be-
tween those two nodes, link Y–Z effectively does not
exist, and can be deleted from the graph (Figure 3b).

On the other hand, if B is multihomed to Y and
Z (Figure 3c), its traffic will be allowed to flow over
Y–Z. B is thus protected against failures of not just
B–Y (perhaps Y is its primary ISP), but also against
other link failures. In such cases, we cannot delete
these links.

2.5 Complex Layer 2 Topologies

As noted in [17], some ISPs have complex inter-POP
topologies. These links are generally virtual circuits
implemented via ATM, MPLS, or all-optical switch-
ing.

It is tempting to try to add the layer 2 nodes to
the topology. However, not all links that physically
exist are used in all possible ways. In Figure 4, for
example, there is no direct virtual circuit from R1 to
R4; thus, IP traffic between the two routers would go
via either R1–R2–R4 or R1–R3–R4.

Even in simpler topologies, what appear to be in-
dependent links may, in fact, share link provider fa-
cilities. The problem of geographic link diversity
is well-known to organizations that desire maximum
availability; they have not found it easy to solve. Ac-
cordingly, for purposes of this paper we are ignoring
the actual implementation of such links, and are as-
suming that they are, in fact, independent physical
wires.

3 Modeling Attacks

Given these constraints, we need to demonstrate how
an attacker can actually implement the attack de-
scribed here. Put another way, if an enemy controls
certain links or routers, what is the precise procedure
to follow to launch the attack?

The first step is to force the traffic through an AS
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Figure 3: The effects of routing policy on single- and multi-homed hosts.

R1

R2

S1 S2

R3

R4

Figure 4: A layer 3 topology implemented via layer 2 virtual circuits, shown as dotted lines. The physical
links are solid lines. There is no IP-layer link from R1 to R4, even though the physical path exists.
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containing a compromised link or router. We run the
attack algorithm on the AS graph, treating each such
AS as a compromised vertex that we wish the traffic
to traverse. If two ASs peer at more than one point,
delete all but one link, but scale the difficulty factor
for the link to reflect the fact of multiple connections;
at the BGP level, one cannot control which such link
is used. The output of this step will be a set of inter-
AS links that must be cut.

Assuming that those links have been cut, we then
rerun the BGP algorithm to see which compromised
ASs will be traversed. Recall that our goal is not to
traverse every compromised AS; any one will suffice.
For each AS that will be traversed, we run the at-
tack algorithm on its topology. Upstream and down-
stream ASs as represented as pseudo-nodes. Mul-
tiple links to these ASs are included in this graph,
as they may need to be cut to force traffic over the
proper path.

At this point, the attacker has the necessary infor-
mation. Cutting the links identified in the first step
will force the traffic through one or more compro-
mised ASs. For one or more of them, cut the links
within the AS, to force traffic over its compromised
links.

On the Internet itself, major providers are con-
nected by multiple links. Severing all of the links be-
tween a pair of such providers is difficult. Although
we take into account the difficulty of severing a link,
our current approach only makes limited use of this
information. We hope to extend our work to make
better use of this information.

4 Link-Cutting Attacks

We now present an algorithm for deciding what links
to cut. Let A be the topology graph, with n vertices
and m edges, for some routing area. Assume that the
enemy controls some set of vertices E . Obviously,
|E| ≤ n; most likely, |E| � n, and quite possibly |E|
is very small, perhaps one or two. We also assume
that each edge in A has a non-negative integral cost,
which represents the cost or difficulty in cutting that
edge. The goal of the enemy is, given two vertices s

and t, to ensure that the shortest path between them
transits at least one member of E , preferably by cut-
ting edges whose total cost is as little as possible.

The algorithm is as follows:

1. First, check the shortest path from s to t in A.
If it contains any component of E , we are done.

2. For each vertex v in E , calculate a shortest sim-
ple (i.e., no repeated vertices) path from s and t

containing v.

3. If the set of paths is empty, the problem has no
solution. Otherwise, from these paths, pick a
shortest one, say P , with length l. Assign each
edge on this path an infinite cost.

4. Calculate a minimal cost s-t cut1 of A−E . Note
that s and t must be connected in A − E ; oth-
erwise, all paths from s to t in A would pass
through E and we would have stopped at the
first step above.

5. For each member e of the cut, calculate the
shortest path from s to t containing e in A− E .
If this path has length less than or equal l, re-
move the edge.

When the algorithm terminates, we end up with a
graph A′, which is A with the edges selected in Step
5 deleted. Since every path from s to t in A−E must
contain an edge in the cut, every path between s and t

in A′−E will have length greater than l. Any shorter
path in A′ must use an element of E . In addition, the
path P of length l still exists in A′ since each of its
edges had infinite cost and would not be selected in
the cut. Indeed, the minimum cut can have infinite
cost if and only if there is path in A − E from s to t

using only edges from P , an immediate consequence
of the max flow-min cut theorem [24]. Since P is
simple, such a path cannot exist in A′ − E . We thus
find that any shortest path connecting s and t in A′

must traverse E , as desired.
Our method finds some set of edges whose dele-

tion forces a shortest path through E , and the heuris-
tics provide some local minimization of the cost.
Note that, for expediency, we are only attempting to
solve a restricted version of the full problem. We are
fixing a path which uses E and looking for a min-
imum cost set of edges whose removal makes the

1An s-t cut is a set of edges that, if deleted, creates a discon-
nected graph with s and t in separate components. The cost of
the cut is the sum of the cost of the edges in the cut.
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given path the shortest path. The general problem,
though, allows paths which need not be shortest in
the original graph. Figure 5 presents a simple exam-
ple where this approach fails to find a minimum cut,
even when E contains a single vertex. The dashed

e

ab

s

weight=3

t

cd

Figure 5: Missing the minimum cut.

edge has cost 3; the rest have cost 1. The shortest
path containing e is shown in bold, having length 3.
Our algorithm will then cut the single edge of cost
3. A better choice would be to cut edges a − c and
a − t. This forces communication along the path
s − e − b − d − t. This is a longer path, but the
total cost is 2.

To simplify the presentation, we limited E to ver-
tices, but E might contain edges as well. The al-
gorithm and its implementation are largely unmod-
ified. Alternatively, we can just convert the problem
to one in which E only contains vertices. This can
be done by deleting each edge e in E from A and
adding a new enemy-controlled vertex ne to A, with
ne connected by a single edge to each endpoint of e.
The cost of the edge e is apportioned to the two new
edges.

Note that the cut edges chosen in step 5 need not
be independent of each other, in that deleting one
may also increase the shortest path length involving
others. Therefore, it is possible we may further re-
duce the number and total cost of deleted edges by

removing each edge chosen before checking another
edge in the cut.

Finding a shortest simple path in step 2 assumes
there is some simple path from s to t containing the
vertex v. This can be determined by looking at the
block-cutpoint tree2 of the graph A. Let s̄, t̄ and v̄

be the 3 blocks containing s, t and v, respectively.
Then the desired simple path exists in A if and only
if the path from s̄ to v̄ to t̄ is simple in the block-
cutpoint tree. It should be noted that this criterion
is necessary and sufficient not just for a solution to
our restricted version, but for the general problem.
If none of the enemy vertices lies on a simple path
from s to t, there is no collection of edges which can
be removed to make the shortest path from s to t go
through E .

Calculating shortest paths and the block-cutpoint
tree are linear in the number of edges in A. How-
ever, we are unsure what the complexity is of com-
puting the shortest simple paths of Step 2, given we
know they exist. Our implementation relies on var-
ious heuristics, such as merging the shortest paths
from s to v and from v to t; if v has degree 2, remov-
ing an adjacent edge and merging the shortest paths
from s and t to the edge’s endpoints with the edge;
and variations on removing the shortest path P from
s to v, and seeing if there is still a path from v to t,
which can then be combined with P to form a sim-
ple path. Although elementary, our experience is that
they perform satisfactorily in practice (cd. Section 5.

As shown by Figure 5, the approach presented
here can miss significantly better solutions in terms
of cost, largely because we restrict the problem be-
fore looking for a low-cost cut. This suggests we
start with a minimum cut in A−E , using the original
edges costs. If the entire cut is removed, there are
no paths connecting s and t. We could then consider
ways of removing only subsets of the cut, in hopes of
finding a shortest path using E . This would find the
best solution in the example of the figure.

2A cutpoint is a node whose removal separates the graph into
multiple non-trivial components. The block-cutpoint tree of a
graph G is the tree whose nodes are the cutpoints ci and bicon-
nected components, or blocks, Bj of G, with edges (ci, Bj) if
cutpoint ci belongs to block Bj .
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Figure 6: A simple network topology. The bold lines show the normal shortest path from A to D.
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Figure 7: Monitoring a simple network topology. The bold lines show the new shortest path from A to D,
when the attacker is monitoring the link Wb0–Xb1, shown in gray.
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Figure 8: The attacker has compromised node Xb1.

5 Simulation Results

We implemented the algorithm and ran it on some
test topologies. In all cases, the goal of the attacker
was to monitor traffic from one arbitrary point to an-
other, given control of some links.

We used three topology sets for our test runs: a
simple, artificial topology modeled on a real (but
small) ISP, an actual ISP backbone, and a variety
of topologies derived from actual BGP data. Unless
otherwise noted, all edges have equal cost.

5.1 Artificial Topology

The artificial network topology we used is shown in
Figure 6. In it, the attacker wishes to monitor traffic
flowing from host A to D. We use it to demonstrate
several different attacks.

In the first, the attacker is monitoring interPOP
link Xb1–Wb0. Cutting link Wb1–Zb0 blocks the di-
rect path; cutting Wb1–Yb1 prevents routing through
POP Y. Figure 7 shows the result.

In Figure 8, the attacker controls a router in the X
POP. Cutting the same links forces traffic through the
compromised router in the POP.

The third example (Figure 9), where the attacker
controls node Zb1, demonstrates the results of dif-
ferent attack difficulty levels. In Figure 9a, the short-

est new path (and the fewest link cuts) are shown; in
this case, the link to the access router Za0 is severed.
(This example also shows why POPs are designed
the way they are, to be resistant to single-element
failures.) If, on the other hand, we assume, that it is
easier to cut an interPOP link, we get Figure 9b; the
new path is longer, and requires more link cuts, but
may be easier to mount in practice.

5.2 An ISP Network

To study the behavior of our algorithm on a real ISP’s
network, we selected one of the backbone topologies
from the Rocketfuel collection. The dataset does not
include access routers, but that is not a significant
disadvantage; as noted earlier, routing never takes
place through access routers except at the source or
destination. This renders them largely useless for our
purposes; they’re not usable eavesdropping points in
the center of a path, and anyone with enough access
to a source or destination POP to do eavesdropping
there could just as easily eavesdrop on the actual tar-
get’s link.

We ran 200 tests on a network with several hun-
dred routers. The tests were divided into four cat-
egories: compromised routers versus compromised
links, and one compromised element versus five. A
source node, a destination node, and one or more
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Figure 9: Node Zb1 is compromised. (a) shows the route if links within a POP can be cut; (b) shows the
route if interPOP links are cut.
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Table 1: Test results on a real ISP’s backbone.

Type Points OrigHop Hop∆ Cuts Fail
Router 1 2.52 3.30 4.58 5
Router 5 3.86 2.04 4.06 0
Link 1 3.42 3.04 5.74 11
Link 5 3.84 2.40 4.56 1

Type The network element that was com-
promised.

Points The number of elements compro-
mised by the attacker.

OrigHop The original average hop count from
the source to the destination.

Hop∆ The average increase in hop count af-
ter the attack.

Cuts The number of link cuts required.
Fail The number of times our algo-

rithm could not find a solution, even
though one is theoretically possible.

compromised elements were selected at random for
each trial. (In the first test set, eight of the cases were
impossible to solve.) The results are shown in Ta-
ble 1; a number of items stand out.

The first is that the attack is practical: in 80-90%
of the cases, our algorithm succeeded in finding a set
of links to cut. The failure rate is due to the limita-
tions of the heuristics we currently employ; we ex-
pect that the failure rate can be reduced.

The second is that our intuition is correct in one re-
gard: the more nodes the attacker has compromised,
the easier the attack is. Fewer links need to be cut,
the increase in hop count due to the attack is not as
great, and there are fewer failures.

What is less obvious is the tradeoff between com-
promising routers and compromising links. Fewer
link cuts are necessary with compromised routers,
and there are fewer failures; however, the effect on
hop count is ambiguous.

The effect on hop count is greater than we would
like. In retrospect, this is not surprising; ISPs engi-
neer their backbones for efficient transport; any se-
rious disruption will naturally cause a significant in-
crease in path length. This does suggest a counter-

Table 2: Test results on BGP-derived topologies. The
first five entries are for graphs whose nodes have an
average degree of 6.96; the next five have an average
degree of 5.00. The starred entries are for a better-
positioned attacker. Each line represents 800 simula-
tions.

Type Points OrigHop Hop∆ Cuts Fail
Router 1 1.29 1.69 26.67 21
Router 5 1.65 1.24 18.90 8
Link 1 1.49 2.07 32.38 71
Link 5 1.66 1.51 25.00 6
Link* 5 1.66 0.52 6.09 2
Router 1 1.29 1.63 15.79 26
Router 5 1.81 1.25 11.41 12
Link 1 1.51 2.00 20.20 137
Link 5 1.82 1.48 15.07 18
Link* 5 1.84 0.54 4.39 4

measure for end-systems: monitoring path lengths to
major destinations might show that a link-cutting at-
tack is in progress [25].

Although not shown in the table, the algorithm ran
extremely quickly; no test run took longer than .1
seconds.

5.3 Inter-AS Topologies

We also ran the algorithm on inter-AS topologies.
We derived 160 test topologies from real inter-AS
maps, as described in Appendix A. To test the sen-
sitivity of the algorithm to graph size and connectiv-
ity degree, we used successively smaller graphs, and
graphs of lesser degree. Because more internet traffic
originates from bigger ISPs, we used a weighted ran-
dom distribution to favor ISPs—ASs, to be precise—
with more connectivity. Initially, we used a uniform
random distribution to select the location of the at-
tacker; larger ISPs have more network elements sub-
ject to compromise, but they also have larger, and
generally more sophisticated, staffs and procedures.

The inter-AS core is richly connected; this shows
in the low original hop count (Table 2). It is also
manifested in the lower failure rate, which didn’t ex-
ceed 17.125%; in a rich topology, it is easy to find
paths to the attacker’s network elements. But the
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abundance of links makes the attacker’s link-cutting
job much harder; as shown in the table, very many
links need to be cut.

We relocated the attacker by using the same
weighted mechanism to select the attacker’s loca-
tions. The results were dramatic: the number of links
to be cut was reduced by a significant factor, the fail-
ure rate went down, and the increase in path length
from the attack was diminished. This suggests that
attacker location is crucial.

Intuitively, one would expect the attacker’s prob-
lem to be easier for smaller networks, and for net-
works with smaller average degree. Figure 10 shows
that this is indeed the case. The graph shows both
the normal and reduced-degree versions of the sec-
ond dataset from Table 2. The need to account for
routing policy thus has another benefit: it will reduce
the number of links that need to be cut.

We ran one test using the full BGP connectivity
graph, with 15K nodes and 28K links. While in no
sense statistically valid, we wanted to demonstrate
that our prototype, unoptimized code could handle
a network of that size. Using weighted random lo-
cations for the source, destination, and five compro-
mised ASs, we found a new path of the same length
in less than seven seconds. (All timings were done
on a rather slow computer. In other words, as ene-
mies, we weren’t trying very hard and still did pretty
well.)

6 Countermeasures

Link-cutting attacks are hard to counter, because they
can occur even when all mechanisms are operating
properly. In particular, routing protocols are intended
to find alternate paths in the face of link failures.

Perhaps the best solution is to use encryption and
not worry about the problem. Properly-encrypted
traffic is immune to eavesdroppers and connection
hijackers; a variety of anonymity schemes [26, 27]
can be used to foil traffic analysis. (On the other
hand, it may be possible to use link-cutting to enable
monitoring attacks against anonymous communica-
tions networks [28].) Similarly, link encryption can
prevent an attacker from exploiting an attack.

Encryption is not always feasible, so we should
look for other solutions.

Analytically, link-cutting attacks work because the
attacker can disrupt the topology. Mechanisms that
preserve the topology are thus a strong defense.
Options to do this include hard-to-cut links, such
as spread-spectrum radio or line-of-sight lasers, or
restoration techniques such as AT&T’s FASTAR sys-
tem [29].

Protecting in this fashion against node disabling is
harder. A replacement node would need to be topo-
logically identical, geographically distant (against
some threat models), and built on a different soft-
ware base. Deployment expense for such a scheme
is probably prohibitive.

A rich topology can make the attack much more
difficult to carry out. The calculations remain feasi-
ble, but cutting enough links to carry out the attack
will be much more difficult. Note that this coun-
termeasure may require that these links be real, and
not just virtual circuits over a shared infrastructure.
Furthermore, rich topologies complicate the ordinary
network engineering tasks, and slow down routing
convergence after topology changes.

It is tempting to try to keep the topology secret.
Experience suggests that that will not work well.
Apart from mapping techniques [17, 30], topologies
are hard to change; even old information is likely to
be substantially correct.

Topology monitoring can provide end systems
with a clue that this type of attack is in progress. As
noted, the attack can have a significant effect on path
length; this is observable. Wang et al. [25] describe
similar monitoring to detect changes in root server
accessibility. Note, though, that sometimes alternate
paths can have the same cost as the original.

The most intriguing countermeasure uses an intru-
sion detection system (IDS) linked to the routing pro-
tocols. In the simplest form, an IDS could notice un-
usual rates of link failures. But a more sophisticated
response may be feasible. We sketch a possible de-
sign here.

Assume that a network operator has a list of sen-
sitive end customers and a list of links that are more
exposed to eavesdropping. In response to link fail-
ures, traffic will be rerouted. If, at such a time, there
is a marked increase in traffic between sensitive sites
over exposed links, an attack may be in progress.
The IDS would then respond by adjusting routing
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Figure 10: Link cuts as a function of nodes in the graph. The “reduced” plots are for graphs of lower degree.
The lines represent smoothed averages for each number of nodes.

metrics to divert traffic, especially sensitive traffic,
from such links.

To be sure, the enemy could counter by cutting
more links. This sort of outage, in response to a
countermeasure, would be a very strong indicator
that an attack was indeed in progress.

7 Future Directions

Cutting links to facilitate eavesdropping is not new.
Kahn reports that on the very first day of World
War I, the British cut Germany’s transatlantic tele-
graph cables, forcing them to use radio instead [31].
What is new here is the demonstration of how to
calculate what links to cut in complex but realistic
topologies. We have demonstrated that the calcula-
tions and the attack are feasible.

There are a number of important ways in this work
can be extended. The first is to deal with the com-
plexities omitted from our analysis: routing policy
and complex layer 2 topologies. The two are closely
related; the lack of some possible virtual circuit con-
nections can be considered to be a form of routing

policy.

More generally, we need to explore the question of
fate-sharing. As noted, even simple layer 2 topolo-
gies are often implemented by multiple circuits on
the same fiber pair; if one link is cut by physical
means, others will be cut as well. The same issue ap-
plies to routers: in a war situation, the military may
find it easier to destroy an entire POP, rather than just
one or two routers.

Our current algorithm deals with interception of
traffic between two nodes. Sometimes, an adversary
would like to monitor traffic among three or more
nodes. A more sophisticated algorithm would deter-
mine the link cuts that would satisfy multiple con-
straints simultaneously. If nothing else, routing on
the Internet is generally asymmetric; an adversary
would generally want to monitor traffic in both di-
rections of any particular path.

As noted, the effect of attacker placement is criti-
cal. It would be interesting to design algorithms that
located desirable nodes to compromise for a given
number of link cuts. More generally, this algorithm
can be seen as a tool in designing more sophisticated
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link-cutting attacks, where the attacker can minimize
the number of links to cut, the increase in hop count,
or the number nodes or links that must be compro-
mised.

Even without extending the problem, there is
much room for improvement in our current algo-
rithm. As we noted in Section 4, our approach pro-
vides only an approximate solution to a restricted
version of the general problem. Though we ob-
tain reasonable solutions in practice, we are far from
claiming that our results are near optimal. In partic-
ular, by restricting the problem, we only make local
use of the given edge costs. Since, in reality, severing
a fiber between POPs may be much easier than sever-
ing a link within a POP, it is important to broaden the
algorithm to make more effective use of these num-
bers. In this, there are two causes for optimism. First,
the current algorithm uses so little time we can af-
ford a more expensive method. Second, at present
we largely consider the problem as one involving ab-
stract graphs. However, real network topologies have
graph characteristics which, if considered, may aid in
the solution.

The two-layer strategy described in Section 3 can
result in cutting more links than needed. While the
two-layer strategy mirrors the routing mechanisms,
it might be possible to optimize the end result, mini-
mizing the number of links that must actually be cut.

Finally, the current algorithm deals with compro-
mised links or routers, but works by cutting links. In
some situations, it’s easier to take out a router than
a link. This, too, can be modeled as a fate-sharing
problem: all links that enter or leave a node are cut
at the same time. Note, though, that in this case fate-
sharing is not transitive; other links that share the
same physical path would not be affected.
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A Derivation of the Inter-AS Graph

The inter-AS graph we used was derived from Route-
views data from 8 April 2003. The full data set listed
over 28,000 links from over 15,000 ASs; we used a
small fraction of the data.

Our base graph was generated by selecting the top
200 ASs as sorted by degree of connectivity. We ex-
tracted all links that were between two members of
that list. That left us with 195 ASs and 1186 links
between them, for an average degree of 12.16.

For our simulations, we then generated 80 smaller
graphs by randomly discarding some nodes accord-
ing to a uniform random distribution. 10 were gen-
erated for each discard percentage. For each of these
smaller graphs, we created a sparser topology by dis-
carding approximately half the links. (A few nodes
were deleted as well.)

The following table shows the approximate per-
centage discarded, and the number of remaining
nodes and the average degree for the original and
sparse versions.

Percent Full Sparse
discarded Nodes Degree Nodes Degree

10 173.30 11.13 164.50 7.87
20 153.20 9.85 145.00 6.86
30 130.10 8.54 121.70 5.97
40 107.30 7.10 100.00 4.96
50 88.50 6.29 80.30 4.50
60 66.90 5.15 58.80 3.93
70 47.60 4.24 43.20 3.20
80 26.50 3.36 23.50 2.67
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